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On multiplicative functions that are g-additive

). FEHER -

1. Introduction. We shall say that a complex-valued function f(n) defined on
the set of natural numbers is multiplicative if f(ab)=1(a)f(b) holds for every coprime
pairs a and b. Let .# be the class of multiplicative functions.

Let g=2 bea fixed mteger Every posmve integer can be represented in the form

(1.1 n-—a°+a1q+ .+a,q°, a,#0, a€{01 ,q—l}

uniquely. We shall say that a complex-valued function g(n) defined on the ‘set of
nonnegative integers is g-additive if g(0)=0 and .
(1.2) ' g(n) = g@)+g(@a)+- +8(0.49)

for n having the representation (1.1). Let &/, be the class of q-addltlve functxons This
notion has been introduced by A. O. GELFOND [1]. '
It is obvious that g(n) is a g-additive function if and only if . . .

(1:3) L g(Agt ) = g(4gD+g() -
whenever 0=r<g*, 4=0. It is obvious that f(m)=nis a multnphcatlve and q-

additive function. The zero function has the same properties.
Our main: purpose is to determine all functions in .szl NA.

Theorem 1. Let fed,NA#, f(q)#0. Then f(n)=n.- _ - v
We shall give all the multlphcatlve funct1ons f(n) with perrod g, i.e. those for
which
(1.49) fn+q)y=f(n)
holds for every n=0.
Let q= ‘,’", where. 0y, .. Q, are dlstmct prrmes
Main lemma Let fc M satisfy (1.4), f(i)=1. '

(1) Then f (W=x(n) for every n coprtme fo q, wherev X-isa multzpltcatwe char-
acter mod q. - . ‘ A '
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Let x=yx,-...-%,, where x; is a multiplicative character mod Qf (i=1,2, ..., r).
The components y; are determined by . Let

(1.5) H/I Gi=1,..,r),
J;éi
Let O be the smallest period of ;. Then Os¢=w;
(2) We have
SOy AOY if x; is principal character,
ae seem={""" o iy
0 if yi isnot the principal character

(h=1,2,..).

“€3) If f(Q)#0 for some AE[l, w;—1), then 2 =w;—¢;.

" Conversely, if fe# satisfies (1), (2), (3) then (1.4) holds.

Remark. The assertion stated here may be known. It has an auxiliary char-
acter for us. A. SARKOZY [2] considered multiplicative arithmetic functions satisfying
a linear recursion. »

"Theorem 2. Let fe N, f(1)=1, f(q)=0." Then f is a periodic function
with period q, f(07)=0 for at Ieast one I. The assertions (1), (2), (3) in the Main
lemma are satisfied.

: Conversely, if these conditions hold and fc M, then fcsdf,.

2. Proof of the Main lemma. Let us assume that fe.#, f(1)=1 and (1.4) holds,
It is well known that f(n)=yx(n) for (n,g)=1, x is a character mod q.
Let i be fixed, h>=0, R=q-Q;%, n=0%*".r, (r,q)=1. Then n+g=
=QP(Q" - r+R). Since (Q!-r+R,q)=1, we have
S(n+q) = f(@P) f(Qir+R) = f(Q¢)x(Qtr+R) =
= Q) 1(Qhr + R (Qlr +R) = (@2 1(@ir + R (O3

Here we observed that y; is a character mod R. Surularly,

S) = £Q@2H M) 1 ().
Since y;(r)>0, therefore from (1.4) we get
@.1) S@P My (r) = QPN x:(Qir +R).
This gives immediately that f(QP)=0 if and only if S(OP*M)=0. Let us assume
that f(Qf")s0. Then f@P*M=0 for h=1,2,.... By choosing h=w, and
observing that 2407 r+R) 2%(R), from (2.1) we get that x;(r) is ¢onstant on
the set (r,¢g)=1. Since y; is a character mod Qf, its values depend on r (mod o),

consequently x;(r) is constant for (r, Q;)=1, and so x; is the principal character.
This proves (2). S
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Letnow n=0%.x, (x, =11} i<y Then n+q=QN[x+Q% % .R]. From
(1.4) we get- -

) = £Q 1Y) = fln+q) = f(Q?')Xa(x+Q§"‘"’1'R)¢’s(x)L
Let us assume that f(Qf)=0. Then
@) 1) = L+ QPR (%, @) = 1.

Let on“—‘R')’, >, Q)=1, x=x+1- 0}, (1, R)=l. Hence it follows ihat (}c, =1,
consequently from (2.2) we get ) :

1:(x0) = (%) = x:(x+QP 4 R) = 3;(xg+QF~ % R),
KOVLB = LO+OP )R for (7,0)=1.

