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Ingham—Jessen's inequality for deviation means 

ZSOLT PÁLES 

1. Introduction 

Let R, R+ and N denote the set of real numbers, positive real numbers and 
natural numbers, respectively. Let / c R be an interval and let M and N be discrete 
symmetric means on I. (See PÁLES [ 1 1 ] . ) We say that M and N satisfy the Ingham— 
Jessen's inequality if 

M(N(xlr, ..., xln), ..., N(xml,..., *„,„)) ^ 

= N(M(xn, ..., xml), ..., M(xln, ..., * J ) 
i.e. if 

(1) M ' ( N ' ( x u ) ) =5 NHM^x. j ) ) 

for Xi}0, i € { l , . . . , tn},j€{l,...,«}, n,mtN. 
This inequality was considered first by JESSEN [7] and INGHAM in the case when 

M and N are power means. 
Define, for a£R , x = ( x l t ...,j:„)CR"+ (w€N), the a-th power mean Ma(x)~ 

=Mi
a(xi)=Ma(xl, ..., x„) by 

if a ^ O , 
i=l 

( f i x , ) 1 ' " , if 0 = 0. 
¡ = 1 

Now the result obtained by JESSEN [7] can be formulated as follows (see HARDY— 
LÍTTLEWOOD—PÓLYA [6, T h . 2 6 , p . 3 1 ] ) : 

T h e o r e m A. Let a, b£R. In order that the inequality 

(2) Mi(Mi(xu)) s Mi(Mi(xu)) 
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be valid for any x{J£ R + , /'€ {1, ..., m}, {1, ...,n},n,m(i N, it is necessary and suffi-
cient that 
( 3 ) a b. 

There are a lot of investigations concerning this result. JESSEN [8] considered 
a more complicated inequality than ( 1 ) for power means. (See [ 6 , Th. 1 3 7 , p. 101] . ) 

KALMAN [9] proved, a more general inequality thai) (2). TOYAMA [14] investigated 
the ratio of the right and left hand sides of (2). Fixing n and m, he gave the greatest 
lower and least upper bounds of this ratio. 

A natural way of generalizing the inequality (2) is to investigate (1) for more 
general classes of means than power means. In [13], the author considered inequality 
(1) for homogeneous quasiarithmetic means with continuous weight function. These 
are the means defined as follows (see A C Z E L — D A R O C Z Y [ 1 ] ) : for a, R, 
.T=(x , , . . . , x„ )eR" + , «€N, let " 

Ma(x)„ = Mj(x;)p = Ma(xi, .••>*„) = {Z xt+'/Zx!)110, 'f « * 0> . ..' . .'. -
¡ = 1 Iml 

= exp ( J xf In x,/2 x f ) , if a = 0. 
¡+1 ¡=i 

For teR, denote t + = m a x {i, 0}, t~ = m a x { - i , 0}. 

Concerning these mean values the author obtained the following result (see [13]): 

T h e o r e m B. Let a,b,p,q£R. In order that the.inequality 

(4) Ml(Mi(Xlj)p)q Mi(Mi(Xij)q)p 

be valid for any x^dR+, {1, ...,.m}, jt {), ..., n}, n, wG.N, it is necessary and 
sufficient that 
(5) • p-a~ S-q.-b- rs-p + a+ s= q + b+, (p-a-)(q-b-)(p+a+)(q + b+) = 0. 

It is easy to see that if p = q = 0 then we obtain the power means, furthermore, 
(4) and (5) turn into (2) and (3), respectively. . 

JESSEN [8] investigated (1) for quasiarithmetic means, too. However he obtained 
only necessary conditions. (See [6 , Th. 136, p. 1 0 0 ] . ) The aim of the present note is 
to discuss (1) under very general circumstances. We consider inequality (1) for 
deviation means. This class of means has many interesting properties (see e.g. 
DAROCZY [3], [4], DAROCZY—PALES [5], PALES [10], [11], [12]) a n d con ta ins t he weil-
known classes of means (e.g. power means, quasiarithmetic means, quasiarithmetic 
means with weight function (ACZEL—DAROCZY [1], BAJRAKTAREVIC [2])) . If M and 
N are deviation means then under certain regularity assumptions we obtain nec-
essary and sufficient conditions in order that ( l ) .be valid. We also consider (1) for 
homogeneous deviation means. In this case the necessary and sufficient conditions 
are simpler. In the last section we mention some open problems. • 
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2. Notations, definitions and auxiliary results 

Let Icz R be an open interval. Now, we introduce the basic subclass of devia-
tion functions. 

