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Ingham—Jessen’s inequality for deviation means

ZSOLT PALES

1. Introduction

Let R, R, and N denote the set of real numbers, positive real numbers and
natural numbers, respectively. Let 7CR be an interval and let M and N be discrete
symmetric means on I. (See PALES [11].}) We say that M and N satisfy the Ingham—
Jessen’s inequality if

M(N (X115 o5 X1)s coos N(Xpps -oes Xpu)) =
= N(M (X115 -5 Xma)s o0 M Xy ooy Xou))
ie. if
(1) Mi(Nj(xij)) = Nj(Mi(xij))

for x;€1, ic{l, ..., m}, je{1, ...,n}, n,meN.
This inequality was considered first by JESSEN {7] and INGHAM in the case when
M and N are power means. '
Define, for a€R, x=(x,, ..., x,)ER% (mEN), the a-th power mean M,(x)==
=M:(xi)=Ma(xla siey’ n) by

(3 xa/n)le, if a0,
i=1

| (ﬁx,-)’/", if a=0.
i=1

Now the result obtained by JESSEN [7] can be formulated as follows (see HARDY—
LrrrLewooD—POLYA [6, Th. 26, p. 31]):
Theorem A. Let a,beR. In order that the inequality

) . : | . le(Mai(xij)) = Mbi(MIf(xij))
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be valid for any x;;€R,,ic{l,...,m}, je{l, ..., n}, n, mEN, it is necessary and suffi-
cient that
€)) a=b.

There are a lot of investigations concerning this result. JESSEN [8] considered
a more complicated inequality than (1) for power means. (See [6, Th. 137, p. 101].)
KALMAN [9] proved. a more general inequality than (2). Tovama [14] investigated
the ratio of the right and left hand sides of (2). Fixing n and m, he gave the greatest
lower and least upper bounds of this ratio.

A natural way of generalizing the inequality (2) is to investigate (1) for more
general classes of means than power means. In [13), the author considered inequality
(1) for homogeneous quasiarithmetic means with continuous weight function. These
are the means defined as follows (see ACZEL—DAROCZY [1]) for a,peR,
X= (xl, X ,,)ER nEN let : : k

«Ma(x)p M (x:)p M (xla mees xn) = (Z"‘ xla+p/2"‘_x‘p i‘/'a, lf a # 0’

—exp(ZxPlnx/Z'x") if a=0. )

For t€R, denote ¢ +—-max {t,0}, t~ =max {—¢, 0}.
Concerning these mean values the author obtained the following result (see [13]):

Theorem B. Let a,b,p,gcR. In order that the.inequality
“) MM (x;)),), = MI(M§(x:),),

be valid for .any xUER,L, iefl, ..., m}, je{l, ..,n}, n,meN, it is n_gcessc:z'_ry‘ ah.d
sujﬁczenr that

(5) - -p—a” =q—b-=ptat =q+b*, (p—a)(g—b7)(p+a*)(g+b*)=0

It is easy to see that if p=¢g=0 then we obtain the power means, furthermore;
(4) and (S5) turn into (2) and (3), r'es(pectively._».ﬁ

JEsseN [8] investigated (1) for quasiarithmetic means, too. However he obtained
only necessary conditions. (See [6, Th. 136, p. 100].) The aim of the present note is
to discuss (1) under very general circumstances. We consider inequality (1) for
deviation means. This class of means has many interesting properties (see e.g.
DAROCZY [3], [4], ‘DaRrGCZY-—PALES [5], PALEs [10], [11], [12]) and contains the wéll:
known classes of means (e.g. power means, quasiarithmetic means, quasmnthmetlc
means with weight function (ACZEL—DAROCZY [1], BAIRAKTAREVIC [2])). If M and
N are deviation means then under certain regularity assumptions we obtain nec-
essary and sufficient conditions in“order that (1).be valid. We also consider (1) for
homogeneous deviation means. In this case the necessary and sufficient conditions
are simpler. In the last section we mention some open problems. -
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2. Notations, definitions and auxiliary results

" Let ICR bean 6pen interval. Now, we introduce the basic subclass of devia-
tion functions.

