On approximation by arbitrary systems in L^{2}-spaces

NGUYEN XUAN KY
Dedicated to Professor László Leindler on his 50th birthday

1. Introduction. Let $-\infty<a<b<\infty, p=b-a$. Let $L^{2}=L^{2}[p]$ be the space of all square integrable functions defined on $(-\infty, \infty)$ which are p-periodic. The norm in $L^{2}[p]$ is defined by

$$
\|f\|_{2}=\left\{\int_{a}^{b}|f(x)|^{2} d x\right\}^{1 / 2}, \quad f \in L^{2}[p]
$$

Let $\Phi=\left\{\varphi_{k}\right\}_{k=0}^{\infty} \therefore$ be a complete orthonormal system in $L^{2}[p]$. For f_{1}, f_{2}, \ldots $\ldots, f_{n} \in L^{2}[p]$ let us denote by $\left[f_{1}, f_{2}, \ldots, f_{n}\right]$ the linear span of $f_{1}, f_{2}, \ldots, f_{n}$. For any $f \in L^{2}[p]$ let

$$
\begin{equation*}
E_{n}=E_{n}^{\Phi}(f)=\inf _{q \in\left[\varphi_{0}, \varphi_{1}, \ldots, \varphi_{n}\right]}\|f-q\|_{2}, \quad n=0,1,2, \ldots \tag{1}
\end{equation*}
$$

be the n-th best approximation of f with respect to the system Φ. We know that $E_{n}^{\Phi}(f)$ can be given by the generalized Fourier coefficients of f with respect to the system Φ, more precisely,

$$
E_{n}^{\Phi}(f)=\left[\sum_{k=n+1}^{\infty} c_{k}^{2}(f)\right]^{1 / 2}, \quad n=0,1,2, \ldots
$$

where

$$
c_{k}(f)=\int_{a}^{b} f(x) \varphi_{k}(x) d x, \quad k=0,1,2, \ldots
$$

In this paper we give an answer to the following question due to Prof. L. Leindler: Characterize those orthonormal systems Φ for which

$$
E_{n}^{\Phi}(f) \leqq c \omega(f, 1 / n), \quad \forall f \in L^{2}[p], \quad n=1,2, \ldots
$$

where $\omega(f, \delta)$ denotes the L^{2}-modulus of continuity of f, i.e.

$$
\omega(f, \delta)=\sup _{|h| \leqq \delta}\|f(x+h)-f(x)\|_{2}
$$

Received May 21, 1984.
2. Lemmas. We need the following lemmas.

Lemma 1. Let $\varrho_{n}>0(n=1,2, \ldots)$. Suppose that the system $\Phi=\left\{\varphi_{k}\right\}_{k=0}^{\infty}$ contains a constant function, say: $\varphi_{0} \equiv C$. The following statements are equivalent:
a) There exists an absolute constant C_{1} such that

$$
\begin{equation*}
E_{n}^{\Phi}(f) \leqq C_{1} \omega\left(f, \varrho_{n}\right), \quad \forall f \in L^{2}[p] \tag{3}
\end{equation*}
$$

b) There exists an absolute constant C_{2} such that

$$
\begin{equation*}
E_{n}^{\Phi}(F) \leqq C_{2} \varrho_{n}\|f\|_{2}, \quad \forall f \in L^{2}[p] \tag{4}
\end{equation*}
$$

where $F(x)=\int_{a}^{x} f(t) d t$.
Proof. 1. a) \rightarrow b): Let $h>0$. By the formula

$$
F(x+h)-F(x)=\int_{0}^{h} f(x+t) d t
$$

we have

$$
\|F(x+h)-F(x)\|_{2}=\left\|\int_{0}^{\dot{h}} f(x+t) d t\right\|_{2} \leqq \int_{0}^{h}\|f(\cdot+t)\|_{2} d t=\int_{0}^{h}\|f\|_{2} d t=h\|f\|_{2}:
$$

hence $\omega(F, \delta) \leqq \delta\|f\|_{2}$. So, from a) we obtain

$$
E_{n}(F) \leqq C_{1} \omega\left(F, \varrho_{n}\right) \leqq C_{1} \varrho_{n}\|f\|_{2}
$$

