On multiplicative functions that are q-additive

J. FEHÉR

1. Introduction. We shall say that a complex-valued function $f(n)$ defined on the set of natural numbers is multiplicative if $f(a b)=f(a) f(b)$ holds for every coprime pairs a and b. Let \mathscr{M} be the class of multiplicative functions.

Let $q \geqq 2$ be a fixed integer. Every positive integer can be represented in the form

$$
\begin{equation*}
n=a_{0}+a_{1} q+\ldots+a_{s} q^{s}, \quad a_{s} \neq 0, \quad a_{i} \in\{0,1, \ldots, q-1\} \tag{1.1}
\end{equation*}
$$

uniquely. We shall say that a complex-valued function $g(n)$ defined on the set of nonnegative integers is q-additive if $g(0)=0$ and

$$
\begin{equation*}
g(n)=g\left(a_{0}\right)+g\left(a_{1} q\right)+\ldots+g\left(a_{s} q^{s}\right) \tag{1.2}
\end{equation*}
$$

for n having the representation (1.1). Let \mathscr{A}_{q} be the class of q-additive functions. This notion has been introduced by A. O. Gelfond [1].

It is obvious that $g(n)$ is a q-additive function if and only if

$$
\begin{equation*}
g\left(A q^{k}+r\right)=g\left(A q^{k}\right)+g(r) \tag{1.3}
\end{equation*}
$$

whenever $0 \leqq r<q^{k}, A \geqq 0$. It is obvious that $f(n)=n$ is a multiplicative and q additive function. The zero function has the same properties.

Our main purpose is to determine all functions in $\mathscr{A}_{q} \cap \mathscr{M}$.
Theorem 1. Let $f \in \mathscr{A}_{q} \cap \mathscr{A}, f(q) \neq 0$. Then $f(n)=n$.
We shall give all the multiplicative functions $f(n)$ with period q, i.e. those for which

$$
\begin{equation*}
f(n+q)=f(n) \tag{1.4}
\end{equation*}
$$

holds for every $n>0$:
Let $q=Q_{1}^{\omega_{1}} \ldots Q_{r}^{\omega_{r}}$, where Q_{1}, \ldots, Q_{r} are distinct primes.
Main lemma. Let $f \in \mathscr{A}$ satisfy $(1.4), f(1)=1$.
(1) Then $f(n)=\chi(n)$ for every n coprime to q, where χ is a multiplicative character $\bmod q$.

Received May 12, 1983.

Let $\chi=\chi_{1} \cdot \ldots \cdot \chi_{r}$, where χ_{i} is a multiplicative character $\bmod Q_{i}^{\Phi_{i}}(i=1,2, \ldots, r)$. The components χ_{i} are determined by χ. Let

$$
\begin{equation*}
\psi_{i}=\prod_{\substack{j=1 \\ j \neq i}}^{r} \chi_{j} \quad(i=1, \ldots, r) \tag{1.5}
\end{equation*}
$$

Let $Q_{i}^{\varepsilon_{t}}$ be the smallest period of χ_{i}. Then $0 \leqq \varepsilon_{i} \leqq \omega_{i}$.
(2) We have

$$
f\left(Q_{i}^{\omega_{i}+h}\right)=\left\{\begin{array}{cl}
f\left(Q_{i}^{\omega_{1}}\right) \psi_{i}\left(Q_{i}^{h}\right) & \text { if } \chi_{i} \text { is principal character } \tag{1.6}\\
0 & \text { if } \chi_{i} \text { is not the principal character }
\end{array}\right.
$$ ($h=1,2, \ldots$).

(3) If $f\left(Q_{i}^{i_{i}}\right) \neq 0$ for some $\lambda_{i} \in\left[1, \omega_{i}-1\right]$, then $\lambda_{i} \leqq \omega_{i}-\varepsilon_{i}$.

Conversely, if $f \in \mathscr{M}$ satisfies (1), (2), (3) then (1.4) holds.
Remark. The assertion stated here may be known. It has an auxiliary character for us. A. SÁrközy [2] considered multiplicative arithmetic functions satisfying a linear recursion.