. Definition 1. A function E: I*-~R is called a *-dev1at10n if 1t satisfies the
followmg properties:
(i) E is twice differentiable on 7.
(i) JE(x,1)/0t=8,E(x, t)=<0 for x, tcl.
(iii) E(z, t)=0 for icl.
- The class of x-deviations will be denoted by &(/). For x-deviations on [
we shall also need the following usefull notation: If E€&(I) then define E* by

E*(x, 1) =—E(x, ]0.E(t, 1), x,tcl

The following theorem and definition is due to DARrOCZY [3]; (4]

Theorem C. Let Ec&(I), n€N, x,, ..., x,£1. Then there exists a unique num-
ber t, in I such that

) sgn ;; E(x;, 1) = sgn (ty—1)
for tel and '
@ 22,5 = o = e

Definition 2. Let E€8(I),neN, x=(x,, ..., x,)€1", and consider the equation

®) 2 E(x, 1) =0

Then by Theorem C, there ex1sts a unique solution z=¢, of (8) and this solution
is called the E-deviation mean of x and is denoted by Mg(x) or Mi(x,) or
Me(x1, ..., x,). (7) shows that Mz(x) is indeed a mean value of x.

“Remark. The proof of Theorem C can be found in [3], [4]. However it can
easily be proved using the facts that the function

t—’ZE(xi, t), tEI,
i=1

is ‘continuous, strictly monoton decreasing and changes sign on the interval /.

" The class of *-deviations is contained in the class of deviations introduced by
Dar6czy [3], [4). Theorem C and Deﬁmtlon 2 can very easxly be extended to devia-
tions (see [3]).
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Examples. 1. Let ¢: I-R be a twice differentiable function with positive
first derivative and let f: I—-R, be a positive, twice differentiable function. Set

) Ep s (0 = /@00 ~0@), x, €L

It is obvious that E, €&(I). If nEN, x=(x,, ..., x,)€I" then’ My (x) has the
following form: ‘

Wy, , () = My =07 (3 f(x.-)w(xi)/z"f(x,)')

ie. ilJIE is a quasiarithmetic mean with weight function (see BAJRAKTAREVIC [2]).
If f(x)= ‘1 then imE becomes the quasiarithmetic mean M, (see HARDY—LITTLE-
' wooD—POLYA [6]).

2. Leta, p€R and set

(10) Ea,p(x, t) = xp(xa_ta)/a, if a0,
‘xr(lnx —In?), if a=0.

Now, for x€I", we obtain that SJEE (x) M 2(x)p. If p=0 then we get the power
means.
Now we prove a sequence of lemmas which w111 be needed later on.

Lemma 1. Let Ec&(I). Then, for fixed nEN,

(1) (%15 -ees Xp) = Me(xy, -5 X,)
is a continuously differentiable function on I" and
(12) 051, s %) = =y (o, Me)( 3 04y, Mp() -

Jor x=(xy, ..., x,)€I". (ﬁere 0; dénotes the pértiai diﬁ'e;éhtiatiqn:with respect to
the i-th variable.)

Proof. Let xo=(Xo1, ..., Xs)€EL" be fixed and denote by #, the mean value
M (x,). Let

F(x, )= 5 E(x;, )
i=1 i
for x=(x,, ..., x,)€EI" and t€l. By our assumption (i) on deviations belonging to

&(I), F is continuously differentiablé in a nelghborhood of (xo, t,). (ii) in Defini-
tibn 1 implies that

9, F(x;, 1= 3 0E (ot <0,
i=1
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and we know that F(x,, t,)=0. Thus the conditions of the implicit function theo-
rem are satisfied. Consequently, the function (11) determined by the equation

F(x, Mx(x)) =0
is differentiable at the point x, and its derivative has the form
DM (xo) = —(9; F (X0, 1)) ™ 0x F (x5, lo)

1.e. (12) is satisfied at x,.
The continuity of the function (19) follows from (i). This completes the proof
of the lemma.

Lemma 2; Let Eéaf(l). Then, for x, tel,
13 lxm (r—D)(Me(x, 1, . z) —1) =E*(x, 1)

n—l

We omit the proof of this lemma since it is proved in DArGCZY [3], [4].

