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On the restricted convergence and (C, 1, l)-summability 
of double orthogonal series 

F. MÓRICZ 

Dedicated to Professor László Leindler on his 50th birthday 

J. Introduction. Let be an arbitrary positive measure space and 
{(pik(x): i,k= 1,2, ...} an orthonormal system (in abbreviation: ONS) on X. We 
shall consider the double orthogonal series 

( i - i ) 2 2aik<pik(x), ;=l k=i 
where {aik: i,k= 1 ,2 , . . . } is a double sequence of real numbers (coefficients), 
for which 

(1-2) 2 2° 

By the extended Riesz—Fischer theorem there exists a function / ( x ) € L 2 = 
= L2(X, /i) such that (1.1) is the Fourier series of f ( x ) with respect to {<pik (x)} 
and the rectangular partial sums 

m n 
S„m(x) = 2 2 aik<Pik(x) ( '", " = I, 2, ...) 

i= l t= l 
converge to / ( x ) in the L2-metric: 

f [s„,„ (x) - / ( x ) ] 2 dp (x) - 0 as min (m, n) 

Here and in the sequel, the integrals are taken over the whole space X. 
Beside sm„(x) we consider the first arithmetic means, the so-called (C, 1,1)-

means am„(x) of series (1.1) defined by 
J m n 

= 2 2 ( i - - ^ - 1 f i ( ' " - " = 2, ...)• 

í=ik=iV m ) \ n ) 
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2. Unrestricted convergence. It is well-known that condition (1.2) itself does not 
ensure the pointwise convergence of imn(x) or a ^ x ) . The extension of the famous 
Rademacher—Mensov theorem proved by a number of authors (see [1], [7], etc.) 
reads as follows. 

T h e o r e m A. If 

(2.1) 2 2  al [log ( i+ l ) ] 2 [log (k + l)]2 < CO, 
i=l* = 1 

then 
smn (x) — f ( x ) a.e. as min (in, n) — °° 

and there exists a function F(x)£L2 such that 

sup |sm„(x)| S F(x) a.e. 
m, Rgl 

In this paper the logarithms are to the base 2. 
The following theorem (see, e.g. [8]) gives information on the order of mag-

nitude of jmn(x) in the more general setting of (1.2). 

T h e o r e m B. Under condition (1.2), 

(2.2) sm„(x) = 0 x{log(m+l) log(w- | - l )} a.e. as max (m, n) -

and there exists a function F(x)£ £2 such that 

Similarly to the case of the single orthogonal 
series, the convergence prop-

erties improve when the first arithmetic means amn(x) are considered instead of the 
rectangular partial sums smn (x). The following extension of the summation theorem 
of MenSov and Kaczmarz was proved in [10]. We note that it was stated earlier in 
[5] and [4], but the proofs are not complete in them. 

T h e o r e m C. If 

(2.3) 2 2 a % [log log (/ + 3)]2 [log log (k+3)]2 < » , 
i=i*=i 

then 

<Tm„(x) — f ( x ) a.e. as min (m, n) 

and there exists a function F(x)dL- such that 
sup k„„(x)| =s F(x) a.e. 

m.nl£ 1 
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The order of magnitude of omn(x), under condition (1.2), is also better in gen-
eral than that of smn(x). In contrast to the theory of single orthogonal series, the 
performance of an Abel transformation is avoided in the proof given in [11]. 

T h e o r e m D. Under condition (1.2), 

(2.4) omn(x) = ox {loglog (m+3) loglog(w + 3)} a.e. as max(m, TJ) — 

and there exists a function F(x)£ L2 such that 

sup i — - |(T'""(,x)l , — 7 — si F(x) a.e. 
m.ns 1 log log (m + 3) log log (« + 3) 

3. Restricted convergence. In the statements of Theorems A and C both m and 
n tend to °° independently of each other. 

We say that m and n tend restrictedly to <=° if min (m, n) — °° in such a way 
that the ratios m/n and n/m remain bounded, i.e., there exists a real number 

1 such that while both m and n tend to <*>. We say that sm„(x) 
or am„(x) restrictedly converges to f(x) a.e. if s„m(x) or omn(x) tends to f ( x ) a.e., 
respectively, whenever m and n tend restrictedly to <». In the case of <r„,n(x), we 
may say that series (1.1) is restrictedly (C, 1, l)-summable to f ( x ) a.e. 

The first remarkable fact is that the a.e. restricted convergence of Jmn(x) can-
not be ensured in general by any weaker condition than (2.1). This means that, in 
terms of coefficient tests, there is no difference between the a.e. unrestricted con-
vergence and the a.e. restricted convergence of the rectangular partial sums of 
double orthogonal series. 

