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Representation of functional via summability methods. II 

V. TOTIK 

Dedicated to Professor L. Leindler on his 50th birthday 

1. Introduction 

This article is a direct continuation of the paper [4]. There we showed that if 
K is a metrizable compact space and C(K) is the sup-normed Banach-space of all 
real valued continuous functions on K, then to every L£C*(K) there are sequences 
{c*}€/~ and {xk}QK such that for every f£C(K) 
(1.1) Lf= lim ( l /«)(c l / (* 1 ) + ... +cnf(xn)) n-* OO . 

holds. We proved also that every positive linear functional L with norm 1 (shortly 
PLl functional) has the form 

(1.2) Lf= lim (1/«)(/(*!)+ . . .+/(*„)) 
n-* oo 

with a suitable sequence {.*,,} 
Extensions to subadditive functionals by replacing lim with limsup were also 

treated. Using the language of [4] we call a functional on a certain space which 
has the form (1.1) or (1.2) a weighted (C, l)-functional or a (C, l)-functional, 
respectively. 

Here, in Section 2, we show that these results can be extended to Q[0,1], 
the space of functions having discontinuities only of the first kind, and that Q[0,1] 
is maximal, in a certain sense, among spaces having this representability property. 
In Section 3 we determine those functionals of jR[0, 1], the space of Riemann-
integrable functions, which have the form (1.1) and Section 5 contains an applica-
tion of this result to density measures: we give all finitely additive measures which 
can be obtaiined as the density of a certain sequence in R". Finally, in Section 4 we 
solve the problem: by which summability methods can we replace the arithmetical 
mean method (i.e. the (C, l)-method) in (1.1) and (1.2)? 

Received December 1, 1982. 



236 V. Tot ik 

2. The space Q [0, 1] 

Let Q[0,1] be the sup-normed real Banach space of bounded functions defined 
on [0, 1] having discontinuities only of the first kind, i.e. f€Q[0, 1] if and only if 

/ ( x + 0 ) = lim /OO, / ( * - 0 ) = lim f ( y ) , 
y—jc+0 y—x—O 

/ ( 1 + 0 ) = /(1), / ( 0 - 0 ) = / ( 0 ) 

exist at every point 1]. It is an easy task to prove that Q[0, 1] is exactly the 
uniform closure of the set of step functions. KALTENBORN [1] determined the dual 
space <2*[0,1] by the aid of a certain generalized Stieltjes-integral. 

Now we shall show that on Q[0, 1] every PL\ functional is a (C, l)-functional 
and that there is no larger "natural" space with this property. 

T h e o r e m 1. On Q[0,1] every PL\ functional L has the form (1.2) with a 
suitable sequence {xt}. 

This yields at once 

C o r o l l a r y 1. Every L£Q*[ 0,1] has the form (1.1). 

Note that Q[0, 1] is far from being separable. 
Now let B be a sup-normed space of bounded functions defined on [0, 1] which 

is closed under substitution of continuously differentiable homeomorphisms of [0,1], 
i.e. if (p: [0, 1]—[0,1] is a strictly increasing continuously differentiable function 
with <p(0)=0, <p(l) = l a n d / € 5 then focp£B. Such spaces are C[0, 1]; Q[0, 1]; 
/?[0,1] — the set of all Riemann-integrable functions; the space of left continuous 
functions, etc. We shall show that Q[0,1] is maximal among such spaces having 
the (C, l)-representability property. 

T h e o r e m 2. Let B be as above. If QcB then for some A'QC[0, 1] no extension 
of the functional 

L X J = ( / (*„ -0 )+ / (*„+0) ) /2 ( / € 0 0 , 1 ] ) 

to B is a weighted (C, 1)-functional. 
P r o o f of T h e o r e m 1. Let L£Q*[0, 1] be a .PL 1 functional and set 

= {x\LX{x)>0}, ... 

= {* I eHm o Lx(XiX+e) r:- 0}, H3 = {x | £ limo LyÁX_£>> 0}. 