Theorem 2. Let $f \in \mathscr{A l} \cap \mathscr{A}_{q}, f(1)=1 ; f(q)=0$. Then f is a periodic function with period $q, f\left(Q_{i}^{\omega_{i}}\right)=0$ for at least one i. The assertions (1), (2), (3) in the Main lemma are satisfied.

Conversely, if these conditions hold and $f \in \mathscr{M}$, then $f \in \mathscr{A}_{q}$.
2. Proof of the Main lemma. Let us assume that $f \in \mathscr{M}, f(1)=1$ and (1.4) holds. It is well known that $f(n)=\chi(n)$ for $(n, q)=1, \chi$ is a character $\bmod q$.

Let i be fixed, $h>0, R=q \cdot Q_{i}^{-\omega_{i}}, n=Q_{i}^{\omega_{i}+h} \cdot r,(r, q)=1$. Then $n+q=$ $=Q_{i}^{\omega_{1}}\left(Q_{i}^{h} \cdot r+R\right)$. Since $\left(Q_{i}^{h} \cdot r+R, q\right)=1$, we have

$$
\begin{gathered}
f(n+q)=f\left(Q_{i}^{i_{i}}\right) f\left(Q_{i}^{h} r+R\right)=f\left(Q_{i}^{\omega}\right) \chi\left(Q_{i}^{h} r+R\right)= \\
=f\left(Q_{i}^{\omega i}\right) \chi_{i}\left(Q_{i}^{h} r+R\right) \psi_{i}\left(Q_{i}^{h} r+R\right)=f\left(Q_{i}^{\omega_{i}}\right) \chi_{i}\left(Q_{i}^{h} r+R\right) \psi_{i}\left(Q_{i}^{h} r\right) .
\end{gathered}
$$

Here we observed that ψ_{i} is a character $\bmod R$. Similarly,

$$
f(n)=f\left(Q_{i}^{\omega_{i}+\dot{h}}\right) \chi_{i}(r) \psi_{i}(r)
$$

Since $\psi_{i}(r) \neq 0$, therefore from (1.4) we get

$$
\begin{equation*}
f\left(Q_{i}^{\omega_{1}+h}\right) \chi_{i}(r)=f\left(Q_{i}^{\omega_{i}}\right) \psi_{i}\left(Q_{i}^{h}\right) \chi_{i}\left(Q_{i}^{h} r+R\right) \tag{2.1}
\end{equation*}
$$

This gives immediately that $f\left(Q_{i}^{\omega_{i}}\right)=0$ if and only if $f\left(Q_{i}^{\omega_{i}+h}\right)=0$. Let us assume that $f\left(Q_{i}^{\omega_{1}}\right) \neq 0$. Then $f\left(Q_{i}^{\omega_{i}+h}\right) \neq 0$ for $h=1,2, \ldots$. By choosing $h=\omega_{i}$ and observing that $\chi_{i}\left(Q_{i}^{\omega_{t}} \cdot r+R\right)=\chi_{i}(R)$, from (2.1) we get that $\chi_{i}(r)$ is constant on the set $(r, q)=1$. Since χ_{i} is a character $\bmod Q_{i}^{\omega_{i}}$, its values depend on $r\left(\bmod Q_{i}^{\alpha_{i}}\right)$, consequently $\chi_{i}(r)$ is constant for $\left(r, Q_{i}\right)=1$, and so χ_{i} is the principal character. This proves (2).

Let now $n=Q_{i}^{\lambda_{i}} \cdot x,(x, q)=1,1 \leqq \lambda_{i}<\omega_{i}$. Then $n+q=Q_{i}^{\lambda_{i}}\left[x+Q_{i}^{\omega_{i}-\lambda_{i}} \cdot R\right]$. From (1.4) we get -

$$
f(n)=f\left(Q_{i}^{\lambda}\right) \chi_{i}(x) \psi_{i}(x)=f(n+q)=f\left(Q_{i}^{\lambda}\right) \chi_{i}\left(x+Q_{i}^{\omega_{i}-\lambda_{i}} R\right) \psi_{i}(x) .
$$