This proves (4).
2. b) \rightarrow a): We apply the transform of Steklov: Let

$$
f_{n}(x)=\varrho_{n}^{-1} \int_{0}^{Q_{n}} f(x+t) d t, \quad x \in[a, b]
$$

Then $f_{n}(x)$ is absolute continuous, therefore $f_{n}(x)$ is an integral function of f_{n}^{\prime} :

$$
f_{n}(x)=\int_{a}^{x} f_{n}^{\prime}(t) d t+f_{n}(a)=\tilde{f}_{n}(x)+f_{n}(a)
$$

Since the system Φ contains the constant function we have $E_{n}\left(f_{n}\right)=E_{n}\left(f_{n}\right)$. On the other hand, we have

$$
\begin{aligned}
\left\|f-f_{n}\right\|_{2} & =\left\|\varrho_{n}^{-1} \int_{0}^{\varrho_{0}^{\prime}}[f(x+t)-f(x)] d t\right\|_{2} \leqq \omega\left(f_{2} \varrho_{n}\right) \\
\left\|\tilde{f}_{n}^{\prime}\right\|_{2} & =\varrho_{n}^{-1}\left\|f\left(x+\varrho_{n}\right)-f(x)\right\|_{2} \leqq \varrho_{n}^{-1} \omega\left(f, \varrho_{n}\right)
\end{aligned}
$$

Hence we obtain by (4):

$$
E_{n}(f)=E_{n}\left(\tilde{f}_{n}\right)+\left\|f-\tilde{f}_{n}\right\|_{2} \leqq C_{2} \varrho_{n} \|_{\tilde{f}_{n}^{\prime} \|_{2}}+\omega\left(f, \varrho_{n}\right) \leqq\left(1+C_{2}\right) \omega\left(f, \varrho_{n}\right)
$$

This proves (3).

Now, we introduce the following class of functions:
$L_{n}=\left[\varphi_{0}, \varphi_{1}, \ldots, \varphi_{n}\right], \quad L_{n}^{\perp} \doteq\left\{g \in L^{2}[p]:(g, q)=0, \quad \forall q \in L_{n}\right\}, \quad n=0,1,2, \ldots$
where $(g, q)=\int_{a}^{b} g(x) q(x) d x$. If the system Φ is complete, then this definition is equivalent to the following:

$$
\begin{equation*}
L_{n}^{\perp}=\left\{g=\sum_{k=n+1}^{\infty} c_{k} \varphi_{k}: \sum_{k=n+1}^{\infty} c_{k}^{2}<\infty\right\}, \quad n=0,1,2, \ldots \tag{5}
\end{equation*}
$$

We notice that L_{n} and L_{n}^{\perp} are (linear and closed) subspaces of $L^{2}[p]$.
Lemma 2. (4) is equivalent to the following:

$$
\begin{equation*}
\|G\|_{2} \leqq C_{2} \varrho_{n}\|g\|_{2}, \quad \forall g \in L_{n}^{\perp}, \quad n=0,1,2, \ldots \tag{6}
\end{equation*}
$$

where $G(x)=\int_{0}^{x} g(t) d t$.
Proof. Let $f \in L^{2}[p]$ and let $S(f)$ be the generalized Fourier series of f with respect to the system Φ, that is

$$
S(f)=\sum_{k=0}^{\infty} c_{k}(f) \varphi_{k}
$$

where

$$
c_{k}(f)=\int_{a}^{b} f(x) \varphi_{k}(x) d x, \quad k=0,1,2, \ldots
$$

We have by the minimum property of an orthonormal system:

$$
E_{n}^{\Phi}(f)=\left\|_{k=n+1} \sum_{k}^{\infty} C_{k}(f) \varphi_{k}\right\|_{2}
$$

or, equivalently,

$$
\begin{equation*}
E_{n}(f)=\sup _{\substack{\theta \in L_{n}^{\perp} \\\|\in\|_{2}=1}} \int_{a}^{b} f(x) g(x) d x, \quad n=0,1, \ldots \tag{7}
\end{equation*}
$$