: D e f i n i t i o n 1. A function E: P-~ R is called a *-deviation if it satisfies the 
following properties: 

(i) E is twice differentiable on I". 
(ii) dE(x, t)/dt=d2E(x, i ) < 0 for x, t£I. 

(iii) E(t, 0 = 0 for t£l. 
The class of *-deviations will be denoted by <?(/). For *-deviations on / 

we,shall also need the following usefull notation: If E£$(I) then define E* by 

E*{x, t) = -E{x, t)ld2E(t, t), x, t£I. 

The following theorem and definition is due to DAR6CZY [3], [4]. 

T h e o r e m C. Let E£$(I), n£N, xx, ..., xn£l. Then there exists a unique num-
ber t0 in I such that 

(6) sgn 2 £ ( x i> 0 = sgn Co - 0 
¡=1 

for t£I and 
(7) min xi = t0 'M max x,. . lsisn iais« 

D e f i n i t i o n 2. Let EC$(I),n£N,x=(x1, ...,x„)£I", and consider the equation 

(8) ¿ 2 ^ , 0 = 0. 
¡=1 

Then, by Theorem C, there exists a unique solution t=t0 of (8) and this solution 
is called the ^-deviation mean of x and is denoted by 9Jl£(x) or SJi^x,) or 
9R£(xt, ..., x„). (7) shows that TiE(x) is indeed a mean value of x. 

R e m a r k . The proof of Theorem C can be found in [3], [4]. However, it can 
easily be proved using the facts that the function 

/ - 2 t), til, 
i=l 

is continuous, strictly monoton decreasing and changes sign on the interval I. 
The class of * -deviations is contained in the class of deviations introduced by 

DAR6CZY [3], [4]. Theorem C and Definition 2 can very easily be extended to devia-
tions (see [3]). 
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E x a m p l e s . 1. Let q>: /—R be a twice differentiable function with positive 
first derivative and let / : / — R + be a positive, twice differentiable function. Set 

(9) 0 = / (* ) ( f l » (* ) -9 (0 ) , x,t£I. 

It is obvious that E0 «•€<?(/). If n£N, x = ( x l 5 ...yxn)£In then SR. (x) has the J 9tf 
following form: 

r(x) = M^x)f = <p-l(ZAxi)<p(xd/2f(xd) 
•=1 1=1 

i.e. 2 R £ is a quasiarithmetic mean with weight function (see BAJRAKTAREVIC [ 2 ] ) . 

If f(x)= 1 then 9Jl£ becomes the quasiarithmetic mean Mv (see HARDY—LrrnJB-
W O O D — P Ó L Y A [ 6 ] ) . 

2. Let a, p£ R and set 

Ea,p{x, t) = xp{xa-t")la, if a ^ 0, 
(10) 

— x (In x—In /), if a = 0. 

Now, for x€/" , we obtain that SER̂  (x)—Ma(x)p. If p=0 then we get the power 
means. 

Now we prove a sequence of lemmas which will be needed later on. 

L e m m a 1. Let £€<£(/). Then, for fixed n€ N, 

(11) (* ! , . . . , : *„ ) -SMjs fo , . . . ,*„) 

is a continuously differentiable function on I" and 

( 1 2 ) № ( * 1 , . . . , xn) = - A I £ ( X F , iJtE(x))/(£d%E(xj, «*(*))) 

for x=(xx,..., xn)£I". (Here dt denotes the partial differentiation with respect to 
the i-th variable.) 

P r o o f . Let *o=(*oi> •••» *o»)€/" be fixed and denote by t0 the mean value 
2R£(x0). Let 

F(x,t) = ZE(xt,t) 

for X = ( X I , . . . , JC„)G/" and t£I. By our assumption (i) on deviations belonging to 
#(/), F is continuously differentiablé in a neighborhood of (x0, t0). (ii) in Defini-
tion 1 implies that 

dtF(x0, t0)= 2d2E(xoJ0) < 0, 
> = I 
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and we know that F(x0, t„)—0. Thus the conditions of the implicit function theo-
rem are satisfied. Consequently, the function (11) determined by the equation 

F(x, OT£(*)) = 0 

is differentiable at the point jc„ and its derivative has the form 

MJtE(x0) = ~(dtF(x0, t0))-^dxF(x0, t0) 

i.e. (12) is satisfied at x0. 
The continuity of the function (19) follows from (i). This completes the proof 

of the lemma. 