Let us assume that $f\left(Q_{i}^{\lambda_{i}}\right) \neq 0$. Then

$$
\begin{equation*}
\chi_{i}(x)=\chi_{i}\left(x+Q_{i}^{\omega_{i}-\lambda_{i}} R\right)(x, q)=1 . \tag{2.2}
\end{equation*}
$$

Let $x_{0}=R y,\left(y, Q_{i}\right)=1, x=x_{0}+t \cdot Q_{i}^{\varepsilon_{i}},(t, R)=1$. Hence it follows that $(x, q)=1$, consequently from (2.2) we get

$$
\chi_{i}\left(x_{0}\right)=\chi_{i}(x)=\chi_{i}\left(x+Q_{i}^{\omega_{i}-\lambda_{i}} R\right)=\chi_{i}\left(x_{0}+Q_{i}^{\omega_{i}-\lambda_{i}} R\right),
$$

and so

$$
\chi_{i}(y) \chi_{i}(R)=\chi_{i}\left(y+Q_{i}^{\omega_{i}-\lambda_{i}}\right) \chi_{i}(R) \text { for }\left(y, Q_{i}\right)=1
$$

Since $\chi_{i}(R) \neq 0$, this gives that $Q_{i}^{\omega_{i}-\lambda_{i}}$ is a period of χ_{i} and so $\omega_{i}-\lambda_{i} \geqq \varepsilon_{i}$. By this (3) is proved.

Now we prove the second assertion. Assume that $f \in \mathscr{A}$ and (1), (2), (3) hold.
We shall assume that $f\left(Q_{i}^{\omega_{i}}\right)=0$ for $i=1, \ldots, s$ and $f\left(Q_{i}^{\omega_{i}}\right) \neq 0$ for $i=s+1$, \ldots, r, allowing that one of these classes is empty. Then the characters $\chi_{s+1}, \ldots, \chi_{r}$ are principal characters with the moduli $Q_{j}^{\omega_{j}}(j=s+1, \ldots, r)$, respectively.

Let

$$
\begin{aligned}
\alpha(n) & =\chi_{1}(n) \cdot \ldots \cdot \chi_{s}(n), \quad \beta(n)=\chi_{s+1}(n) \cdot \ldots \cdot \chi_{r}(n), \\
q_{1} & =\prod_{i=1}^{s} Q_{i}^{\omega_{i}}, \quad q_{2}=\prod_{i=s+1}^{r} Q_{i}^{\omega_{1}}, \quad q_{1}^{*}=\prod_{i=1}^{s} Q_{i}^{\varepsilon_{i}}
\end{aligned}
$$

Then $\beta(n)$ is the principal character with the modulus $q_{2}, \alpha(n)$ is a character with the modulus q_{1}, that is periodic with the period q_{1}^{*}. Furthermore we may observe that $\psi_{i}\left(Q_{i}^{h}\right)=\alpha\left(Q_{i}^{h}\right)$ for $i=s+1, \ldots, r, h \geqq 0$.

To prove (1.4) we take $n=m \eta, n+q=a \zeta$, where $(\eta, q)=1,(\zeta, q)=1$ and m and a are composed from the prime factors of q. Let

$$
m=\left(\prod_{i=1}^{s} Q_{i}^{\beta}\right)\left(\prod_{i=s+1}^{k} Q_{i}^{\beta}\right)\left(\prod_{i=k+1}^{v} Q_{i}^{\beta}\right)\left(\prod_{i=v+1}^{\prime} Q_{i}^{\beta_{i}}\right)=\Pi_{1} \Pi_{2} \Pi_{3} \Pi_{4}
$$

and

$$
a=\left(\prod_{i=1}^{s} Q_{i}^{\gamma}\right)\left(\prod_{i=s+1}^{k} Q_{i}^{\gamma}\right)\left(\prod_{i=k+1}^{v} Q_{i}^{\gamma}\right)\left(\prod_{i=v+1}^{r} Q_{i}^{\gamma}\right)=R_{1} R_{2} R_{3} R_{4}
$$