(XA denotes the characteristic function of the set A.) Since L is bounded, these sets 
are countable say, / / ^ M " } , H2 = {y^}, / / 3 = and if 

*iJ) = £*{,<»>> = + 43) = -lim ¿ ^ » » - . . ^ » i , , 
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then for the numbers 

= = ft," = Z43) 
k k k 

we have = 1. An easy consideration shows that for 

A / = (1/^) Z tPfiyP), Lif = (1//^) z 42)f(y'k2)+0), 
k k 

L,f = ( 1 / f t ) 2 *Pf(Aa) - 0) (/e<2[0,1]) 
ft 

the functional L*=L—fi1L1—n2L2—fi3L3 is a positive functional with norm 
def 1 T • 

Lj=(iinjL*f (/EETO.II). 

By our construction 
¿4 X{X) = lim ¿4 & I±t> x) = 0 (x€ [0, 1 ]), 

therefore the function 
(2.1) a(x) = L4Z[o,x] 

is a continuous and increasing function. Exactly as in the proof of [4, Corollary 3] 
it can be proved that if 1] is an arbitrary dense sequence then there exists 
a sequence { x j such that with the notation 

'„•({*! I f ) = (l/«)(/(xx) + ... +/(x„)) 
we have 

a(z*)= lim o-„({Xi}, /[0, zti) 

for every k. By the monotonicity and continuity of a, 

(2-2) a(x) = lim <r„({x,}, to,,]) 
tl-+ 00 

also holds for every x£[0,1], and since the set of step functions is dense in Q[0,1] 
we can conclude by (2.1) and (2.2) that 

. Lnf= lim ex„({x,},/) 
7 1 0 0 

for every /€Q[0,1] , i.e. Li is a (C, l)-functional. 
Since it is easy to verify that L^, L2 and L3 are also (C, l)-functionals and since 

L=n1L1+...+niLi, ^ + . . . + / ¿ 4 = 1 , the theorem follows by a familiar argument 
(cf. [4]). 

Also, the proof of Corollary 1 is standard (cf. [4]). 

P r o o f of T h e o r e m 2. If Q c B then there exists a function / which does 
not have e.g. right hand limit at a certain point x0 . Let L be any extension of Lx 
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to B, and let us suppose on the contrary that L is represented in the sense of (1.1) by 
the sequences {cft}, {xt}. The idea is to construct a function in B by the aid o f / for 
which the limit in (1.1) does not exist. 

We shall only sketch the proof. By linearity we may suppose that there are 
sequences 1 = u 1 > s ] > i i 2 > i ) 2 > . . . > x 0 converging to x0 with 

lim f(uk) = 1, lim f(vk) = 0. 

fc — CO t — CO 

For the sake of convenience we shall use the notation 

ff.(g) = 0 /» ) (c ig (*0 + - + c . g ( * « ) ) . 
in the rest of the proof. 

Since for every e > 0 (e<1 —x0) we have Zx(Jo,Xo+E) = 1/2, LX(*0+ t,ij=0, the 
sequences {«,}, {Sj}, { x ^ ^ L i , { ^ ^ ¿ I and —0 can be determined successively 
according to the requirements: 

0 - n i ( Z ( x „ , l ) ) = l / 2 + > h , M < 1 / 2 , El = ^ . n ( x k - x 0 ) , 
xk=~x0 

{x««)^! = {xk\ 1 is fc =5 Xk > x0}, 

and let c-^ (1 = /=fci) be the corresponding constants (i.e. if then let 

M*o,e{>) = l/2 + f/2, \ri21 < 1/4, e2 = ^ m (xk-x0), 

{*№i =•{** 11 = fe s n2, x0 < xk < Xo+ei} 

and {cf)}-?=1 the set of the corresponding constants, and so on. We may assume as 
well that ( fc i+ . . .+ fc ; ) /w i + i -0 as 

Now let 

cp^q,,: U K ) r = 1 U K } r = i 

y=i 

be 1 — 1, monotonically increasing mappings with the properties: 

