Acta Sci. Math., 49 (1985), 235—256

Representation of functionals via summability methods. IT

V. TOTIK

" Dedicated to Professor L. -Leindler on his 50th birthday

1. Introduction

This article is a direct continuation of the paper [4]. There we showed that if
K is a metrizable compact space and C(K) is the sup-normed Banach-space of all
real valued continuous functions on K, then to every LEC*(K) there are sequénces
{c.}€l= and {x,}JSK such that for every fcC(K)

(.0 1f = lim (m)(es SO+ oo + 6, f(52)

holds. We proved also that every positive lmear functional L -with norm 1 (shortly
PL1 functional) has the form

12 L= Em () + ()

with a suitable sequence - {x;} S K.

" Extensions to subadditive functionals by replacing lim with limsup were also
treated. Using the language of [4] we call a functional on a certain space which
has the form (1.1) or (1.2) a welghted (C, D-functional or a (C 1)-functional,
respectively.

Here, in Section 2, we show that these results can be extended to QIO0, I],
the space of functions having discontinuities only of the first kind, and that Q{0, 1]
is maximal, in a certain sense, among spaces having this representability property.
In Section 3 we determine those functionals of R[0, 1], the space of Riemann-
integrable functions, which have the form (1.1) and Section 5 contains an applica-
tion of this result to density measures: we give all finitely additive measures which
can be obtdined as the den51ty of a certain sequence in R". Finally, in Section 4 we
solve the problem: by which summability methods can we replace the arlthmetlcal
mean method (ie. the (C, 1)-method) in (1. 1) and (1. 2)7
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2. The space Q [0, 1]

Let Q[O0, 1] be the sup-normed real Banach space of bounded functions defined
on [0, 1] having discontinuities only of the first kind, i.e. f€Q[0, 1] if and only if

fax+0) = lim f0), Sfx-0)= lim f()

S0 £, f(0-0) = f(0)
exist at every point x€[0, 1]. It is an easy task to prove that Q[O0, 1] is exactly the
uniform closure of the set of step functions. KALTENBORN [1] determined the dual
space Q*[0, 1] by the aid of a certain generalized Stieltjes-integral.
Now we shall show that on Q[0, 1} every PL1 functional is a (C, 1)-functional
and that there is no larger “natural” space with this property.

Theorem 1. On Q[O 1] every PL1 functtonal L has the form (1.2) with a
suztable Sequence {x}-

. This.yields at once "
Corollary 1. Every LeQ*[0, 1] has the form (1.1).

Note that Q[O0, 1] is far from being separable.

Now let B be a sup-normed space of bounded functions defined on [0, 1] which
is closed under substitution of cdntinuously differentiable homeomorphisms of [0, 1],
re. if ¢@: [0,1]-[0, 1] is a strictly increasing continuously differentiable function
with ¢(0)=0, o(1)=1 and f€B then fog@€B. Such spaces are C[0, 1]; @[O0, 1];
R[0, 1] — the set of all Riemann-integrable functions; the space.of left continuous
functions, etc. We shall show that Q[0, 1] is maximal among such spaces havmg
the (C, l)-representablhty property. S

"Theorem 2. Let B be as above. I ' ' QC B then for some x,€[0, l]‘ no extension
of the functional

Lof= (f (xo—0) +f(x+0))2 (f€Q[0, 1])
10 Bisa weighted (C, 1)-functional._
Proof of Theorem J. Let LEQ*[O 1] bea PLl functlonal and set
H = {fol(x) >0}, g
{xl hm Lx(x,x”) = 0} H3 {xI hm Lx(x_, x> 0}
(ta denotes the charactenstlc functlon of -the set A.) Since L 1s bounded these sets
are countable say, H,={yM}, H, = {y®}, H, = {y}, andif

y _ o
W = Lyppys w0 =lmLpge, o, w0 = Jim Lyge o),
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-then for the numbers ,
m=t0, p=31®, =1

k k k
we have m+upe+ps=l|L[|=1. An easy consideration shows that for

Lif = () T SOP), Lef = (p) 3 210 +0),
Lof = (1) 3 6910 —0) (6010, 1)

the functional L*=L—pL,—p,L,—psL, is a positive functional with norm
P21 —py—py—pr;. Let
_ Lf= (/) L*f (feQI0, 1)).
By our construction
Lyyy = lj{% Lifixte, =0 (x€[0, 1]),
therefore the function

.1 a(x) = Ly,

is a continuous and increasing function. Exactly as in the proof of [4, Corollary 3]
it can be proved that if {z,}<S[0, 1] is an arbitrary dense sequence then there exists
a sequence {x;} such that with the notation :

o, ({x:}, /) = A/n)(f(x) +... +£(x,))

a(z_k) = ’}inl Oy ({xi}a Xfo, zkl)

we have

for every k. By the monotonicity and continuity of «,
2.2) a(x) = lim o, ({x:}, X0, =)

also holds for every x€[0, 1], and since the set of step functions is dense in Q[0, 1]
we can conclude by (2.1) and (2.2) that

. Lnf= "IHE an({xi}’f)

for every f€Q[0, 1], i.e. L, is a (C, 1)-functional.