Now, we apply this formula for the proof of Lemma 2.
a) (6) \rightarrow (4): Let $f \in L_{n}, g \in L_{n}^{\perp},\|g\|_{2} \leqq 1$, and let

$$
G(x)=\int_{a}^{x} g(t) d t, \quad F(x)=\int_{a}^{x} f(t) d t
$$

We have by integration by parts and (6):

$$
\begin{aligned}
& \int_{a}^{b} F(x) g(x) d x=\left.F G\right|_{a} ^{b}-\int_{a}^{b} f(x) G(x) d x= \\
& =\int_{a}^{b} f(x) G(x) d x \leqq\|f\|_{2}\|G\|_{2} \leqq C_{2} \varrho_{n}\|f\|_{2}
\end{aligned}
$$

(we notice that since $g \in L_{n}^{\perp}$ and $\varphi_{0} \equiv C$, we have $G(a)=G(b)=0$). From the last inequality we obtain (4) by an application of (7).
b) (4) \rightarrow (6): Let $f \in L^{2}, g \in L_{n}^{\perp},\|g\|_{2} \leqq 1$. Since

$$
\int_{a}^{b} F(x) g(x) d x=\int_{a}^{b} G(x) f(x) d x
$$

from (4) and (7) we have

$$
\begin{equation*}
\int_{a}^{b} f(x) G(x) d x \leqq C_{2} \varrho_{n}\|f\|_{2} \tag{8}
\end{equation*}
$$

Now, let $0 \neq g \in L_{n}^{\perp}$ be fixed. Let $g^{*}=g /\|g\|_{2}$; then $g^{*} \in L_{n}^{\perp}$ and $\left\|g^{*}\right\|_{2}=1$. Let

$$
G^{*}(x)=\int_{a}^{x} g^{*}(t) d t
$$

From (8) we obtain:

$$
\int_{a}^{b} f(x) G^{*}(x) d x \leqq C_{2} \varrho_{n}\|f\|_{2},: \forall f \in L^{2}[p]
$$

Hence, $\left\|G^{*}\right\|_{2} \leqq C_{2} \varrho_{n}$ from which it follows that $\|G\|_{2} \leqq C_{2} \varrho_{n}\|g\|_{2}$. This proves (6).
Now let us denote by I the integral operator, that is;

$$
I f(x)=\int_{a}^{x} f(t) d t, f \in L^{2}[p], x \in[a, b]
$$

and let $I f(x)$ be a p-periodic function. We know that the operator I is a bounded linear operator of the space L^{2} to L^{2}. Let $I_{n}: L_{n}^{\perp} \rightarrow L^{2}[p]$ be the restriction of I to the space L_{n}^{\perp}, and let $\left|\left|\left|I_{n}\right| \|\right.\right.$ denote the norm of I_{n}, that is,

$$
\begin{equation*}
\left\|I_{n}\right\|=\sup _{\substack{g \in L_{n}^{1} \\\|g\|_{2} \equiv 1}}\left\|I_{n} g\right\|_{2}=\sup _{\substack{0 \in L_{n}^{1} \\\|g\|_{2}=1}}\|I g\|_{2} . \tag{9}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\|I g\|_{2} \leqq\left\|I_{n}\right\|\| \| \|_{2}, \quad g \in L_{n}^{\perp} \tag{10}
\end{equation*}
$$

so that (6) is always true for $C_{2} \varrho_{n}=\left\|\mid I_{n}\right\| \|$.