«p1(42j'-1)) = <P2(xi^)e{uk}r=l, irsi^ k2j_u = i 

(<p t (xP) -*o) /W ; ) - * o ) = 0(1) (T = 1 , 2 ) 

as y->-<=° uniformly in l S / S f c ^ . q>x and <pa can be extended to continuously dif-
ferentiable homeomorphisms of [0,1] with (p[ (x0) = <p'2(x0) and <p1(x)=<p2(x) for 
x€[0,x0] . 
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The construction gives 

= o(\)+\ln2j + 1
k'z c?J + D ( / ( ^ ( X <ZJ+»)) - f (cp 2 (x?J+D)) ) = o(l) + 0 = o(l) 
¡=1 

and 

V <W/°<Pl - / °<P 2 ) =
 O ( 1 ) + ( 1 + o ( 1 ) ) (T„2J ( Z ( x 0 , * 0 + c , , _ , ) ( / ° </> I ~ 0 ) ~ 

- ( 1 +o(l))ff„2J(X(x0,x0+e!!J.1)/o^2)+(l + 0 ( 1 ) ) ^ (*(*„,x.+e,,.,)) -

= o ( l ) + o ( l ) + o ( l ) + ( l + o ( l ) ) ( l / 2 + o ( i ) ) , 

i.e. either for /o<p t^B or for f o c p ^ B the limit on the right of (1.1) does not exist, 
which contradicts our assumption concerning the sequences {ct}, 

3. The space 1] 

Let 1] denote the space of Riemann-integrable bounded functions defined 
on [0, 1]. We equip M[0,1] with the sup norm. By Theorem 2 0,1] has bounded 
linear functionals which are not weighted (C, l)-functionals. In the present section 
we characterize the (weighted) (C, l)-functionals of .52 [0, 1]. An application to 
density measures will be given in the last section. 

T h e o r e m 3. A functional L£&*[0, l] is a weighted (C, 1)-functional (i.e. it has 
form (l . l)J if and only if L is of the form 

Lf= Jf(t)g(t)dt (/¡E«[ 0,1]), 

where T , € [ 0 , 1 ] ( 1 s i ) , 2 and g€Ll[0,1]. 
¡=1 

C o r o l l a r y 2. A PLl functional 0, 1] is a (C, 1)-functional (i.e. it has 
form (1.2)) if and only if there are T , € [ 0 ' 1 ] , ^ ¡ ¿ 0 ( 1 ^ 0 » ^[0,I],£S0 suchthat 

f g(t)dt = 1, ¿ ^ s 1, 
J /=1 

and for every 0,1] , ' 

Lf= 2 Mjih) + (1 - J ri f f(t)g(t) dt. 
;=1 '•=! 0 
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P r o o f . First we prove the necessity part of Theorem 3. Let us call a point 
jc£[0, 1] a singular point of L if Lx^^O, and a functional having the form 

« = 1 

will be called a discrete functional. First we show 

L e m m a 1. For every 0 ,1] the set of singular points is countable and 
L=L1 + L2 where Ly is a discrete functional and L* is without singular points. 

P r o o f . Since for arbitrary points xu ...,xB we have 

\2±Lx{Xi)\ = \LZ±xU^l LW> 1 = 1 1=1 

there are at most countably many singular points of L. Let they be TL5 T2, ... . 
oo 

The previous inequality shows that the numbers p i=L { T ) satisfy 2 \l*t\ — 

=S||L||. Now 

£ i / = j ? №/(*() and L z ^ L - L l 
• = I 

clearly satisfy the requirements of the lemma. 
We need also another lemma. 

L e m m a 2. If 0 ,1] is a weighted (C, 1)-functional without singular points 
then the function a (x)=Lx [ 0 , x ] (x6[0,1]) is absolutely continuous. 