L e m m a 2. Let ££<?(/). Then, for x, t£l, 

(13) lim ( « - 1)(SRB(JC, t z _ ^ f ) - t ) = E*(x, t). 
n—1 

We omit the proof of this lemma since it is proved in DAR6CZY [3], [4]. 

L e m m a 3. Let Then, for x, t£I, 

(14) lim ( « - l ) ^ 9 M £ ( x , / , . . . , / ) = d1E*(x,t). 
«-I 

P r o o f . Let x, t£I be arbitrary. For «€N, let 

(15) tn = 9Jl£(x, t ^ t ) . 
n-i 

Applying Lemma 1, we have 
a «JI ( x t A djEjx, t„) 

1 e1 ' ^ ~ d2E(x,t„)Hn-l)d2E(t,tn)-n—1 
Hence 

(.6) ( „ - n m j x . = - 6 t E ( X i , j f f ; . 
B—1 

By Lemma 2, 
(17) lim /„ = t. 

Therefore, taking the limit n — ~ in (16) we obtain (14). 

L e m m a 4. Let E£S(I). Then, for x, t£I, 

(18) lim d,aRs(x, ^ ^ / > - 1 ) = a.^"-^.*). 
' 2 .n —1 

P r o o f . Let x, t£I be arbitrary and let t„ be defined by (15). Applying Lemma 1 
we have 

E{t, Q 
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for. 2 s i s n . . Hence; after a simple calculation, we obtain 

( " - 1 ) ( J i ^ ) - 1 ) = 
n—1 

(19) 
32£Q, r„)+(»- l)(gx£(?, Q +d2E(t, Q) 

i)2E(x, tn)l(n-\)+d2E(t, /,,) 
Since E(t,t)=0, we have 

(20) ' i )+a 2£(?; 0 = 0 for 

If i j ^x then /„ is strictly between x and t. Applying (20) and Lemma 2, we obtain 

lim (n-\){dtE{t, tn)+d2E(t, O) = ' 

(21) = lim ( „ - 1 ) ( , . - * ) ( № ' 0 - = 
... v t„-t: tn-t ) 

= E*(x, t)(dJhE(t, t)+32d2E(t, 0). 

It is easy to see that (21) remains valid if x=t=t„. Now, applying (17) and (21), 
we can calculate the limit of the right hand side of (19). We get 

Um ( « - l ) ( J a ; 5 № £ ( x , -
n —1 

d2E{x, t) + E*(x, t^d^Ejt, t) + d2d2E(L Q) _ 
d2E{t, t) ^ (X' ty 

The proof is complete. 

R e m a r k . There is a simple connection between Lemma 2 and Lemmas 3 
and 4. Differentiating (13) with respect to x and t we obtain (14) and (18), respec-
tively. 

3. The main result 

In this section we give necessary and sufficient conditions in order that (1) be 
satisfied with M=WF, N=mE where F,E££(I). 

T h e o r e m 1. Let E,F£#(I). The inequality 

(22) . m i m i x i d ^ m i m f r j j ) 

holds for any x 0 € / , ¿€{1, ™},j£{ 1, •••, «}, n, N, if and only if 

2„ ' E*(x, y)d1F*(y, u )+£*(z , u)d2F*{y, u)^ 

F*(x, z)d1E*(z, u)+ F*(y, u)d2E*(z, u) 

for each x,y,z,u£l. 



Ingham—Jessen's inequality 137 

P r o o f . Necessity. Let x,y,z,u£l be arbitrary and let n, m£N. Define x^ 
( l^ / ' ^ /w, ISyS / j ) as follows: 

Xn X12 . • Xin 
/ 
X y • y 

(24) X21 X22 • • x2n 
= 

z u . . u 

< X in 1 Xm2 • ' xmn > - 2 M . • 

Now introduce the following notations: 

a(n) = SN£(x,7, ...,Y), A{n) = 9JlE(z, U, ..., u), 
« —1 n — 1 

b (/«) = mF(x, Z ^ z ) , *(m) = (y, u^u). 
m—1 m —1 

Applying inequality (22) for the x , / s defined by (24) we obtain 

(25) 501,(0(1»), A («), ..., ¿(n)) ^ 9KE(b(m), B(m)) 
' V ' ' —V" ' in — X II — 1 

for n, mgN. If then, using Lemma 2, one can easily see that both sides 
of (25) tend to (n). Therefore we calculate the following limits: 

(26) 

(27) 

lim (m — l)(WF(a(n), A(n), ..., A(n))-A(«))'= *(/?), I»-*«» V ' m — 1 

lim (m-\)(WE(b(m), B{m), ..., B(m))~A(n)) = L(«). 