Therefore we have:
Lemma 3. Let $\lambda_{n}=\left\|\left|\left|I_{n} \|\right|(n=0,1,2, \ldots)\right.\right.$.
a) We have

$$
\begin{equation*}
E_{n}(F) \leqq \lambda_{n}\|f\|_{2}, \quad \forall f \in L^{2}[p] \tag{11}
\end{equation*}
$$

where $F(x)=I f(x)$.
b) The order λ_{n} is best possible, this means that if for $\lambda_{n}^{\prime}>0$:

$$
E_{n}(F) \leqq \lambda_{n}\|f\|_{2}, \quad \forall f \in L^{2}[p]
$$

then $\lambda_{n}^{\prime} \geqq \lambda_{n}(n=0,1,2, \ldots)$.
Proof. a) is proved above. Claim b) follows from the fact that if $E_{n}(F) \leqq$ $\leqq \lambda_{n}^{\prime}\|f\|_{2}, \forall f \in L^{2}[p]$, then by Lemma 2 we have $\|G\|_{2} \leqq \lambda_{n}^{\prime}\|g\|_{2}, \forall g \in L_{n}^{\perp}$, hence we obtain by the definition of the norm $\left\|\left\|I_{n} \mid\right\|\right.$ that $\left.\lambda_{n}^{\prime} \geqq \mid\right\| I_{n}\| \|=\lambda_{n}$.

In the following we consider only a complete orthonormal system $\Phi=\left\{\varphi_{0}, \varphi_{1}, \ldots\right\}$ which satisfies the following conditions:

$$
\begin{gather*}
\varphi_{0}(t) \equiv C \text { (constant) } \tag{12}\\
\text { for } n=0,1,2, \ldots, \quad I \varphi_{n+1} \in L_{n}^{1} \tag{13}
\end{gather*}
$$

We remark that the condition (13) is equivalent to the following: for $n=0,1,2, \ldots$, if $g \in L_{n}^{\perp}$ then $l g \in L_{n}^{\perp}$.

Lemma 4. Let $\Phi=\left\{\varphi_{0}, \varphi_{1}, \ldots\right\}$ be the complete orthonormal system satisfying (12) and (13). Let $\psi_{k}=I \varphi_{k}, k=0,1,2, \ldots$, where I denotes the integral operator. Then for $n=0,1,2, \ldots$ the system $\left\{\psi_{k}\right\}_{k=n+1}^{\infty}$ is complete, linearly independent in the subspace L_{n}^{\perp}.

Proof. a) $\left\{\psi_{k}\right\}_{k=n+1}^{\infty}$ is linearly independent. Suppose that $\alpha_{k}(k=n+1$, $n+2, \ldots, n+m$) are real numbers satisfying

$$
\sum_{k=n+1}^{n+m} \alpha_{k} \psi_{k}=0
$$

Then by differentiation we have

$$
\sum_{k=n+1}^{n+m} \alpha_{k} \varphi_{k}=0
$$

hence $\alpha_{k}=0(k=n+1, \ldots, n+m)$, since $\left\{\varphi_{k}\right\}_{k=0}^{\infty}$ is independent.
b) $\left\{\psi_{k}\right\}_{k=n+1}^{\infty}$ is complete in L_{n}^{\perp}. Suppose that $g \in L_{n}^{\perp}$ satisfies

$$
\int_{a}^{a} g(x) \psi_{k}(x) d x=0 \quad(k \geqq \dot{n}+1)
$$

Let $I g=\boldsymbol{G}(x)$. Integrating by parts we obtain (by (12) we have $\psi_{k}(a)=\psi_{k}(b)=0$ for $k \geqq n+1>0$):

$$
\begin{equation*}
0=\int_{a}^{b} g(x) \psi_{k}(x) d x=\int_{a}^{b} G(x) \varphi_{k}(x) d x \quad(k \geqq n+1) \tag{14}
\end{equation*}
$$

Since $g \in L_{n}^{\perp}$, by (13) we have $G \in L_{n}^{\perp}$, that is

$$
\int_{a}^{b} G(x) \varphi_{k}(x) d x=0 \quad(k \leqq n)
$$

and so (14) is valid for every $k=0,1,2, \ldots$ from which it follows by the completeness of the system $\Phi=\left\{\varphi_{k}\right\}_{k=0}^{\infty}$ that $G(x) \equiv 0$, therefore $g(x) \equiv C$ (constant). But $g \in L_{n}^{\perp}$, so by (12) we have $g(x) \equiv C=0$.