Lemma 3. Let E€E(). Then, for x,t€l,
19 lim (n—1)8,M(x, ¢, ..., §) = K E*(x, 0.

"= o

Proof. Let x,t€l be arbitrary. For nEN, let

15) ty=Me(x, ¢, ..., 2).
[

n-1

Applying Lemma 1, we have

_ O E(x, t,) '
8, My(x, 1, - 1) = 9. E(x, 1) +(n—DOE(L, 1)
Hence .
, : - 0 E(x,t,)
(16) (n—1)0,Mx(x, t,”-_--ls )= G - D+REC D)
By Lemma 2,
an ' lim ¢, = t.

Therefore, taking the limit n— o> in (16) we obtain (14).
Lemma 4. Let E€E({I). Then, for x,t€l,

(18) ' lim (n—l)( 2’ AM(x, 1, ... ) ~1) = D E*(x, ).
n—- 1 . .
Proof. Let x, €1 bearbitrary and let 7, be deﬁned by (15). Applymg Lemma 1

we have
alE(t’ tn)
0:E(x, t,)+(n—1)0:E(1, ¢,).

3im3£(x, F A t) = -
1
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for 2=i=n. Hence; after a simple calculation we obtain

C(n— ])(2’8 SJIE(x, ,- . t)— l) =
(19) : : - y
—_— 32E(x’ t,,)+(n—l)(31E(t, In)+32E(ta tn))
B : 32E(x’ rn)/(n—-l)'*'aZE(ta tii) )

Since E(t t) 0, we have

{20y - o R E( D+0,E(L =0 for €l

" If ts#x then ¢, is strictly between x and r. Applying (20) and Lemma 2 we obtain
lim (n—l)(alE(t t”)'*'aoE(t 1)) =

(21) = ’}_1{2 (n___ l)(?n—l)(alE(t’ tn)—alE(t’ t) _ BZE(t’ tn)_a2E(t’ [)) —

t—1 A t—t
= E*(x, 1)(0:0, E(t, )+:0, E(t, 0).

It is easy to see that (21) remains valid if x=t=¢,. Now, applying (17) and (21),
we can calculate the limit of the right hand side of (19). We get

llrn (n—l)(Z'a ‘.DIE(x, s - t)—l) =

—_— 32E(x9 t)""E*(x’ t)(azalE(ta t)+3282E(ta t)) - 32E*(x t).

0, E(t, 1)
The proof is complete

Remark. There is a 51mple connection between Lemma 2 and Lemmas 3
and 4. Dlﬁerentlatmg (13) with respect to x and ¢t we obtain (14) and (18), respec-
tively. :

3. The main result

In this section we give necessary and sufficient conditions in order that (1) be
satisfied with M=y, N=M; . where F, E€E(]).

Theorem 1. Let E, FEE(I). The inequality
22) N EDIF(ﬂJlE(x,,)) SJIE(SUIF(x,j))
holdsfor any xuél 16{1 ..m}, j€{l, ..., n}, n,m€N, if and only if

’ ©E*(x, y)0, F*(y, ) +E*(z, )0, F*(y, u) = -
= F*(x, z)alE*(z u)+ F*(y, u)32E*(z, u)

Jor each x,y, z,ucl.

(23)
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Proof. Necessity. Let x,y,z,u€l be arbitrary and let n, m€¢N. Define x;;
(l<z<m 1=j=n) as follows:

’ X1 Xig e Xip Jfx ye.ooy
24) 3:‘21 ):‘22 ---3:‘2;: - Zu u

xml xm2 ces X
Now introduce the following notationS'

a(n) = ‘.DIE(x,y, . ,y) An) = Me(z, u, ..., u),

n— 1 n—1

b(m) = Me(x, z, ..., 2), B(m) = Me(y, u, ..., u).
e d e e

m—1 . m—1

Applying inequality (22) for the x;;’s defined by (24) we obtain

25) Me(a(n), A(n), ..., A(n)) = Mg(b(m), B(m), ..., B(m))

for n,meN. If m=>o then, using Lemma 2; one can easily see that both sides
of (25) tend to A(n). Therefore we calculate the following limits:

(26) lim (m — (M (a(n), A(n), ..., A(n))—A(n)) = R(n),
g —» oo _F/

m—1

27 lim (m— (M (b (m), B(m), ..., B(m))—A(m) = L(n).

w21

To calculate (26) apply Lemma 2. Then we obtain

(28) R(n) = F*(a(n), 4(n)).