To calculate (26) apply Lemma 2. Then we obtain 

(28) *(«) = F*(a(h), A(n)). 

It is a bit more complicated to determine L(n). By Lemma 2 we have 

lim (m — l)(b(m) — z) = F*(x, z), lim (m-l)(B(m)-u) = F*(y, u). 
m-* ao 

Hence, using Lemma 1 and the differentiability of 9Jl£, we get 

L(n) = lim (m-l)(WE(b(m), B(m), ..,, B(m))-iDlE(z, u, ..., «)) = m-~ -
n-1 n-1 

(29) 
= d1S)lE(z, u, ...,u)F*(x, U, .:., u)F*{y, u). 

Inequality (25) implies that, for «£N, 

(30) '/?(«) s L(n). 
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Using Lemmas 3 and 4 we easily obtain that both sides of (30) tend to F*{y, u). 
Therefore we calculate the following limits: 

lim (n- 1 )(R(n)-F*(y, «)) == R*, lim (n — l)(L(n) — F*(y, «)) = L*. 

Applying Lemma 2 we have 

lim ( n - 1 ) ( a ( n ) - y ) = E*{x, y), lim (n- 1)(^(«)-M) = E\z, u). 
n-* OO N-»OO 

Hence, using the differentiability of F*, we get 

R* = lim (« - 1 ) ( F > ( « ) , /((/i)) - F*Ce,«)) = 
(31) 

= 31F*(y, u)E*(x, y)+d3F*(y, u)E*(z, u). 

Applying Lemmas 3 and 4 we have 

lim ( n - l ) ^ a K £ ( z , 1/, ..., u) = «), 

lim ( n - l ) ( 2 № ( a . . . , « ) - 1 ) = d s £ * ( z , «). (=i •—.—> n —2 
Consequently 
(32) L* = d1E*(z, u)F*(x, z)=dtE*{z, u)F*(y, u), 

Inequality (30) implies R*^L*. This completes the proof of (23). 
Sufficiency. Let n, 777 £N and x ^ I , l ^ i ^ m , 1 Sy'^n. Further, let 

(33) yt = mi(xu), zj = 9Hf(x0), u = mi(W'P(XiJ)) = 

Apply (23) for x=xij, y=yt, z=zj and add the inequalities obtained. Then we get 

2{d,F* ( j ; , u) 2 E* (Xij, >>;)} + j? do F* (J',-, u) 2 E*(zj, u) ^ 
(34) i = 1

 n 

=5 J {d1E*(zJ, u) 2 F*(xu, Zj)}+ 2 f%E*(zj, u) 2 E*(yit u). 
j=i ¡=i i (=i 

Using (33) and Definition 2 we have 

2E*(*u,yd= 0, 2 E*(xij, Zj) = 0, jg E*(zj, u) — 0. J = 1 (=1 

Therefore (34) simplifies to the following inequality 

(35) O S J d2E*(zj, u) 2 E*(y{, u). 
¡=i 
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As we have seen in the proof of Lemma 4, 

a A d,E(x, t)+E*(x, t){d^Ejt, t)+d2d2E(t, Q) 
d * E ( x- d^ËUJ) • 

Hence, by property (ii) of * -deviations, 

(36) J d2 E*(zj, u) = - 2 d-2E(zj, u)/d2E(u, u) < 0. 
j=i j=i 

(35) and (36) imply 

(37) 
¡ = 1 

It follows from Theorem C and from (37) that ( ; > , • ) i . e . (22) holds. 

R e m a r k . Applying Theorem 1 for the deviations defined by (9) we can easily 
obtain necessary and sufficient conditions for (1) if M and N are quasiarithmetic 
means with weight function. 

4. Homogeneous means 

Let £Ç<f(R+). The ^-deviation mean 3JÎ£ is said to be homogeneous if 

SEMi*!,..., txn) = fmE(Xl, ..., x„) 

for t,xt, . . . , x „ 6 R + , n€N. 
Concerning homogeneous deviation means DARÔCZY [3] obtained the following 

result : 

T h e o r e m D. Let £€<?(R+). Then 9Jl£ is homogeneous if and only if 

E*(x, t) = tE*(x/t, 1) 
for * , / € R + . 