Since 1;(R)#0, this gives that QP % is a period of yx; and so w;—4;=¢;. By
this (3) is proved.
Now we prove the second assertion. Assume that fc.# and (1), (2), (3) hold.
We shall assume that f(Q7)=0 for i=1,...,s and f(Q")#0 for i=s+1,
..., I, allowing that one of these classes is empty. Then the characters y,,4, ..., X, are
principal characters with the moduli 977 (j=s+1, ..., r), respectively. '
Let

and so

am) =00 1), B = tor(n)- . g (),

q = IIQ;D‘, q: = ]] Q;n‘, qr = ]IQ?"
i=1 i=s+1 T =1
Then B(n) is the principal character with the modulus g,, «(n) is-a character with
the modulus g, that is periodic with the period ¢}. Furthermore we may observe
that W, (0")=a(Q") for i=s+1,...,r, h=0.
To prove (1.4) we take n—mn, n+qg=al, where (n,q)=1, (, q) 1 and m
-and a are composed from the pnme factors of ¢g. Let

(HQ?)( II QF)( H Qﬂ‘)( H Qﬂ) H1H2H3H4

and

= (Il Q¥')(_ i er)(, 17 on IT Ql") = Ry Ry Ry Ry
i=1 i=s+1 i=k+1 i=v+1

‘where in II, fi=w;, in I, B;=w;, and in Il f;<w,. Hence it follows that in

R, y;=w;, in R; y;=w;, in R, ¥;=f;. Consequently R,=II,. Let U-and V be

defined by the relations A :

I, = RJIQ%~% = RyU, Ry= [3IIQe = M,V.
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If B;=w; for at least one i€[l, s};” then f(n)=0, y;=w; and so f(n+¢)=0, ie.
(1.9) is true. If w;—g<fi<w;, then B;=v;, f(Q7)=0, consequently -f(n)=
=f(n+q9)= 0 So we may assume that B;=w;—¢; for i=l, ey S Hence it follows
that B;=v;. T,=R,. Let us consider now the relation o '

q=al-mn= R1R2R3R4C H1H2H3H4’7 = H1H4R2H3{VC U’l}
Since (H4R2H3,q1) 1, Hllql/ql’ we get that Vé un (mod q{) Furthermore

Flmn) = UL L) R, U)fI)f () f(Hl)f(H4)f(Rz)f(Ha)a(U )a(n)
f@) = fUL) W) fR)f TV )a () = fUTL) [T ) f (Ro) [T (V) (©).-

By observing that a(U)a(n)=a(V)a((), we get (1.4).
Thus the proof of the Main lemma is complete

3. Proof of Theorem 1. -

~Lemma .. Iffé&l NA;, f(1)=1, then
[CAY) L f(nq’) f(n)f(q’)

holds for every nonnegative n and a.

Proof. (3.1) is, obvxously true if n=0 or a=0.. Let a>0 and n>0 Let -
us assume that n=gf, or n<q¢* and nlq’ for a suitable larges Then (n, ¢*+1)=1,
and hence

f(ng®) +'f‘(n) '=f(riq“+n) = F@ @ +1), = f)F(g?) +£(n),

i.e..(3.1) holds. Let n<g® n= n,ns, where {ny; 9)=1 and all prime divisors of. n,
divide g. Then S : :

f(nq“) f(nl)f(nzq") f(nl)f(nz)f(q“) f(n)f(q“)

Let now n=a,+a;q9+...+a,q° be an arbitrary posmve mteger By using.the
g-additive property and the results proved earlier we get

F(ng%) = F(@oq® + .- +G,q"*) = F(80q) +... +£(a, q*+5) =
= f(g*)Lf(ag) +... +/1 (a;qs)] = f (qa)f (n).
The proof of Lemmia 1 is finished.

.- -Now we: prove Theorem:1. From (3 1) it-is obvious. that f(q”) ( f(q))”
,(ﬁ 1,2, ...). -Assume that- f(q)¢0 We shall prove that S

32 f@n+ 1)y =fn+1)+f(n), f(2n) =2f(n), -
which immediately yields the desired result f(n)=n. -
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Let n be fixed, o be large. Since (¢*+n+1, ¢*+n)=1, we have
S(g*+n+D(g*+m) =f(g* +n+Df(g*+n) =
= (f(@)+/(+D)(f(g)+f () = f(@* +f(g)(f(D)+f(n+ 1) +f(n)f (n +1).
Furthermore
F(g*+n+1)(g*+n) = fg*) +f(2n+1)g7) +f(n(n+1)).

Hence we get immediately that f(2n+1) =f(n+1)+f(n). To prove the second rela-
tion in (3.2) we consider

f@2ng+1) = f(ng+1)+f(ng),
whence it follows that

JCuf(D+f) = 2f () f(g)+/(1),

and from f(g)=0 we get that f(2n)=2f(n).
Theorem 1 is proved.

4. Proof of Theorem 2. Let fco/,N.#, f(1)=1, f(g)=0. Since f(g)=0, from
Lemma 1 we get that f(ng)=0 for every n, consequently f is a periodic function
with period ¢g. The necessity of the conditions is obvious from the Main lemma.
But they are also sufficient, since a periodic multiplicative function f with f(g)=0
is g-additive, and so the sufficiency is an immediate consequence of the Main lemma
as well.
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