It is a bit more complicated to determine L(n). By Lemma 2 we bave -
lim (m~1)(b(m)~2) = F*(x, 2), lim (m— 1)(B(m)—u) = F*(3, u).

Hence, using Lemma 1 and the differentiability ;>f ‘Jﬁb we get |

L(n)= lim (m—1)(M(b(m), B(m), ..., B(m))—Mg(z, u, ..., u)) =
m-»co e, o’ B L e

(29) | » n—1 n—1
= Me(z,u, ..., u) F¥(x, z)+23 Me(z, u, ..., u) F*(y, u).

w1 T
Inequality (25) implies that, for neN,
(30) R(n) = L(n). ‘ -
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Using Lemmas 3 and 4 we easily obtain that both sides of - (30) tend to F*(y,u).
Therefore we calculate the following limits:

3}’:2 (n—=1)(R(n)— F*(y, u)) = R*, ,!f.nl (n=0)(L(n)—F*(y, u)) = L*.
Applying Lemma 2 we have
Jim (n— D(a(n)—y) = E*(x, y). lim (n— D)(4(n)~u) = E*(z, u).
Hence, using the differentiability of F*, we get
= lim (1~ D(F*@ (), A () - F*(y, 1) =
= F*(y, ) E*(x, y)+0s F*(y, W) E*(z, u).

Applying Lemmas 3 and 4 we have

@3n

hm (n—1)0,Me(z, u, ..., u) IE*(z, u),

n—l

Jim (n— l)(é’ OMe(z,u, ..., u)—1) = B, E*(z, u).

n—-2
Consequently

(32 L* = 0, E*(z, ) F¥(x, 2)=0, E*(z, ) F*(y, u):

Inequality (30) implies R*=L*. This completes the proof of (23).
Sufficiency. Let n, meéN and x;;€1, 1=i=m, 1=j=n. Further, let

(33) Vi = m?i’;(xij): z; = m?}(xu), u= ‘-mf:(ml;‘(xu)) = ﬂRf::(zj)-

Apply (23) for x=x;;, y=y, z=z; and add the inequalities obtained. Then we get

iz; {3141.7*(}’“ 1‘)1§E*(xij’ y;)}+i_2;32F*(y.-, u) __Z;E*(Zja u) =

Gy T - B = :
= j;; {alE*(Zp u) g; F*(x;j, Zj)}'*‘j;; 0 E*(z;,u) izl F*(y;, w.

Using (33) and Definition 2 we have
jZ;E*(xu,)’i):Oa ‘Z;F*(xij,zj)-:o» .anE*(zjau)=0
= = . . J=

Therefore (34) simpliﬁes to the following inequality

(35) 0= 30,E°(z,, ) g"l F* (i, w).
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As we have seen in the proof of Lemma 4,

_ 0.E(x, )+E*(x, )(9:0, E(t, ) +0:0:E(1, 1))

aZE*(x’ t) = 32E(t t)

Hence, by property (ii) of # -deviations,

(36) jg"l 9, E*(z;, u) = ',-;2"1 9. E(z;, )0y E(u, u) < 0.
(35) and (36) imply

67 . é F(y,, ) = 0.

It follows from Theorem C and from (37) that M (y)=u ie. (22) holds.

Remark. Applying Theorem 1 for the deviations defined by (9) we can easily
obtain necessary and sufficient conditions for (1) if M and N are quasiarithmetic
means with weight function.