Since it is easy to verify that L,, L, and L, are also (C, 1)-functionals and since
L=y Li+...+u Ly, iy +...+p,=1, the theorem follows by a familiar argument
(cf. [4]).

Also, the proof of Corollary 1 is standard (cf. [4]).

Proof of Theorem 2. If QCB then there exists a function f which does
not have e.g. right hand limit at a certain point x,. Let L be any extension of L,
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to B, and let us suppose on the contrary that L is represented in'the sense of (1.1) by
the sequences {c,}, {x.}. The idea is to construct a functlon in B by the aid of f for
which the limit in (1.1) does not exist.

We shall only sketch the proof By linearity we may suppose that there are
sequences =1, >v1 >uz>v2 ..>X, converging to x, with

lim fu) =1, Jim /() =0
For the sake of convenience we shall use the notatio.n

all(g) = (]/n)(clg(xl)"' +c,,g(x,,)) .

in the rest of the proof.

Since for every £>0 (e<l—x,) we have Lx(, % +0=1/2, Lx(, +3=0, the
sequences {n;}, {&;}, (XYL, (Y2, and n;~0 can be determined successively
according to the requirements:

Gm(X(xo,l)) = ]/2+"19 |'71| = 1/23 € = lg}‘lsn (xk_xo),
sk=n,

X, >Xg
Y, =yl sk = My X > Xo}s

and let ¢V (1=i=k;) be the corrcspondmg constants (1e if xW=x, then let
d=c); '
aﬂz(x(Xo,el)) = 1/2+n., |'72| = 1/4’ & = lg}‘lg (3, —xo),
. LT =K=,

X > Xg
(xPYr, ={x |l =k =n, xo<x < Xx+&}
and {cP}, the set of the correspondirig constants, and so.on. ' We may assume as

well that (k,+...+k)/n,1—~0 as i—oco.
Now let

@15 Pa: U (DYt~ {uk};;lu{vk};?:l_“

be 1—1, monotonically increasing mappings. with the properties:
o1 (xFV) = Qo (xF e {u iz, 1 =i=kyoy,
<P1_(5€i(2j))€ {udie:, @ufxP)e{vdin,, 1= §>k2j,
(@ () —x)/(x? —x0) = o(1) (x=1,2)

as j—-< uniformly in 1=i=k;. ¢, and ¢, can be extended to continuously dif-
ferentiable homeomorphxsms of [O 1] w1th (pl(xo) ¢2(x0) -and qol(x) ¢2(x) for
x€[0, x,]-

i=L2 ..,
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The construction gives

Onsjur (f o, —fo %) Ongy sy (ixe, 1) © 1~ X(xo, .S © P2) =

= o)+ 1y 3 ef* (o ()~ (oo xf5+) = 0(D)+0 = 0(1)
and ' ’ o
G (foPr—fo0) = 0(1)+(1 +o(1))a"2,(x(x.,,xo+=,,-,>(fo-wl—1))—
(1 0(1)) Gy, K o2, 2 0 P2+ (1 +0(D) O, szt - ,>) =
= o(l)+o(1)+o(l)+(1+o(1))(]/2+o(1))

i.e. either for fo@,€B orfor fop,£B the limit.on the right of (1.1) does not exist,
which contradicts our assumption concerning the sequences {c,}, {x}-

3. The space [0, 1]

Let #2[0, 1] denote the space of Riemann-integrable bounded functions defined
on [0, 1]. We equip £[0, 1] with the sup norm. By Theorem 2 £2[0, 1] has bounded
linear functionals which are not weighted (C, 1)-functionals. In the present section
we characterize the (weighted) (C, 1)- functlonals of %[0, 1] An application to
density measures w111 be glven in the last section.

Theorem 3. A | functional LE.%*[O 1] isa wezghted (C, 1) functzonal (i.e. it has
Sform (1.1)) zfand only if L is of the form

Lf= 3 uf+ [ fOg0d (RO 1),
=1 ° » .

where 1,€[0,1] (1=i), >3 ||l<e and g€ LA[0, 1].

Corollary 2. A4 PLI functional LE®*[0,1] is a (C, 1)-functional (i.e. it has

Jform (1.2)) if and only if there are 1,€[0; 11, yié() (1=0), gE,I_,1 [0, 1), g=0" such that
1

fg(t)dt-—l 2';1,:1

0

and for every fEZ[0, 1]
Lf= Zu.f(r)+(l—2u) f f(t)g(t)dt
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Proof. First we prove the necessity part of Theorem 3. Let us call a point
x€[0, 1] a singular point of L if Ly, 0, and a functional having the form

Lf=§ wf@., Sl <o,

will be called a discrete functional. First we show

Lemma 1. For every LeR*[0,1] the set of singular points is countable and
L=L,+L; where L, is a discrete functional and L, is without singular points.

Proof. Since for arbitrary points x,, ..., x, we have

Ilé; ZtLX(xi)I = IL 'é;iZ(x,)l = L],

there are at most countably many singular points of L. Let they be t,,1,, ... .
The previous inequality shows that the numbers p=L;, satisfy 23 |u|=

i=1
=||L}§. Now

Lf= glllf(‘[i) and L, =L-L,

clearly satisfy the requirements of the lemma.
~ We need also another lemma.