Let now $n \geqq 0$ and fixed. Let $\Phi_{n}=\left[\psi_{n+1}, \psi_{n+2}, \ldots\right\}$. Since Φ_{n} is linearly independent (Lemma 4), by the process of Gram-Schmidt we obtain the orthonormal system $H=\left(h_{1}, h_{2}, \ldots\right) \subset L_{n}^{\perp}$ as follows. For $m=1,2, \ldots$ let

$$
\Delta_{m}\left(\Phi_{n}\right)=\left|a_{l k}^{(n)}\right|_{l, k=1}^{m}=\left|\begin{array}{ccc}
\left(\psi_{n+1}, \psi_{n+1}\right)\left(\psi_{n+1},\right. & \left.\psi_{n+2}\right) \ldots\left(\psi_{n+1}, \psi_{n+m}\right) \tag{15}\\
\left(\psi_{n+2}, \psi_{n+1}\right)\left(\psi_{n+2}, \psi_{n+2}\right) \ldots & \left(\psi_{n+2}, \psi_{n+m}\right) \\
\vdots & \vdots & \vdots \\
\left(\psi_{n+m}, \psi_{n+1}\right)\left(\psi_{n+m}, \psi_{n+2}\right) \ldots & \left(\psi_{n+m}, \psi_{n+m}\right)
\end{array}\right|
$$

be the m-th Gram-Schmidt's determinant of the system Φ_{n}. Let $D_{m, l}^{n}=D_{m, l}\left(\Phi_{n}\right)$ be the cofactor of an element $a_{l m}^{(n)}(l=1,2, \ldots, m)$. We define the following infinite matrix:

$$
A\left(\Phi_{n}\right)=\left(\alpha_{i k}^{(n)}\right)_{l, k=1}^{\infty}=\left(\begin{array}{ccc}
\frac{1}{\sqrt{\Delta_{1}\left(\Phi_{n}\right)}} & \frac{D_{12}\left(\Phi_{n}\right)}{\sqrt{\Delta_{1}\left(\Phi_{n}\right) \Delta_{2}\left(\Phi_{n}\right)}} & \frac{D_{13}\left(\Phi_{n}\right)}{\sqrt{\Delta_{2}\left(\Phi_{n}\right) \Delta_{3}\left(\Phi_{n}\right)}} \cdots \tag{16}\\
0 . & \frac{D_{22}\left(\Phi_{n}\right)}{\sqrt{\Delta_{1}\left(\Phi_{n}\right) \Delta_{2}\left(\Phi_{n}\right)}} & \frac{D_{33}\left(\Phi_{n}\right)}{\sqrt{\Lambda_{2}\left(\Phi_{1}\right) \Delta_{3}\left(\Phi_{n}\right)}} \cdots \\
\vdots & \vdots & \vdots
\end{array}\right)
$$

From the matrix $A\left(\Phi_{n}\right)$ we define the matrix $A_{m}\left(\Phi_{n}\right)$:

$$
A_{m}\left(\Phi_{n}\right)=\left(\begin{array}{cccc}
\alpha_{11}^{(n)} & \alpha_{12}^{(n)} & \ldots & \alpha_{1 m}^{(n)} \tag{17}\\
0 & \alpha_{22}^{(n)} & \ldots & \alpha_{2 m}^{(n)} \\
\vdots & \vdots & & \vdots \\
0 & 0 & \ldots & \alpha_{m m}^{(n)}
\end{array}\right)=\left(\alpha_{l k}^{(n)}\right)_{l, k=1}^{m}
$$

Let $B_{m}\left(\Phi_{n}\right)=A_{m}^{-1}\left(\Phi_{n}\right)$ be the inverse matrix of $A_{m}\left(\Phi_{n}\right)$:

$$
B_{m}\left(\Phi_{n}\right)=\left(\beta_{i k}^{(n)}\right)_{1, k=1}^{m}=\left(\begin{array}{llll}
\beta_{11}^{(n)} & \beta_{12}^{(n)} & \ldots & \beta_{1 m}^{(n)} \tag{18}\\
\beta_{21}^{(n)} & \beta_{22}^{(n)} & \ldots & \beta_{2 m}^{(n)} \\
\beta_{m 1}^{(n)} & \beta_{m 2}^{(m)} & \ldots & \beta_{m m}^{(m)}
\end{array}\right)
$$