T h e o r e m E. For every nonincreasing sequence {e (in): / n = l , 2 , ...} of positive 
numbers tending to 0 as m—<*>, there exist a double ONS {cpik (x)} on the unit square 
/ 2=[0,1]X[0, 1] and a double sequence {aik} of coefficients such that 

2 ¿ale (min (i, kj) [log (max (i, k) + I)]4 < ~ 
i = l * = l 

and 
limsup |Sm„(x)| a.e. on I2. 

ra,n»«:l/2Sn|iriS2 

The order of magnitude of smn(x), under condition (1.2), exhibits the same 
phenomenon. Relation (2.2) is also the best possible when m and n restrictedly 
tend to oo. 

T h e o r e m F. For every {e(/»)} occurring in Theorem E, there exist a double 
ONS {(pik (x)} on P and a double sequence {aik }of coefficients such that condition (1.2) 
is satisfied and 

limsup ——:— 'S™(X)I , i a.e. on /«. 
m,n-~:i/2s«/ma2 e(min(m,/i))[Iog(max (m, «) +1)J-
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Both Theorem E and Theorem F were actually proved in [12] (though the 
fulfilment of the condition l / 2 ^ n / m S 2 is not stated explicitly there). 

Now, the main results of the present paper say that the situation is quite dif-
ferent for the first arithmetic means <rm„(x). The a.e. restricted convergence of <rmn(x) 
can be ensured under a weaker condition than (2.3). 

T h e o r e m 1. If 

(3.1) Z 2 afk [log log (max (/', k) +3)p 
¡=i t=i 

then amn(x) restrictedly converges to f ( x ) a.e. and for every Om 1 there exists a func-
tion Fa(x)£L- such that 
(3.2) sup |<xm„M| ^ F0(x) a.e. 

m, nm i : é _ 1 a n / m a ® 

Assuming only (1.2), the order of magnitude of àmn(x) becomes smaller in com-
parison with (2.4) in the case when in and n tend restrictedly to 

T h e o r e m 2. Under condition (1.2), for every 0 ^ 1 

(3.3) max k„„(x)| = o^loglogOn + S)} a.e. as m 

and there exists a function Fe(x)£L2 such that 

cup g F ( j { x ) a e 
m,nei:o-1s«/mse loglog(m + 3) 

It is worth including two interesting consequences of Theorems 1 and 2. The 
following Theorem 3 extends a theorem of BORGEN [3] from single orthogonal series 
to double ones. We remark that the possibility of this extension was already indicated 
in [9]. 

T h e o r e m 3. If condition (1.2) is satisfied and series (1.1) is restrictedly (C, 1, 1)-
summable to f(x) a.e., then for every 0 ^ 1 

1 m 1 0i 
(3.4) —ZT 2 [ % ( * ) - / ( * ) ? - 0 a.e. as IN—, 

m ¡=i i k^e-ti 

I f , in addition, for every 0S1 there exists a function F„ (x)£ L- such that (3.2) 
is satisfied, then there exists a function Ge(x)£L2 such that 

t 1 m 1 m 11/2 

\— Z T 2 M*)-/(*)]*[ ^Ge(x) a.e. 
nibi I »» i=i » = H J . . . . 
at 

Here by Z w e mean that the summation is extended over those integers k 
k=e-u 

for which O ' ^ k l i ^ O . 
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Via the Cauchy inequality, relation (3.4) implies that 

J m J 61 
— 2 T 2 M * ) - / ( * ) l =0X{1} a.e. as m -«>. m /=1 i k=e-1i 

Our last theorem in this Section shows that, under condition (1.2), a certain 
average of sfk(x) is essentially less than it would be expected on the basis of (2.2). 

T h e o r e m 4. Under condition (1..2), for every 0S1 

1 m 1 6i 
(3.5) — 2 - 2 4 ( * ) = ox{\og log (m+3)}2 a.e.as m 

m ¡ = 1 I k=0-'i 

and there exists a function Fg(x)£L2 such that 

1 f 1 m 1 n l l / a 

sup - j—j—-——rr-1— 2 ~ 2 4 ( * ) | a.e. 
m==i log log (m + 3) I m ¡ t i I i 

By (3.5) and the Cauchy inequality, we have again 

1 m J 6i 
— 2 T 2 Is»(*)l = °x {log log (m+3)} a.e. as m -m ¡ = 1 * t=e-1i 

Finally, we raise two open questions: Under what conditions can we con-
clude that 

(3-6) - j - 2 2 [%(*)-/(*)]* = ox{ 1} a.e. mn i=n= i 
and 

(3-7) - ¿ - 1 ¿ 4 (*) = ^ {log log (m +3) log log (n+3)}2 a.e. 
mn i=x »=i 

as min (m, n)—«> (while m and n run to °° independently of each other)? 