Lemma 2. If LeER*(0, 1] is a weighted (C, 1)-functional without singular points
then the function a(x)= Ly, (x€[0, 1]) is absolutely continuous.

Proof. If O=wy<w,<...<w,=1 are arbitrary points then for certain signs..
+, — we have

n—1 n—1
ig; |a(wi+1)"a(wi)| = L(:tX[wo,w1]+i2; i)((w.',wuﬂ) = "L"s
i.e. a is of bounded variation. We show first that « is continuous.

Let us suppose on the contrary that « is not continuous at the point x. Then
either a(x+0)>=a(x) or a(x—0)sa(x), let us consider e.g. the former case. If e.g.
a(x+0)>a(x) then there are constants &>0, >0 such that for x<y<x+06
we have a(y)—a(x)>¢&. Since L is a weighted (C, 1)-functional, there are sequences
{c:}, {x:} such that '

@ ;}-1.12 ax(f) g,!_ifg (l/”)(clf(xl)-f-... +c"f(x")) =Lf

holds for every feZ[0, 1].
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Let x<y,<x+dJ be arbitrary. By our assumptions there is an n, such that
O (X(x.y) > Let z, ...,z be those x’s for which x;€(x, ], I=i=n,. (For
the sake of easier printing, in subscripts we shall write {z;; v, u} for {z;}.,.) Then
we have also o, (X,;1,1,))>¢ L is without singular points, therefore there exists
an N, with T : '

o-n(X(z,;l,kl)) < 6/4 fOI' n= Nl'
After this let x<y,<x+8/2 be such that

yp—x < min (x; —x)

-"1>"
is satisfied. Again there is an n,>N; with

O, (X, )'2]) >¢&

and if Zy 41y -5 Zx, ATE the x;’s for which x;€(x, y,), 1=i=n, then there is an
N, such that for n=N, we have

0',, (X(zi;l,kgi) = 3/4

S

Repeating this argument we obtain a sequence {z;};=, converging to x and sequences
{n;};=1, {N;};=, such that
.. aru(%(z,;l,w)) = anj(X(zi;kJ_1+1,kj))+U:1_,(X{z.-;1,k,_l)) = 8_8/4 = 36/4
while T
. aNj(X(Zg;l,eo)) = aNj(X(Z[;l,kj)) = 8/4
l-C. nt

3}{2 o-n(x(zi,l,oo))

does not exist, which is a contradiction since X(z,:1,) 18 Riemann-integrable.
The absolute continuity of a(x) will be proved by a similar argument. Let
be the signed Borel measure associated with o (x) (cf. [3, p. 173]), in the sense

([0, x]) = a(x),

and let a*, o~ and |aj=a* +a~ be the positive and negative parts and the total
variation of a, respectively (cf. [3, pp. 134, 125]). We have to prove that « is absolu-
tely continuous with.respect to the Lebesgue measure. Suppose not. Then either
at or ¢~ is not absolutely continuous, let us consider e.g. the first case. Since o*
and a~ have disjoint (not necessarily compact) supports and the singular part of
a® does not vanish, the regularity of «* and a~ yields a closed set H,S[0, 1] with
Lebesgue measure zero and constants &, &,, d,, ...>0, §,~0, such that

at(Hy) =& a (H) <g/d"*! (n=0,1,..)

are satisfied where .
H¢ = {x|dist (x, Hy) < &}
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Let n,=0,. We have a(Hg°)>e—¢/4 and since HJe is the union of finitely many
intéervals we obtain together with this also that
' ' . Lngo = 8_8/49
by which
Ono (ZHO”O) = 8—'8/4

for some n,. Let z, cees Ty be those x;’s for which 1=i=n, and x;¢HJo are
satisfied. Since L has no singular point, there exists N, such that for every n=N,
we have i

G, (Z(:,; l,ko}) < 8/8

Since a.is continuous we have |a|({x})=0 for every x and the regularity of the

measure |«| yields that we can choose disjoint closed intervals U, ..., Uy, around

. . . . N

the points xy,...,xy in such a way that |a|(Lj U)<e/16 is satisfied. Let
' i=1

x;€U; S U; be open intervals without common endpoints with U; and

.
H, = Hy/(U Ui).

If n,>0 is less than 6, and less than the distances between the endpoints of the
U/’s and U;’s and also less than the distances of the endpoints of U;’s from x;’s
then we have

Ny Ny
Hp 2 Hp[H,N (U U 2 Hp U U,
i=1 i=1

N .
at(HP) = at(HP) —at (1) U) = e—e/16, a~(HP) = o= (HPY) = ¢/16,
i=1 ) f
and hence
a(HY) = LZH{“ > g—gf8.
There exists an n, >N, with
am(%y{ll = 8_8/83

and if Zy 415 -ov> Zx, AFC the points x; for which x;€H:, 1=i=pn, thén we have
z;8H,, z;#z; for 1=j=ky, ko+1=i=k;;

p a'm(x(:a;l,k,)) = 0’,,1(1(:,;k°+1,k,))+0’,,x(l(z‘;l’ko)) =¢ —8/8 —8/8
an
Ou(Xz1,m)) <¢/8 for n= N,
for some N,.If U, ..., Uy are disjoint closed intervals around x,, ..., xy with

N Ni
lal(U UX)=<e/32 and x;cU/S U, U] open, H;=H\(U U/) then exactly as
i=1 i=1
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above we obtain for small 5,>0,
a(HP) = Lyyn, >'¢—¢/8—¢/16.