From the the matrix $B_{m}\left(\Phi_{n}\right)(m=1,2, \ldots)$ we define the infinite matrix:

$$
\begin{equation*}
B\left(\Phi_{n}\right)=\left(\beta_{l k}^{(n)}\right)_{l, k=1}^{\infty} . \tag{19}
\end{equation*}
$$

The process of Gram-Schmidt gives the following formula:

$$
\begin{equation*}
\Phi_{n} A\left(\Phi_{n}\right)=H, \quad H B\left(\Phi_{n}\right)=\Phi_{n} \tag{20}
\end{equation*}
$$

where $\Phi_{n} A\left(\Phi_{n}\right)$ and $H B\left(\Phi_{n}\right)$ denote the usual products of matrices (infinite matrices).
Now we return to the determination of the exact value of $\left\|\mid I_{n}\right\| \|$. Let $g \in L_{n}^{\perp}$.
Then we have

$$
g=\sum_{k=n+1}^{\infty} C_{k} \varphi_{k}, \quad\|g\|_{2}=\left(\sum_{k=n+1}^{\infty} C_{k}^{2}\right)^{1 / 2}
$$

Since the operator I is linear and continuous (in the metric of L^{2}), we have

$$
I g=\sum_{k=n+1}^{\infty} C_{k} I \varphi_{k}=\sum_{k=n+1}^{\infty} C_{k} \psi_{k}=\sum_{l=1}^{\infty} d_{l} h_{l}
$$

where

$$
\begin{equation*}
d=C B\left(\Phi_{n}\right) \tag{21}
\end{equation*}
$$

with $C=\left(C_{n+1}, C_{n+2}, \ldots\right), d=\left(d_{1}, d_{2}, \ldots\right)$. By Parseval's formula we have

$$
\begin{equation*}
\|I g\|_{2}=\left(\sum_{l=1}^{\infty} d_{l}^{2}\right)^{1 / 2} \tag{22}
\end{equation*}
$$

Let l^{2} denote the Hilbert space of all sequences $c=\left(c_{1}, c_{2}, \ldots\right)$ for which $\|c\|_{l^{2}}=$ $=\left(\sum_{k=1}^{\infty} c_{k}^{2}\right)^{1 / 2}<\infty$: Now, from (21), (22) we obtain

$$
\begin{equation*}
\left\|\left\|I_{n}\right\|\right\|=\sup _{\substack{g \in L_{n}^{1} \\\|\theta\|_{2} \cong 1}}\|I g\|_{2}=\sup _{\substack{c \in l^{2} \\\|c\|_{12} \leqq 1}}\left\|C B\left(\Phi_{n}\right)\right\|_{l^{:}} . \tag{23}
\end{equation*}
$$

Finally, from (23), by a known theorem of functional analysis (see e.g. Л. В. Кан-торович-Г. П. Акилов [1], p. 193) we have

$$
\begin{equation*}
\left\|\left\|I_{n}\right\|\right\|=\sup _{m \geqq 1} \max _{1 \equiv j \leqq m} \sqrt{\lambda_{j}\left[B_{m}^{*}\left(\Phi_{n}\right) B_{m}\left(\Phi_{m}\right)\right]} \tag{24}
\end{equation*}
$$

where $B_{m}^{*}\left(\Phi_{n}\right)$ denotes the adjoint matrix of $B_{m}\left(\Phi_{n}\right)$ and $\lambda_{j}\left[B_{m}^{*}\left(\Phi_{n}\right) B_{m}\left(\Phi_{n}\right)\right]$ denotes an eigenvalue of the matrix $B_{m}^{*}\left(\Phi_{n}\right) B_{m}\left(\Phi_{n}\right)$.
3. So, the formula (24), and Lemmas 1,3 prove the following theorem.