where in $\Pi_{2} \beta_{i}>\omega_{i}$, in $\Pi_{3} \beta_{i}=\omega_{i}$, and in $\Pi_{4} \beta_{i}<\omega_{i}$. Hence it follows that in $R_{2} \gamma_{i}=\omega_{i}$, in $R_{3} \gamma_{i} \geqq \omega_{i}$, in $R_{4} \gamma_{i}=\beta_{i}$. Consequently $R_{4}=\Pi_{4}$. Let U and V be defined by the relations

$$
\Pi_{2}=R_{2} \Pi Q_{i}^{\beta_{i}-\omega_{i}}=R_{2} U, \quad R_{3}=\Pi_{3} \Pi Q_{i}^{\gamma_{1}-\omega_{i}}=\Pi_{3} V .
$$

If $\beta_{i} \geqq \omega_{i}$ for at least one $i \in[1, s]$; then $f(n)=0, \gamma_{i} \geqq \omega_{i}$ and so $: f(n+q)=0$, i.e. (1.4) is true. If $\omega_{i}-\varepsilon_{i}<\beta_{i}<\omega_{i}$, then $\beta_{i}=\gamma_{i}, f\left(Q_{i}^{\omega_{i}}\right)=0$, consequently $f(n)=$ $=f(n+q)=0$. So we may assume that $\beta_{i} \leqq \omega_{i}-\varepsilon_{i}$ for $i=1, \ldots, s$. Hence it follows that $\beta_{i}=\gamma_{i}, \Pi_{1}=R_{1}$. Let us consider now the relation

$$
q=a \zeta-m \eta=R_{1} R_{2} R_{3} R_{4} \zeta-\Pi_{1} \Pi_{2} \Pi_{3} \Pi_{4} \eta=\Pi_{1} \Pi_{4} R_{2} \Pi_{3}\{V \zeta-U \eta\}
$$

Since $\left(\Pi_{4} R_{2} \Pi_{3}, q_{1}\right)=1, \Pi_{1} \mid q_{1} / q_{1}^{*}$, we get that $V \xi \equiv U \eta\left(\bmod q_{1}^{*}\right)$. Furthermore

$$
\begin{aligned}
f(m \eta) & =f\left(\Pi_{1}\right) f\left(\Pi_{4}\right) f\left(R_{2} U\right) f\left(\Pi_{3}\right) f(\eta)=f\left(\Pi_{1}\right) f\left(\Pi_{4}\right) f\left(R_{2}\right) f\left(\Pi_{3}\right) \alpha(U:) \alpha(\eta) \\
f(a \zeta) & =f\left(\Pi_{1}\right) f\left(\Pi_{4}\right) f\left(R_{2}\right) f\left(\Pi_{3} V\right) \alpha(\zeta)=f\left(\Pi_{1}\right) f\left(\Pi_{4}\right) f\left(R_{2}\right) f\left(\Pi_{3}\right) \alpha(V) \alpha(\zeta) .
\end{aligned}
$$

By observing that $\alpha(U) \alpha(\eta)=\alpha(V) \alpha(\zeta)$, we get (1.4).
Thus the proof of the Main lemma is complete.

3. Proof of Theorem 1.

Lemma 1: If $f \in \mathscr{A}_{q} \cap \mathscr{H}, f(1)=1$, then

$$
\begin{equation*}
f\left(n q^{\alpha}\right)=f(n) f\left(q^{\alpha}\right) \tag{3.1}
\end{equation*}
$$

holds for every nonnegative n and α.
Proof. (3.1) is obviously true if $n=0$ or $\alpha=0$. Let $\alpha>0$ and $n>0$. Let us assume that $n=q^{\beta}$, or $n<q^{\alpha}$ and $n \mid q^{\alpha}$ for a suitable large s. Then $\left(n, q^{\alpha}+1\right)=1$, and hence

$$
f\left(n q^{\alpha}\right)+f(n)=f\left(n q^{\alpha}+n\right)=f(n) f\left(q^{\alpha}+1\right)=f(n) f\left(q^{\alpha}\right)+f(n),
$$

i.e. (3.1) holds. Let $n<q^{\alpha}, n=n_{1} n_{3}$, where $\left(n_{1}, q\right)=1$. and all prime divisors of n_{2} divide q. Then .