Repeating this argument we obtain sequences {z;};2,, {H,}i—;, {n;}j=1, {N;}j=:,
{k;};-, such that H;,,SH; closed, z4H; for i=k;_,, z#z; for i#j, the

sequence {z;} may have limit points only in H= ﬁ H; and
. ¢ _ fa)

G, (Xzi31,00) = ”n,(l(:i;u,-,u,k,))—Un,(l{z,;l.kj_,)) =

3.2)

= (e—¢/8—g/16~...)—¢/8 = g2
but
(3.3) “N,(X{z,;l,eo)) = GN,(Z{z,-;l,kj}) <¢f8.
Since

Xiz;31,00) = XHU{z;31,00) —XH

and H,HU{z}2, are closed and have Lebesgue measure zero, we obtain that
X(z;;1, i Riemann-integrable and (3.2)—(3.3) contradict our assumption concerning
the convergence of {s,(g)} for every g€2[0, 1]. This contradiction proves Lemma 2.

Let us return to the proof of Theorem 3. By Lemma 1| L=L,+L, where L,
is discrete and L, has no singular point. An easy argument gives that every discrete
functional is a weighted (C, 1)-functional, so if L is assumed to be weighted (C, 1)-
functional then L, is also a weighted (C, 1)-functional. By Lemma 2 the function
a(x)=LyJpo,x is absolutely continuous, let g(x)=a'(x) (a.e.). Then g€ L'[0, 1] and

Loy = a(x) = [g(@ar
0 -
by which
1
(34) Loh= [ hg
[1]

for every step-function h. Let fe#*[0, 1] be arbitrary, and let

Li¥h = L,(hf) (heZI0, 1)).
It is obvious that L¥€#*{0, 1] and together with L,, L} is a weighted (C, 1)-func-
tional withont singular points. By Lemma 2 the function

o (x) = L3 yo,x1 = La(fit10, 1)

is absolutely continuous and hence to every &¢=0 there exists a >0 such that
if H is disjoint union of finitely many intervals and m denotes the Lebesgue
measure, then m(H)<é implies

(3.9 Lo (fre)l < e.

16*
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We may assume that

(3.6) Loxal <&, f lgl <& for m(H) <3

are: also satlsﬁed Since f is Riemann-integrable there are step-functxons (p and’ 45
such that t :

o=f=®, |o|l|®|=suplf, f (@—¢) < éd.
0
Thus, if
H={x|92(x)—¢(x) > &}
then m(H)<d. Let H be the disjoint union of the closed, half-closed or open inter-

vals {u;, v}, ..., {t,, v,} and let w;€{u;, v;}. We may assume that ¢ is constant on
each interval {u;, v;}. By (3.4)—(3.6)

|Lof= [ F2| = |Lo(F—9) 00, 0nm)| +ILe Sl +
-0 . : .

H S e (@) —2 @) +|Leo = [ og|+|| f\ (f-oel+| f(F-o)g| =
o=t . 0o [0, 1\H H .

= elLl +e+suplol 1) ~a(@)| +0+elglu +2sup 171 [lgl =

= e(|Ly +||gHu+l)+28 sup | f1+2e sup |f| =Ke
w1th ak 1ndependent of ¢, by whlch the equality

L= f f2 (Jfel0, 1)

is verified, and the necessity of our condition is proved.
The necessity of the condition in Corollary 2 follows easily from the above
consideration, all what we have to mention is that, by the positivity of L and by -

|L|l=1, we have u,_O 2;1,—1 and in the case _2’ ;<1 the derivative of

#(x)=Lox(o,x; 1S positive because L, is also a posmve functlonal (notlce that for
every nand f=0

Lf=L (‘él' S(@) Z(n)) = ié; lli.f (Ti))-

After these let s turn to the sufficiency part of our proof. Obviously it is suffi-
cient to prove this for Corollary 2, and since a functional of the form

Lf= éy,-f(‘t,-), w=0, g =1
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1s easily seen to be a (C, 1)-functional our task has reduced to the verification of the
following: if

Lf= [fe. (fe®[0,1)

. 1 . . . L
where g€ L0, 1], g=0 and j g(t)di=1 then L is a (C, 1)-functional.
1]
Exactly as in the proof of [4, Corollary 3] one can give a sequence {x,} such that

,111[2 on({xk}, Z[O, z,-]) = jj g(t) dt (an({xk};g) = (I/n) ké‘; g(xk))

is satisfied for a sequence {z;} dense in [0, 1]. By monotonicity and by the con-

tinuity of f g(t)dt we obtain the same relation for every z€[0, 1} and hence
]
1
tim o({x}, h) = [ hg
n—+oo o

for every step function h. If f€2[0, 1], e=0, are arbitrary then there are step
functions ¢, @ with the properties:

p=f=9o, l|ol, |®|=sup|f],
m(H)<e, wheré H={x|®(x)—@(x)=¢} (see above) and these yield

1
Lo = [ ¢g=limo,({x}, ¢) = liminfo,({x}, /) =
0

1
= limsup o, ({x,}./) = lim o,({x}, ®) = f dbg=LJ,
n—-oo n.—vw 0 .