Theorem. Let $\Phi=\left\{\varphi_{k}\right\}_{k=0}^{\infty}$ be a complete orthonormal system in $L^{2}[p]$, which satisfies the conditions (12) and (13). Let $B_{m}\left(\Phi_{n}\right)$ be the matrix defined by (15), (16), (17), (18), and let $\lambda_{j}^{(n, m)}$ be the eigenvalues of the self-adjoint matrix $B_{m}^{*}\left(\Phi_{n}\right) B_{m}\left(\Phi_{n}\right)$. Let

$$
\begin{equation*}
\varrho_{n}=\varrho_{n}(\Phi)=\sup _{m \geqq 1} \max _{1 \leqq j \leqq m} \sqrt{\lambda_{j}^{(n, m)}}, \quad n=0,1,2, \ldots \tag{25}
\end{equation*}
$$

Then we have
a)

$$
E_{n}^{\Phi}(f) \leqq C_{3} \omega\left(f, \varrho_{n}\right), \quad \forall f \in L^{2}[p], \quad n=1,2, \ldots
$$

where C_{3} is an absolute constant (we can select $C_{3}=2$; see the proof of Lemma 2);
b) ϱ_{n} is best possible, that is if $E_{n}(f) \leqq C_{4} \omega\left(f, \varrho_{n}^{\prime}\right), \forall f \in L^{2}, n=1,2, \ldots$, then $\varrho_{n}=O\left(\varrho_{n}^{\prime}\right)$.

Remark 1. Let $\Omega(p)$ be the set of all functions f, which are absolute continuous in $[a, b]$ and for which $f^{\prime} \in L^{2}[p],\left\|f^{\prime}\right\|_{2} \leqq 1$. Let

$$
E_{n}^{\Phi}(\Omega)=\sup _{f \in \Omega} E_{n}^{\Phi}(f) \quad \text { and } \quad d_{n}(\Omega)=\inf _{\Phi \in \mathscr{S}} E_{n}^{\Phi}(\Omega), \quad n=0,1,2, \ldots,
$$

where \mathscr{S} denotes the class of orthonormal systems in $L^{2}[p] ; d_{n}(\Omega)$ is called the n-th width of the set Ω. If for some $\Phi^{*} \in \mathscr{S}$ we have $d_{n}(\Omega)=E_{n}^{\Phi^{*}}(\Omega), n=0,1,2, \ldots$, then we say that Φ^{*} is an extremal system for the set Ω.

Let now T be the trigonometric system

$$
T=\left\{\frac{1}{\sqrt{2 \pi}}, \frac{\cos x}{\sqrt{\pi}}, \frac{\sin x}{\sqrt{\pi}}, \ldots, \frac{\cos n x}{\sqrt{\pi}}, \frac{\sin n x}{\sqrt{\pi}}, \ldots\right\} .
$$

We know that for a set $\Omega=\Omega(2 \pi) \subset L^{2}[2 \pi]$, the system T is an extremal system in $L^{2}[2 \pi]$, and

$$
d_{n}[\Omega(2 \pi)]=E_{n}^{T}[\Omega(2 \pi)]=1 /(n+1), \quad n=0,1,2, \ldots
$$

(See e.g. G. G. Lorentz [2] p. 140.) So the system

$$
T_{n}=\left\{\frac{1}{\sqrt{2 p}}, \frac{2 \sqrt{\pi}}{p} \sin \left(\frac{p}{2 \pi} t+a\right), \quad \frac{2 \sqrt{\pi}}{p} \cos \left(\frac{p}{2 \pi} t+a\right), \ldots\right\}
$$

is orthonormal in $L^{2}[p]$; it is an extremal system for the set $\Omega=\Omega(p) \subset L^{2}[p]$ and

$$
\begin{equation*}
d_{n}[\Omega(p)]=E_{n}^{T_{p}}[\Omega(p)]=(1 /(n+1))(2 \pi / p), \quad n=0,1,2, \ldots \tag{26}
\end{equation*}
$$

We return to the definition of $\varrho_{n}(\Phi)$. We have

$$
\begin{equation*}
\varrho_{n}(\Phi)=\| \| I_{n}\| \|=\sup _{\substack{G \in L_{n}^{\perp} \\\|\emptyset\|_{z} \cong 1}} \cdot\|I g\|_{2} \geqq \sup _{I f \in \Omega} E_{n}^{\Phi}(I f)=E_{n}^{\Phi}(\Omega), \quad n=0,1,2, \ldots \tag{27}
\end{equation*}
$$