4. Proofs of Theorems 1 and 2. For the sake of brevity, we introduce the fol-
lowing notation. Given a system {fp(x): p=0,1,...} of functions in L2 and a 
sequence {A(p)} of positive numbers, we write 

fP(x) = ox{X(p)} a.e. 
if 

fp(x)/X(p) - 0 a.e. as p 

and there exists a function F(x)£L2 such that 

sup |/p(x)|/;.(/>) ^ F(x) a.e. 
pSO 

First we present five lemmas. 

15 
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L e m m a 1. Under condition (3.1), ' 

(4.1) * - . «» (* ) - / (* ) = «,{1} 

This is an immediate consequence of the following Theorem G proved 
[7]; Let.. QgCi Qicz ... be an arbitrary sequence of finite regions in N 2 = 

^{(i, k): i, k=i, 2,...} such that Q fi,=N8. Set 
P=O 

sp(.Q;x)= 2«•*<?<*(*) (p = 0 , 1 , . . . ) . 

T h e o r e m G. If 

(4.2) 2 ( 2 <4) [ logOM-2) ] 2 <~ ( e _ ! = 0), 

then 
(4.3) sp(Q; x ) - f ( x ) = ox{i} a.e. -

Now, it is not hard to verify that in the special case when Qp= 
= {(i, k): i,k= 1 , 2 , . . . , 2P} (/?=0, 1, ...) the conditions (3.1) and (4.2) are equiv-
alent, while, the statements (4.1) and (4.3) coincide. 

L e m m a 2. Under condition (1.2), 

(4.4) S2J>,2P(X)-0-2P,2 "(x) = 0*0} a e -

P r o o f . Using the representation 

/X S k ~ l ( ¡ - l ) ( f c - l ) l sp (*) - 2p (*) = Z Z [ - ^ p - + — p J a ' k ^ 

we can simply estimate as follows 

••••'• ^ J (x) -(TiP,2P(x)]2 dp(x) Si 

J + - 3 ( / x + / 2 + /8), say.. 

By (1.2), 

i = 2fc = l p : 2 * s m a x ( i , H ^ 

A similar inequality holds true for /2 . Finally, The application of B. Levi's 
theorem completes the proof of (4.4). 

L e m m a 3. Under condition'(1.2), for every 0 s 1 

(4.5) M$(x) = r l 2 p m a | ( 2 t + l km,2P =. ©,{1} a.e. 
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The symmetric counterpart of Lemma 3 is the following: Under condition (1.2), 
for every 0 S 1 

( 4 . 6 ) . Mj*Ux) = e_1jnax^jaiptn(x)-ffip,2p(x)\ = ox{l} a.e. 

P r o o f of L e m m a 3. It is clear that 

M g l ( x ) -== max Wm,ip(x)-a2p<2p(x)\ + 
(4.7) 

+ max \ami2p(x)-02r;ip(x)\ =M}%xY+M$(x), ¿ay. 

(If 0 = 1 , then M^l(x)=0.) For example, we prove that 

(4.8) M<e>g(x) = o,{l} a.e. 

We begin with the obvious estimate 

Mgl(x) S 2 K,2"(x)-am-i,2p(x)\, 
m=2P + 1 

92*+ 1 

whence, via the Cauchy inequality, 
82P+1 

m = W + l 

Using the representation 

[M$(x)f s ( 2 0 - 1) 2 r n [ o m M x ) - ° ' » - i M x ) Y -

we can easily see that 

5 / s 

p-0 

p:2"*lsmax(ile,2k) i = 2 * = X 

Applying B. Levi's theorem, we get (4.8). 
Similarly, we can prove that 

(4.9) M«%tx) = bx{\) a.e: 

The combination of (4.7), (4.8) and (4.9) provides (4:5) to be proved. .. 



228 F. Móricz 

L e m m a 4. Under condition (1.2), for every 0 S 1 

MfMx) = 
( 4 1 0 ) =

2 pJS! !p* i 8 - 1 2 p S 2 p U W -^m, 2" (*) - <Tv.n(x) + 2* to I = 0X{1} d.e. 

P r o o f . It is enough again to prove that 

(4.11) 

M$,(x) -- 2 t m a i u |ffmj, (*) - am_ & (x) - CT2P, „ (x)+<7^. 2P ( X ) | = ox{ 1} a.e. 