P r o o f . If 0 = w 0 < w 1 < . . . < H > n = l are arbitrary points then for certain signs 
4-, — we have 

"2 |a(wi+i)-a(w () | = L(±X[wo,w0+"2 ±X(Wi,Wi + j =S ||L||, 
¡=0 ¡=1 

i.e. a is of bounded variation. We show first that a is continuous. 
Let us suppose on the contrary that a is not continuous at the point x. Then 

either a ( x + 0 ) ^ a ( x ) or <x(x—0)^a(x), let us consider e.g. the former case. If e.g. 
a ( x + 0 ) > a ( x ) then there are constants 6=>0, ¿ > 0 such that for x c y c x + i 
we have u(y)—tx(x)>e. Since I- is a weighted (C, l)-functional, there are sequences 
{c,}, { x j such that 

(3.1) lim < r n ( / ) = l i m (I/n)(c, fiXi) + . . . + c„ f{xn)) =• Lf 
oo n-* oo v ' 

holds for every 0,1] . 
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Let x - ^ y ^ x + d be arbitrary. By our assumptions there is an nx such that 
ff» (X(X,)> ])=-«• Let z l 5 ..., zki be those x f 's for which x ^ ( x , (For 
the sake of easier printing, in subscripts we shall write {z;; v, /1} for {zj}f=v.) Then 
we have also <Tn (X{Z(.lifci))>6. L is without singular points, therefore there exists 
an Nx with 

0n(z{z(;i,fcl}) < e/4 for n ^ 
After this let x<y2<x-\-S/2 be such that 

v2—x < min (jc£—JC) 
1 simN, 

x(>-x 

is satisfied. Again there is an n2 with 

< T n 2 ( Z ( x , y 2 ] ) > £ 

and if z k [ + 1 , ..., zfcj are the x/s for which x£(x, y2], l=i^n2 then there is an 
N2 such that for n^N2 we have 

Repeating this argument we obtain a sequence {zJJ l j converging to x and sequences 
№ = 1 , {Nj)7=1 such that 

o-n/x<ri:i,~)) = ^nj(x{zr,kj.1+i,kj})+<r„J(x{Zi;i,kj-l}) = s - e / 4 = 3e/4 
while 

CJVJG^;!,-}) = «ty (/{*,;!,*,>) < e/4 
i.e. 

l i m ffnfez,,!,»)) 

does not exist, which is a contradiction since /{ Z j . l oo} is Riemann-integrable. 
The absolute continuity of a(x) will be proved by a similar argument. Let a 

be the signed Borel measure associated with ot(x) (cf. [3, p. 173]), in the sense 

oc([0, x]) = <x(x), 

and let a + , a - and | a | = a + + a ~ be the positive and negative parts and the total 
variation of a, respectively (cf. [3, pp. 134, 125]). We have to prove that a is absolu-
tely continuous with, respect to the Lebesgue measure. Suppose not. Then either 
a + or or is not absolutely continuous, let us consider e.g. the first case. Since a + 

and a - have disjoint (not necessarily compact) supports and the singular part of 
a + does not vanish, the regularity of a + and a - yields a closed set /70Q[0, 1] with 
Lebesgue measure zero and constants e, <5„, <5l5 ... > 0 , ¿„—0, such that 

a + ( / f 0 ) > £ , a~(H$>>) < s/4a+1 (w = 0, 1, ...) 

are satisfied where 
/ /¿ = {x |dis t ( jc , / / 0 ) <<5}. 

16 
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Let t}Q=60. We have e/4 and since H p is the union of finitely many 
intervals we obtain together with this also that 

Lxuno > e - e / 4 , o 
by which 

an0(/.Hno) > e - E / 4 

for some m0. Let z l 5 . . . ,z t o be those x / s for which 1 and x ^ H p are 
satisfied. Since L has no singular point, there exists N0 such that for every N^N0 

we have 
.-,;!,*„}) < e/8. 

Since a is continuous we have |a|({x})=0 for every x and the regularity of the 
measure |a| yields that we can choose disjoint closed intervals Ux, ..., UN around 

N0
 0 

the points X i , . . . , x N in such a way that | a | ( (J {/¡)<e/16 is satisfied. Let 
0 >=i 

JC,€ U- Q U, be open intervals without common endpoints with Ut and 

= H0/(U Ul). 
i = l 

If »7i>0 is less than and less than the distances between the endpoints of the 
Vf's and f/j 's and also less than the distances of the endpoints of U,"s from x, 's 
then we have 

i HSV\_HNn(U i HSVU VI, 
1=1 J=1 

a +(H!0 S a +(H№ - a + ( U £/.-) = e - e / 1 6 > a '(HI1) S a ~ ( / / ? ' ) e/16, 
•=i 

and hence 
ol(H^) = LIHnL > e - e / 8 . 