For homogeneous deviation means Theorem 1 simplifies to the following form. 

T h e o r e m 2. Let E, R + ) and assume that ®i£ and 9KF are homogeneous 
means. Then the inequality (22) is valid for any xtJ£R+, iÇ. {1,..., m}, jÇ. {1, ..., «}, 
n, MÇN, if and only if 

(38) td\E*(t, ^d.F*(s, 1) ë d1E*(t, 1 )s%F*(s, 1) 
for s,t£R+. 

P r o o f . Since 9JÎ£ and 93lf are homogeneous means, Theorem D implies 

E*(x, t) = tE*(x/t, 1) = te(x/t), F*(x, t) = tF*(xlt, 1) = tf(x/t) 
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for jt, / € R + . By our assumptions on E and F we have that e a n d / a r e twice difV 
ferentiable functions. Then, applying Theorem 1, we obtain that (22) holds if and 
only if 
(39) yluf'(ylu){e(x/y)-e(zlu)}^zlue'(zlu){f(xlz)-f(ylu)} 

for x,y,z, «€R+. 
Replacing xlu, ylu and Z/M by r, s and I, respectively, we get 

(40) Q^te\t){f{rli)-f(s)}-sf\s){e(rls)-e(t)} 

for r, s, / £R+. It is easy to check that (40) is equivalent to (39). Therefore thé 
proof of the theorem will be complete if we show that (40) holds if and only if (38) 
is satisfied. Fixing s and /, we denote by g(r) the right hand side of (40). 

If (40) is satisfied then r=st is the place of minimum of g. Hence g"(st)^0. 
This yields (38). 

In the other direction we prove that 

(41) g ' ( r ) ( r - s i ) ê 0 for r > 0. 

Then £ ( j O = 0 and (41) implies g(r)>0 for /•>0. 
Applying (38) for s=r/t it can be easily seen that the function 

r - e ' ( i ) / ' ( r / 0 , ' > 0 , 

is monotone decreasing. Therefore, in the case r ^ s t , 

e'(t)f\rlt) e'(rls)f'(s), 

i.e. (41) is satisfied in this case. In the case r>st the proof of (41) is similar. The 
theorem is proved. 

R e m a r k . Applying Theorem 2 for the homogeneous means M=Mbyq, N=Ma p 

one can easily prove Theorem B. (For details see [13].) 

5. Open problems and final remarks 

Consider the following more general inequality than (1): 

(42) M i i N i i x ^ ^ N K M K x i j ) ) 

for Xij,€/, 1 âi 'Sffl , 1 =jsn, n, m£N. (Here M l 5 M2, Nx, N2 are discrete symmetric 
means on I.) The following conditions are necessary (but not sufficient) in order 
that (42) be satisfied: 
(43) M1 â M2, N ^ N 2 , 

(44) . . . . . . . . . 5 . 
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If we take n—1 and m= 1 in (42) then we obtain (43). To prove that (44) is 
aiso a necessary condition we substitute into (42) the following matrix : 

(*y) = 

X1 x2 x 3 . . . x„ 
X» X3 -V j . .. Xi 

Xn X1 x2 • • • x„ _ 

(whenever x l 5 ..., x„£7); then we obtain (44). 
The system of inequalities (43), (44) is also a sufficient condition if Mx, M 2 , 
IV2 are power means. (See JESSEN [7], HARDY—LITTLEWOOD—PÓLYA [6, Th . 137, 

p. 101].) However, it is not sufficient in other classes of means. Finally, we formulate 
a condition which is sufficient in the class of deviation means. 

Let E±, E2, F±, F2Ç<?(7). If there exist functions Ax, A2, B2: 72 —R such 
that, for x t , ...,x„Ç7, N, 

and 

Z i ^ s r c i (*,-)) S 0 
j=1 

^ ( X , WJ + F A F E u)A2(y, u) Ä F 2 ( X , Z ) B l ( z , u) + F1(y, ü)B2(z, u) 

for x,y, z, uei then (42) is satisfied for M j = S0ijFi, M 2 = , =9)1^, N 2 = . 
The proof of this proposition is similar to the proof of the sufficiency part of Theo-
rem 1. We remark that this sufficient condition is also necessary if EX=E2=E, 
Fi = F2= F. (That was the case investigated in Theorem 1.) 
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