We use the trivial estimate 

JJP + 1 02P + l 

ra=2P + l n = 2 P + l 

whence, by the Cauchy inequality, 

2P + 1 02P + 1 

[ M $ ( * ) ] 2 s ( 2 0 - 1 ) 2 2 rnn[tr™(x)-<Tm^n(x)-ffm,„_t(x)+_n_ t(x)]2. 
m = 2 P + l n = 2 P + l 

On the basis of the representation 
HI n 

2 2 m f m n "¡kVikix), ¡=it=i m(m —l)n(n —1) 
we can conclude that 

2j[M«Ux)Ydn{x) ^ 

» 2 P + 1 62P + 1 m n /"• l ^ a c j u 1 \ 2 

^ ( 2 0 - 1 ) 2 2- 2 "in2 2 ,;• n V n8 ¿4 g 
p=0 m=2P+l n=2P-f i i t i fc t i m 2 ( m - l ) 2 n 2 ( « - l ) 2 

oo 1 + 

p = 0 i = l J k = l 

= ( 2 0 - l ) 2 l i ( i - l ) a ( f e - l ) 2 a ^ 2 
¡=2*=2 piSP + 'smaxaWfl) ^ K 

Applying B. Levi's theorem, we get (4.11). 
Since the relation 

2 p < S + > e - ™ n S 2 p to(*)+av.2,(x)| = ox{l} a.e. 

can be similarly proved, this completes the proof of Lemma 4. 
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P r o o f of T h e o r e m 1. We can estimate in the following way: for 
S2P+1 and e-^n/m^d (p=0,1,...) we have 

km.(*)- / (*) I - k2P, (x) -f(x)\+\02Pi2P (*) - S2P,2* (x)| + 

. + A*™ (x) + (x) + (x). 

Now, we have to collect (4.1), (4.4), (4.5), (4.6) and (4.10) in order to obtain the 
statement of Theorem 1. 

P r o o f of T h e o r e m 2. It is quite similar to that of Theorem 1. Relying on 
Lemmas 2, 3 and 4, it is enough to prove the next 

L e m m a 5. Under condition (1.2), 

Siy.^W = crx {log (/>+2)} a.e. 

P r o o f of L e m m a 5. We will prove the following more general proposition: 
Whatsoever the monotonic sequence {Qp: p=0,1,} of finite regions in N2 is, under 
condition (1.2) we have 
(4.12) sp(Q; x) = ox{\og(p+2)} a.e. 

(cf. the notation before Theorem G above). 
To this effect, let us set 

^ = ( 2 <) 1 1 2 (r = 0, 1, . . . ; <2-1 = 0) 
(aieeACr-. 

and 
1 2 aik(pik(x) if Ar ^ 0, Ar (i.k)iQr\Qr_, 

1 2 <Ptk(x) 'f 'Ar = 0, 

where by | S r \ l 2 r - i l we denote the number of the lattice points of N2 contained in 
Qr\Qr-x-

It is clear that {i>r(*): r=0, •••} i s an ONS, and by (1.2) 
oo oo co 

r = 0 i = l * = l 

By the classical Rademacher estimate (see, e.g. [2, p. 83]), 

2 Ar4>r(x) = ox {log (p+2)} a.e. r=0 

But this is equivalent to (4.12) since 

sp(eix)=2A,<Pr(x) (p = 0, ),...). 
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5/Proofs of Theorems 3 and 4.-We begin with the following : 

L e m m a 6. Under condition (1.2), for every 0 S 1 

f 1 m I e i l1 '2 

(5.1) Am,9(x) = \ — 2 y 2№)-M*)]2f = " , { 1 } 
L m I = 1 / T=E-J/ J 

P r o o f . Our first aim is to show that the function Fe(x) defined by 

f - l e m j i / s 

*-m=l m n,=fl-'m . . . . ' 

belongs to L2. To this end, we use the representation 

^ / \ £ 4,(i~ 1 k-l ( i - l ) ( k - l ) \ smn(x)-omn(x)= Z 2 — + —Z— - 1 ««<P*(x) 
i = u = i v m n m n ) 

and estimate.the termwise integrated series from above as follows 

/ « ( * ( . ) , l i i 2 , J m=i m n=9-im i=i t=i V ma / r m 3 / r J 

= 3(/4 + / 5 +/ 6 ) , say. 

Performing elementary steps, by (1.2) 

m = l m ¡ = 2 fc=l 

= ( 0 - 0 - 1 + 1 ) ¿ ^ ( / - l ) 2 ^ . 2 
i=2fc = l m:ngmax(i , ' fc/9) m 

Similarly, 

/ ^ ^ ( o - e - i + i ) ! ¿ ( / c - i ) 2 < 4 2 
f = l k = 2 m : m S m a x ( i , * / 9 ) W 

And, finally, / 6 S / 4 . 
Now, if we apply the well-known Kronecker lemma (see, e.g. [2, p. 72]) we 

come to (5.1). 