$$
f\left(n q^{\alpha}\right)=f\left(n_{1}\right) f\left(n_{2} q^{\alpha}\right)=f\left(n_{1}\right) f\left(n_{2}\right) f\left(q^{\alpha}\right)=f(n) f\left(q^{\alpha}\right)
$$

Let now $n=a_{0}+a_{1} q+\ldots+a_{s} q^{s}$ be an arbitrary positive integer. By using the q-additive property and the results proved earlier we get

$$
\begin{aligned}
f\left(n q^{\alpha}\right) & =f\left(a_{0} q^{\alpha}+\ldots+\dot{a}_{s} q^{\alpha+s}\right)=f\left(a_{0} q^{\alpha}\right)+\ldots+f\left(a_{s} q^{\alpha+s}\right)= \\
& =f\left(q^{\alpha}\right)\left[f\left(a_{0}\right)+\ldots+f\left(a_{s} q^{s}\right)\right]=f\left(q^{\alpha}\right) f(n)
\end{aligned}
$$

The proof of Lemma 1 is finished.
Now we: prove Theorem 1. From (3.1) it is obvious that $f\left(q^{\beta}\right)=(f(q))^{\beta}$. $\beta=1,2, \therefore$). Assume that $f(q) \neq 0$. We shall prove that

$$
\begin{equation*}
f(2 n+1)=f(n+1)+f(n), \quad f(2 n)=2 f(n) \tag{3.2}
\end{equation*}
$$

which immediately yields the desired result $f(n)=n$.

Let n be fixed, α be large. Since $\left(q^{\alpha}+n+1, q^{\alpha}+n\right)=1$, we have

$$
\begin{gathered}
f\left(\left(q^{\alpha}+n+1\right)\left(q^{\alpha}+n\right)\right)=f\left(q^{\alpha}+n+1\right) f\left(q^{\alpha}+n\right)= \\
=\left(f\left(q^{\alpha}\right)+f(n+1)\right)\left(f\left(q^{\alpha}\right)+f(n)\right)=f\left(q^{\alpha}\right)^{2}+f\left(q^{\alpha}\right)(f(n)+f(n+1))+f(n) f(n+1) .
\end{gathered}
$$

Furthermore

$$
f\left(\left(q^{\alpha}+n+1\right)\left(q^{2 \alpha}+n\right)\right)=f\left(q^{\alpha}\right)+f\left((2 n+1) q^{\alpha}\right)+f(n(n+1)) .
$$

Hence we get immediately that $f(2 n+1)=f(n+1)+f(n)$. To prove the second relation in (3.2) we consider

$$
f(2 n q+1)=f(n q+1)+f(n q)
$$

whence it follows that

$$
f(2 n) f(q)+f(1)=2 f(n) f(q)+f(1)
$$

and from $f(q) \neq 0$ we get that $f(2 n)=2 f(n)$.
Theorem 1 is proved.
4. Proof of Theorem 2. Let $f\left(\mathscr{A}_{q} \cap \mathscr{M}, f(1)=1, f(q)=0\right.$. Since $f(q)=0$, from Lemma 1 we get that $f(n q)=0$ for every n, consequently f is a periodic function with period q. The necessity of the conditions is obvious from the Main lemma. But they are also sufficient, since a periodic multiplicative function f with $f(q)=0$ is q-additive, and so the sufficiency is an immediate consequence of the Main lemma as well.

Acknowledgement. The author wishes to thank I. Kátai for valuable comments.

References

[1] A. O. Gelpond, Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arithmetica, 13 (1968), 259-265.
[2] A. Sarközy, On multiplicative arithmetic functions satisfying a linear recursion, Studia Sci. Math. Hungar., to appear.

JANUS PANNONIUS UNIVERSITY
TEACHERS' TRAINING COLLEGE
PÉCS, HUNGARY