1 1
Lo =Lf=Lo, Lo-Lo = f(¢—¢)g§efg+2supif| flgl-

Since here the right hand side can be made arbitrary small by appropnate choice of
& these formulas prove the convergence

llm o.({x}. f) =
for every f€Z[0,1] and the theorem is proved.
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4, Other summability methods

In this section we characterize those matrix summability methods which can
be substituted in [4, Corollary 3] for the (C, 1)-method.

Let thus T=(¢, )rx=, be an infinite matrix. We say that T sums the sequence
{s} to the limit T-lims, if

T-lims, = lim P
k k """°k§1 nkok

holds. If for every convergent {s,} we have Y
T-h:n S = '}ﬂ Sk

then T is said to be regular. By the well known Toeplitz theorem T is regular if
and only if
@) nlx*rg t=0 for every k,

i) 3 ltul=0(D),

(i) lim 3 1,=1
R0 k=1
hold.
By analogy to (C, 1)-functionals let us call a functional L€C[0, 1] a T-func-
tional if there exists a sequence {x,};.,<I[0,1] such that

Lf = THim f(x)

holds for every f€C[0,1]. In order to avoid unnecessary technical difficulties we
assume T to be non-negative. Our matrices T=(¢,) will have the property that

S(T) = lim 31,
) n-»ook=1
exists. We say that T is decomposed into the matrices Ty, ..., T, ... (in abbrevia-
tion T={JT,) if the columns of each T, are columns of T, they follow each other

in T, in the same order as in T, and each column of T belongs to exactly one of

the matrices 7,,. Now let us call T .completely regular if T can be decomposed into

the matrices Ty, T, such that S(T))=S(T,)=S(T)/2 is satisfied, furthermore T,

and T, can be decomposed into T;,, Ty and Ty, , Ty, respectively such that S(Ty;)=

=...=8ST)=8(T)/4 is satisfied, Ty,,..., Ts, can further be decomposed into

T3, ... and so on. E.g. the complete regularity of the (C, 1) matrix is a trivial fact.
We shall prove
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Theorem 4. Let T be a non-negative matrix. The following assertions are equiv-
alent:

(i) every PLI functional on C[0, 1] is a T-functional,
(ii) there exists a sequence {x,}<[0, 1] such that

T-lim f(x,) = oj f(0) dt

for every feC|0, 1],
(iii) T is regular and completely regular.

Corollary 3. Any of (i)—(iil) implies that to every LEC‘T[Q, 1] there are
bounded sequences {c,}r, and {x}r>.,S(0, 1] such that

“.1n T-lilfn o f(x) = Lf
holds for every f€C[0, 1].

Remarks 1. In (ii) the functional f— f f can be exchanged for-every func-
tional f— f Jfdp with continuous g, but it cannot be exchanged for one with dis-
continuous 4.

2. In Theorem 4 we characterized the matrices by which every PL1 functional
can be represented rather than those by which every LeC*[0, 1] can be represented
in the form (4.1). Clearly, if (4.1) holds and if we multiply the columns of T by
certain numbers and at the same time we divide the ¢,’s by the same numbers then
the T’ and {c;} obtained still satisfy (4.1); therefore the characterization of the T’s
with the (4.1) representability property is rather hopeless.

Proof. (i)=(ii) is obvious. First we show that (iii) implies (i). To this.end we
need the following definition and lemma. For x€[0,1] and &¢=>0 let

0 i J—x|>e
f;’e(t)={l—|t—x|/s if |t—-x|=¢ €10, 11.

We say that x is a singular point of the PLI1 functional L if
= 11rn1nfLﬂ e = hm Lj; .= 0.

£+0+4

(Note that this notion differs from that used in the proof of Theorem 3).
A functional L having the form Lf=>y, f(), 2 =1, i=0, will be called
discrete.

Lemma 3. Let LEC*[0,1] be a PL1 functional.
. (#) The set of the singular points of L is countable and 2' u=1.

(B) L=uL,+(1—p)L, where 0=u=1, L, and L, are PLl functzonals Ly is
discrete and L, does not have singular points.
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- (y) If the PL1 functional L has no singular point then to every )1>0 there
exists an &=0 such that Lf, ,<n for every x€[0,1].

Proof. If 7., ..., 1,€][0, 1] are distinct pomts and ¢, ..., & are so small that

k
__Z;f,‘,,,, =1.

is satisfied then

k .
0= Lf, . =1
i=1

which proves (). : :
Let 1,,7,, ... be the singular points of L and let

Lif = (/w) § u @), p= 2;1 (feCl0, 1.