P r o o f of T h e o r e m 3. By assumption, for every 0 ^ 1 , am„(x) converges to 
f ( x ) a.e. as m,™ and 6~1^n/m^0. Consequently, 

(5.2) flm,0(x) = { - J - J - j - 2 K W - / W ] f - 0 a.e. 
i m ¡=i i t=e-'i : i • • • 

(Here we cannot guarantee the existence of a function Fe(x)£L2 such that A n . e M — 
^ F e ( x ) a.e. for every m = l , 2 , ... .) 
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If we take into consideration the triangle inequality 

»1/2 
2 [ % t o - / t o ] 2 

r i m 1 fli l1 '8 

(5.3) \-i~2 T 2 [%(*) - / (* ) ] 2 ^ Am,e(x)+Bm,g(x), I w 1=1 i k=e-li > 

then (5.1) and (5.2) imply (3.4) to be proved. The additional statement in Theorem 3 
also easily follows from (5.3). 

P r o o f of T h e o r e m 4. This time we rely on the following inequality: 

f 1 m 1 e i 11/2 

(5.4) T 2 4 to S Am_e(x) + Cm,e(x), 
I M J = 1 L J 

where 
i 1 m 1 ei l1 '2 

l m I=i i t t 
By Theorem 2, , . • . . • • . . , 

Cm,e(x) = <>x{loglog(in + 3)} a.e. 

Referring again to (5.1), (5.4) implies both statements of Theorem 4. 

6. On the sharpness of Theorems 1 and 2. FEDULOV [5] showed that Theorem C 
is the best possible in the following sense. Let {e(m): m = l , 2 , . . .} be a noriincrease-
ing sequence of positive numbers tending to 0 as m — T h e n there exist a double 
ONS {q>ik(x)} on the unit square I2 and a double sequence {ait} of coefficients 
such that 

2 2 a?k«(min(i, fc))[loglog(i+3)]2[loglog(fc+3)]2 « » ' i=ift=i 
and 

limsup Iff^X*)! = ° ° a.e. on I2. 
m,n-*oo . . . . . 

(In [5] the formulation is somewhat different from ours.) 
Theorem D is also exact in general. It was pointed out in [11] that, given any 

sequence {e(m)} with the properties indicated just above, there exist a double ONS 
{<Pik to} on / 8 and a double sequence {%} of coefficients such that condition (1.2) 
is satisfied and 

limsup —. a.e. on P . ' 
e (mm (m, »)) log log (m+3) log log («+3) 

Now we are going to add the following supplement. Theorems 1 and 2 are the 
best possible even in the very special case 0 = 1 (i.e. m=n). Indeed, given a sequence 
{e(w)} with the above properties, there exist a .double ONS {(plt to} on the unit 
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interval I and a sequence {a!k : âik=0 for Ык} such that 

¿ e S e ( 0 [ l o g l o g ( i + 3)P<«o 
;=i 

and 
lim sup |ffmm(x)| =<=° a.e. on I. 

m—oo 

Similarly, there exist possible another double ONS {<р»(л:)} on I and a double 
sequence {aik : aik=0 for i^k) such that condition (1.2) is satisfied and 

lim sup , J ^ T ^ 1 a.e. on /. e(m)loglog(m+3) 

The last two counterexamples can be constructed with the help of the "one-
dimens iona l" counterexamples of MENSOV [6] a n d TANDORI [13, Theorem 8], respec-
tively. The only important modification is that now we need an infinite number of 
"indifferent" orthonormal functions at our disposal in order to place them for 
<Pik(*) with iVfc {i,k= 1,2, ...) (and these functions do not play any role later 
on because for different i and к all the coefficients aik are chosen to equal 0). On 
the other hand, the orthonormal functions themselves occurring in the corresponding 
counterexamples of Mensov and Tandori are used in the capacity of <pit (x) 
( i= 1,2, ...). Since the latter functions are step ones, this contraction can be carried 
out without any difficulty. We do not enter into further details. 

On closing we remark that the results of the present paper can be extended, 
without any essential modification, to the case of ¿/-multiple orthogonal series as 
well (d=3,4, ...). 

Note added in proof. Questions (3.6) and (3.7) are studied in another paper of 
mine: On the strong summability of double orthogonal series, Michigan Math. J., 
31 (1984), 241—255. 
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