4. Homogeneous means

Let Eed’(R+). The E-deviation mean M is said to be homogeneous if
gjtl:‘(tx17 L] txn) = tmE(xb eves xn)

for t, x4, ..., X,€R,, n€N. _ _
Concerning homogeneous deviation means DAROCZY [3] obtained the following
result:

Theorem D. Let Ec&(R.). Then My is homogeneous if and only if

E*(x, ) = tE*(x/t, 1)
for x,t€R, .
For homogeneous deviation means Theorem 1 simplifies to the following form.

Theorem 2. Let E, FES(R,) and assume that My and My are homogeneous
means. Then the inequality (22) is valid for any x;€R,, i€{l, ..., m}, je{l, ..., n},
n, meéN, if and only if

(38) 102 E*(t, 1)9, F*(s, 1) = 0, E*(t, 1)s02F*(s, 1)
for s, teR,.

Proof. Since My and M, are homogeneous means, Theorem D implies

E*(x, ) = tE*(x/t, 1) = te(x[t), F*(x,t) = tF*(x[t, 1) = tf(x/f)
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for x,1€R,. By our assumptions on E and F we have that ¢ and f are twice dif-
ferentiable functions. Then, applying Theorem 1, we obtain that (22) holds if and
only if - .
(39) yluf (yluy{e(x/y)—e(z/u)} = z/ue’ (z/u) {f(x/2)—f(y|u)}
for x,y,z,u€R, .
Replacing x/u, y/u and z/u by r, s and , respectively, we get
(40) - 0=’ (){/f i) —f (S)} sf” () {e(r/s)— e(l)}
for r,s,t€R,. It is easy to check that (40) is equivalent to (39). Therefore the
proof of the theorem will be complete if we show that (40) holds if and only if (38)
is satisfied. Fixing s and ¢, we denote by g(r) the right hand side of (40).
If (40) is satisfied then r=st is the place of minimum of g. Hence g”(st)=0.
This yields (38). ‘
In the other direction we -prove that
@n- ' ' g (M) (r—sf)=0 for r=0.
Then g(st)=0 and (41) implies g(r)>0 for r=>0.
Applying (38) for s=r/t it can be easily seen that the function
1= Of (l), >0,
is monotone decreasing. Therefore, in the case r<st,
WS (r/D) = e (r[s)f(5),
1.¢. (41) is satisfied in this case. In the case r=>st the proof of 41) is 51m11ar The
theorem is proved.

Remark. Applying Theorem 2 for the homogeneous means M = M, ,» N M
one can easily prove Theorem B. (For details see [13].)

5. Open problems and final remarks

Consider the following more general ixiequality than (1):
42) .  MI(N (i) = N (M)
for x;;€1, 1=i=m, 1=j=n,n, meN. (Here M,, M,, N,, N, are discrete Symmetric
means on [.) The following conditions are necessary (but not sufficient) in order

that (42) be satisfied:
@3) . M =M, NsN,

(44) o P L N =M,
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If we take ‘n=1 and m=1 ‘in (42) then we obtain (43). To prove that (44) is
also a necessary condition wé substitute into (42) the following ’ matrix:

Xy X3 Xg... X,
Xo Xg.Xg.: X
(i) = Do

Xp X1 x2..'.- Xp-1

(whenever x,, ..., x,€/); then we obtain (44).

The system of inequalities (43), (44) is also a sufficient condition if Ml, M.,,
N,, N, are power means. (See JESSEN [7], HARDY—LITTLEWOOD—POLYA [6, Th. 137,
p- 101}.) However, it is not sufficient in other classes of means. Finally, we formulate
a condition which is sufficient in the class of deviation means.

Let E,, E,, F,, F,€8(). If there exist functions A,, 4,, B,, B,: I*R such
that, for xq, ..., x,€1, n€N,

2; By(x;, ML, (x)) =0
is
and
Ei(x, y)A, (¥, )+ Ey(z, u) As(y, u) = Fo(x, 2) By (2, )+ Fy(y, u) By(z, u)

for x,y,z,u€l then (42) is satisfied for My=M, , M=M;, N1=§UIE,, No=My .
The proof of this proposition is similar to the proof of the sufficiency part of Theo-
rem 1. We remark that this sufficient condition is also necessary if E,=E,=E,
F,=F,=F. (That was the case investigated in Theorem 1.)
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