If p<1 then L,=(1/(1—p))(L—uL,) is without singular points. For every f=0,
4=>0 and k=1 there are ¢, ..., >0 with

f=(1-9) 2 S e
_By which B
If= (1-9) ig‘; FE)Lf,, = (1-5) g o

Since here 6=0 and k=1 are arbitrary we can deduce that L, is again a PL1
functional which proves (f).

Finally, if (y) were not true then there would be an 11>0 and a sequence
Xys oees Xys ... With Lf, =0, If x is a cluster point of {x,} then to every £>0 there
would be an n with (1/2)f; 1n=fs,. by which Lf, .=(1/2)n (¢>0) contradicting
the assumption that L does not have any singular point. ‘

Now in the proof of (iii)= (i) we prove first that every PLI functlonal L with-
out singular points is a T-functional. An easy argument gives that T can be con-
verted into a triangle-matrix T*=(r}) (i.e. ;=0 for k>n) which is also regular
and completely regular and the limits T-lilr‘n s, and T*-li’rcn s, exist at the same
time and they are equal for every bounded sequence {s,} (first make T to be row-
finite and then repeat the rows of T’ sufficiently many times). Thus, from the point of
view of our problem T and T™* are equlvalent so we may assume without loss of
generality T to be a triangle-matrix.

Also one-can show easily that the complete regularity of T implies the following:
if 0=s=1 then T can be decomposed into T, and T}, so that S(T)=s, S(T)=1—s
are satisfied, furthermore, to every 0=r,=s and 0=r,=1-—s the obtained T, and
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T, can be decomposed into Ty,, Ti,, Ty and Ty, so that S(Ty)=ry, S(T)=5—r,
S(Ty)=r,, s(Te)=(1—5)—r, are satisfied, etc. We shall call such decompositions
completely regular.

Let us consider the functions

1 if k2" =x =1,
g ((x) =10 if O=x=Gk-12", m=12 ., 1=k=2",
linear on [(k=1)[2™, kf2™], :
gm(x)= 1.

Let ¢™=1Lg™ and g™ =: 2 P (0=k=2", m=1,2,..). By positivity we have

A™=0 and 2 pm=1..
Let T= T‘”UT“)UT(‘) be a completely rcgular decomposition of T such that

S(T(l)) — p(]) S(Tl(l)) — pil), S(Tz(l)) —_ pgl)

are satisfied, and let
(1 if »€ind T,
x00 =11/2 if n€ind TM,
0 if ngind TV

where ind T’ denotes the set of those natural numbers j for which the j-th column
of T belongs to T”. It is clear, that there exists a number N ® such that for s= N9

we have _
I ({x" 9} g - LefM < 112 (i=0,1,2),

where the notation
s
t,({x:}, g) == kg; 18 (xy)

is used.
For a given m and 0=k=2" let us consider the functions

“.2) g™y, g™V, L, g, g, gl - g8
In the following ¢ will denote any of these functions. Let pX™"*V be defined by
g +? = gD +pEmD if 2k <2+ and  pii = pintd,

We suppose that for the pair (m, k) we have already defined the completcly regular
decomposition of T into the matrices

T()‘m+l)’ Tl(m+1) . T(m+1) T*(m+1) Tk(ri’ ey Téﬁ'),
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the sequence {x™¥P}=_  and the number N™* so that
S(To(m+l)) — pgmn)’ s S(Tg(km_-{-ll)) ___pgl_-f-ll)’ S(Té;(m+1)) = p;k(mq-l)'

for n> N™® we have

27 if acind T (=0, ..., 2k—1),
ximk) = §2k[2m+1  §f  peind THM+Y,
ijom if acind T (i =k+1, ..., 2),

and for s= N™0
|t ({x{mP}, @)—Lo| < 1/2m

are satisfied for every ¢ from (4.2). We want to go over to the pair (m, k+1) (if
k=2" then to the pair (m+1,0); this case can be treated similarly as the fol-
lowing one). :

The regularity of T implies that if we cancel those columns of the matrices
THmD, T, which belong to the first N ¥ columns of T then the obtained matrices
Wrm+ D pem  are still completely regular. Let us unite W5 ™*Y and W™ into
the matrix ¥, (the columns in ¥,* follow each other in the same order as in T),
and then decompose V"™ into the completely regular matrices 75+ D, T&D, THmFD
so that

S(TEY) = pfr*?, S(TEAY) = plphd, S(Taft?) = piied?

be satisfied. This is possible because

1) —_
PRV + T+ DD AT = gl = PR +pi 4 .