From (26) and (27) we obtain that

$$
\begin{equation*}
\varrho_{n}(\Phi) \geqq(2 \pi / p)(1 /(n+1)), \quad n=0,1,2, \ldots . \tag{28}
\end{equation*}
$$

Remark 2. From the above theorem and (28) it follows that for some orthonormal system Φ satisfying (12) and (13), the following statements are equivalent:
a)

$$
E_{n}^{\Phi}(f) \leqq C_{5} \omega(f, 1 / n), \quad f \in L^{2}[p], \quad n=1,2, \ldots
$$

b)

$$
(2 \pi / p)(1 /(n+1)) \leqq \varrho_{n}(\Phi) \leqq C_{6}(1 / n), \quad n=1,2, \ldots,
$$

where $\varrho_{n}(\Phi)$ is defined by (25); C_{5} and C_{6} denote absolute constants.

Remark 3. For the trigonometric system T, the following inequalities are valid (for $\varrho_{n}(T)=1 /(n+1)$):

$$
\begin{gather*}
E_{n}^{T}(f) \leqq C_{7} \varrho_{n}(T)\left\|f^{\prime}\right\|, \quad \forall f \in L^{2}[2 \pi], f^{\prime} \in L^{2}[2 \pi] \tag{29}\\
\left\|t_{n}^{\prime}\right\| \leqq C_{8} \varrho_{n}^{-1}(T)\left\|t_{n}\right\|, \quad \forall t_{n} \in T_{n}
\end{gather*}
$$

where T_{n} denotes the set of all trigonometric polynomials of order at most n, and $C_{7}=C_{8}=1$. The two inequalities in (29) play an important role in the proofs of the direct and converse approximation theorems.

We can ask: is (29) true for an arbitrary system? The answer is that in general (29) is not true. Indeed, let us consider the following system. Let $n_{0} \geqq 1$ be a fixed integer. Let

$$
T=\left\{\frac{1}{\sqrt{2 \pi}}, \frac{\cos k x}{\sqrt{\pi}}, \frac{\sin k x}{\sqrt{\pi}}\right\}_{k=1}^{\infty}=\left\{\frac{1}{\sqrt{2 \pi}}, C_{k}(x), S_{k}(x)\right\}_{k=1}^{\infty} .
$$

We consider the following system:

$$
\begin{gathered}
T^{*}=\left\{1 / \sqrt{2 \pi}, C_{1}, S_{1}, C_{2}, S_{2}, \ldots, C_{n_{0}-1}, S_{n_{0}-1}, C_{n_{0}+1}, S_{n_{0}+1},\right. \\
C_{n_{0}+2}, S_{n_{0}+2}, \ldots, C_{n_{0}^{2}-1}, S_{n_{0}^{2}-1}, C_{n_{0}}, S_{n_{0}}, C_{n_{0}^{\mathbf{2}}+1}, S_{n_{0}^{\mathbf{2}}+1}, \\
\left.C_{n_{0}^{\mathbf{3}}+2}, S_{n_{0}^{\mathbf{2}}+2}, \ldots, C_{n_{0}^{\mathbf{4}-1}}, S_{n_{0}^{4}-1}, C_{n_{0}^{2}}, S_{n_{0}^{2}}, C_{n_{0}^{4}+1}, S_{n_{0}^{4}+1}, \ldots\right\} .
\end{gathered}
$$

We have $\varrho_{n}\left(T^{*}\right) \sim 1 / \sqrt{n}$. So the second inequality in (29) is not true for $\varrho_{n}^{-1}\left(T^{*}\right) \sim$ $\sim \sqrt{n}$.

References

[1] Л. В. Канторович-Г. П. Акилов, Функциональный анализ, Nauka (Москва, 1977).
[2] G. G. Lorentz, Approximation of functions, Holt, Rinehart and Winston (New York, 1966).