Now we sct

2kj2m+1 if neind TV,
Qk+1)/2m* if  n€ind THD,
(k+2)/2"*1 if ncind TECD,
x{m®) otherwise.

x'('m,k+1) —

It follows easily that for 0=r=2k+2

am 2k+1
lim £({xmke), glme D) = 3 ST+ ST + 3 STimD) =
Swee j=k+2 j=r

om 2k+1
= % p](’") +P;<k(i"2+1)+2 P}m“) = qr(m+1) = Lg{m+D
- i= 2 Jj=r

and similarly for k+2=r=2"
lm t({oxfm 2D}, gfm) = Lgtm.
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Therefore, there exists a constant NU™*+Do NOmK guch that for s=NO™k+D
we have

[t ({esm DY, ) — Ly < 1/27
where | denotes any of the functions »
gm*l 0=r=2k+2, g™, k+2=r=2"
(If we adjoin the omitted columns to T3 we obtain again a completely regular
decomposition of T and the prescribed properties hold for the pair (m, k+1).)
Thus, for all m and 0=k=2" we can define the sequences {x"™¥®} which have

also the property that for 0=n=N"¥ and for m’>m or m'=m and k'>k,
X8 coincides with x+¥), je. xMB=x"¥) Hence the limit

= I (m, k)
x" N(m,llr(i)’l..w x"

exists for every n and x,£[0, 1]. We show that
T-lim g{™ (x,) = Lg{™
n
for every m and k which already implies
Tim f(x,) = Lf

for every f€C[0, 1] because the linear combinations of the g{™’s constitute a dense
setin C[0, 1].
Let
0 = {n| p€ind THm+D, NWE = = NOmk+DY

1m0 = {n|n€ind T&, N™B = p = Nmk+DY

and
Kfmk) = max t,
1 N(m,k)§,§N(m.k+1)j€’l(Z""'k) S, 5
(m.k) —
K3 oo 3K & b

jerfm®

We claim that K{™9~0, K{*®~0 as N Suppose not, e.g. K™=
=zg=>0 for infinitely many pairs (m, k). For each such (m, k) we have by our
construction

le({x{™ P}, g5+ V)~ t,({xim P}, gl = e,
which together with the estimates
Q™). b+~ Legr V] < 172,

L{xmP), o) —LefMl < 127 N =55 Newbsd
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yield for infinitely many (m, k)
|Lg{m —~ Lgim,| = ¢—2/2™,

but this contradicts Lemma 3 (y) (L is assumed to have no singular point).
Now if |f|=1 is arbitrary then for N™® <s=N™k+D

e ({xa} 1) — 1, ({xEm 0}, )] = 2(K ™0 + Km)
and so, according to what we have’ Just proved, to every ¢=0 there exists an N

such that if s=N then _
12, ({xa); ¢)-L<pl <e

for an arbitrary function ¢ from (4.2) with (m, k) satisfying N™ B < g= Nmk+tD,
But for m,<m every one of the g{™s is a convex linear combination of such ¢’s
by which .

lim (G, g6™) = Lgy™

for every m and 0=k=2", and the proof is complete.
Now let L be discrete:

Lf=2uwft), m=0, Xu=1

By assumption we have matrices T; with T=U T;, S(T;))=p;, hence putting
x,=1; if n€ind T; we obtain ~ '
: Lf = T-lim f(x,).

Finally, if L=pL,+(1—pu)L,, O<u<1 where L, is discrete and L, is with-
out singular points then there are completely regular matrices T,, T, such that
T=T,UT,, ST)=u, S(Ty)=1—u. Above we proved that there are sequences
{xM} and {x?} with

(1) Ty lim f(x(M) = LS, ((1/(1 ~ ) Ty)- llmf(x M =Lf,

and hence putting ‘
x, = x if the n-th column of T is the k-th column of T;; j = l or 2,
we obtain
T-hm flx,) = Ty~ hmf(x )+ T,- llmf(x D) = pL, f+(1 —p) L, f = Lf
and the proof of the implication (iii)= (i) is complete.

Finally we prove that (ii) implies (1ii). Let

[ f=THm s
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for all feC[0, 1]. Putting f=1 we obtain

o 1
lim 3t =Tlml= [1=1.
A+ k=1 I
Thus, T is regular if "lixg t,=0 is also satisfied for every n, bui this obvidus]y
follows from the complete regularity of T which we show in a moment.
If IZ[0,1] is an interval let |I| denote its length, and let the matrix T, be

determined by
indT; = {n|x,cl}.

We claim that S(T;)=|I| which already implies the complete regularity of 7. For
any functions f;, f€CI0, 1] satisfying 0=f;, ,=1, f1(x)=0 for x47, f3(x)=1 for
x€I we have, if I, denotes the sum of the elements of 7} in the n-th row,

1 1
[ £ =liminfl, = limsuwpl, = [ fo
0 N> n-+oco 0
and since to every &¢=0 there are functions f; and f;, of the above kind satisfying

1 1
Hl—e= [fA=lll= [ fisll+e
- 0 1] :
we have indeed A
S(Ty) = lim 1, = |1
n—oo

The proof is complete.
Corollary 3 can be proved easily using Theorem 4.

5. Density measures

Let X= {xi}em, be a sequence from the n dimensional Euclidean space. We
say that X has density « in the set A4S R" if the number of the first n points belong-
ing to A divided by n tends to « i.e. if

Hklt = k= nxedllin = () 3 raG) ~a (1 =)

Let J” be the ring of the Jordan measurable sets of R”. A set function u:J"—~R,
is said to be density measure if there is a sequence X={x,};>; such that X has
density u(A) in every Jordan measurable set 4. In this section we characterize: these
density measures. It will follow among others that they are really measures, i.e.
they are countably additive and they can be extended to a Borel measure.
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Theorem 5. A u: J"—R, is a density measure if and only if it has the form

G.D u(4) = %uﬁ(l—éuf) [e

with suitable 1,=0,1€R" (i=1,2, ..),g=0,g€ L\R") satisfying > =1, and
i=1

f g=1

Rﬂ

In other words the density measures are the convex combinations of the dis-
crete and (with respect to the Lebesgue measure of R”) absolutely continuous
measures.

Corollary 4. Every density measure is o-additive and. hence it can be extended
to a Borel measure of R".

Remark 1. One could try to extend the notion of the density measure to
other domains than the Jordan measurable sets but such extensions can result in
that the only “density measures” are the discrete ones. This happens e.g. if we
require p to be defined for all open (and hence for all closed) sets of R”.

2. One could also. use other summability methods, i.e. u can be defined as

p(A) = T-lm y,(x,)

for some X={x,}SR" and a non-negative regular matrix 7. A similar argument
that will follow proves that Theorem 5 holds word for word for this “modified
density measure”.

Proof. We shall only sketch the proof. The detalls are very similar to those
of Section 3.

I. Necessity. Let X={x,} be the sequence generating u. A standard argu-
ment yields that the number of those points x for which p({x})=0 is countable.
Let these be 7y, 75, ... and let g=p({r;}). If N; is that subsequence of the natural
numbers N for which k€N, iff x,=1t; then N; has density y; in N. N; contains a
subsequence N; such that N; has density y; in N, too, but it is sufficiently sparse,
namely if Nj={r{’, n{, ...} then k/n>=p; is satisfied for every k. One can easily

verify thatif X’ = {x]} is that subsequence of X for which x. € X iff k¢ U N/ then X’
satisfies the property that if u*= 2‘ ;<1 ‘then X’ has density
i=1

m4) = (1/1 —u*))(#(A)*r%’A 1t;)

in every set A€J" and hence

u4) = % wi+(1 _;g 1) 11 (A).
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If g u;=1 then, clearly,
nd) = 2w
LA

and our task has been reduced to show that there is a function g€ L}(R"), g=0,
f g=1 such that
Rn

mA) = [g

is satisfied.
Let us consider the following mapping ¢: R'—~R": if x€R' has binary
expansion
X =0 g%y, Oydply...

where infinitely many of the «,, «s, ... vanish then putting

. .xj=..-aj_", “jaj+"..., j= l, 2, .o n
let
@x) =, ..., x").
Then @(R)=R" and for cach x¢R", ¢ (x) consists of at most 2" points.

o([m/2*, (m+1)/2"]) is a closed rectangular parallelepiped without one vertex with
volume 1/2* and

@ ({0 ooy x)ImMyf2% = x, < (my+D/2%, L, m, 28 = x, < (m,+1)[2Y)

is an interval of length 1/2*" plus a nowhere dense set with zero Lebesgue (and
hence Jordan) measure. It follows that @(4)€J" for every A€J' and @~ }(A4)eJ?
for every AcJ", furthermore, ¢ is a measure preserving transformation (cf. also
[2, pp. 81—83]). Let x* be an element of @~'(x) and let x}=(x))* ie. xj€o™I(x).
We claim that X*={x}};, has density in every Jordan measurable set of R’.

Let AeJ. If xj€A then xj€@(4). Conversely, if xj€@(4) but xj¢A4 then
xj€@~Y@(A))\A=: B. By what we have said above B has Jordan measure 0 and
hence ¢ (B) also has Jordan measure 0. But then every B’S ¢ (B) is Jordan meas-
urable and X’ has density y,(B’) in every such B’, furthermore, X’ has density 0
in every point which imply, by an argument similar to that used in the proof of
Lemma 2, that X” has density 0 in ¢ (B). By this X* has density 0 in ¢~ (¢ (B))=2B
and we obtain that for all j but a sequence j, with j,/n—<- the conditions x7€A
and x;€¢(4) are equivalent, which proves our assertion.

It follows also that X* has density p*(4):=p(¢(4)) in a set A€J'. Since
m({p(x)})=0 for every x, the consideration of Lemma 2 yields that the function

a(x) = p*((— o, x]) = (@ (— =, x]) = {the density of X* in (- e, x]}
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is absolutely continuous and increasing, furthermore a(— «)=0, a(e)=1. If

g(x) =o' (x*) (x€R")
mA)=po7 ()= [ o= [g (4e9

@-1(4)

then

because ¢ is measure preserving, and the proof is complete.
II. Sufficiency. Let p have the form (5.1). We put

If=Z wf@+(1-3m) [fe

for every_Riemann-integrable function f. Either by the method of Section 3 or by
using the above transformation ¢ and applying Theorem 3 one can prove that
there is a sequence X={x,}SR" with

Lf = Jim (n)(f(e) + .. +£(x,)

and an application of this to the characteristic function y, of A yields the desired
representation. .
We have completed our proof.
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