There exists an n ^ N „ with 
(/.flni) > e - e / 8 , 

and if zk<)+1, ..., z^ are the points .vf for which 1 then we have 
z&H0, z ^ z j for 

^(/{z,;!,*,}) = (^(.-^ko+l.fe!}) +CT", (*{=,; 1, *„}) ^ 6 - f i / 8 - e / 8 
and 

(*(.-,;!,*,)) < e/8 for n W, 

for some If C/j*, ..., C/^ are disjoint closed intervals around Jtl5 . . . ,x N i with 

M(.U U 3 2 and x£U;%U*, U" open, / r 2 = / 7 , \ ( U C7//) then exactly as 



Representation of functional 243 

above we obtain for small j / 2 >0, 

ol(H¥) = Lxhv2 > £ - e/8 - e/16. 

Repeating this argument we obtain sequences {z(},~ 15 

such that HJ+1QHj closed, z&Hj for z ^ z j for zVy, the 
oo 

sequence {z,} may have limit points only in H = Q H j and 
j - 1 

<Tnj(X{i,} l,oo}) = <rnj(X{:r,kj-l + l,kj})-0nj(X{zl;l,kj-1)) = 

a (e —e/8—e/16 —...)—e/8 ^ e/2 
but 
(3.3) = ^/Zfz.a.k,}) < e/8. 
Since 

X{z , ; l ,<»} = X f f U { z , ; l , ~ } — XH 

and H, HU {zi}i"l1 are closed and have Lebesgue measure zero, we obtain that 
X{zt-,i, oo} is Riemann-integrable and (3.2)—(3.3) contradict our assumption concerning 
the convergence of {<7„(g)} for every g€&[0,1]. This contradiction proves Lemma 2. 

Let us return to the proof of Theorem 3. By Lemma 1 L = L 1 + L 2 where Lj 
is discrete and L2 has no singular point. An easy argument gives that every discrete 
functional is a weighted (C, l)-functional, so if L is assumed to be weighted (C, 1)-
functional then L2 is also a weighted (C, l)-functional. By Lemma 2 the function 
a(x)=L2X[o,x] is absolutely continuous, let g(x)=a'(x) (a.e.). Then g£Lx[0, 1] and 

X 

L2Z[O,X] = « M = f g (0 dt 
0. 

by which 
1 

(3.4) LJi = f hg 

0 

for every step-function h. Let 0, 1] be arbitrary, and let 

L%h — L2(hf) ( f t€«[0, 1]). 
It is obvious that L%£(%*[Q, 1] and together with L2, L% is a weighted (C, l)-func-
tional without singular points. By Lemma 2 the function 

a*(x) = Ltx to,*] = LsifXi o.xi) 

is absolutely continuous and hence to every £ > 0 there exists a ¿ > 0 such that 
if H is disjoint union of finitely many intervals and m denotes the Lebesgue 
measure, then m ( H ) < 5 implies 

(3-5) | L 2 ( f X u ) \ < £. 

16* 
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We may assume that 

(3.6) 1 ^ 2 / n H e , /1*1 ^ 
H 

are also satisfied. S i n c e / i s Riemann-integrable there are step-functions q> and <P 
such that 

i 
\q>\, =5 sup |/ | , ' / ( < * > - ( ? ) < e<5. 

o 
Thus, if 

H= (x |$ (x ) -<p(x) > £ } 

then m(H)<8. Let H be the disjoint union of the closed, half-closed or open inter-
vals {«!, Vj), ..., [u„, and let {w;, v j . We may assume that <p is constant on 
each interval {m(, v,}. By (3.4)—(3.6) 

i 
|L2f- f fg\ s |L2((/- <p) Z[0>u\h)| +1L2(fXlI)\ + 

o 

+ \29M(a(vd-oi(ui))\ + \L2<p-f\g\ + \\ / (/"-<p)g| + | / (f-<p)g\ 3= 
.. 1 = 1 0 10,1]\H H 

S £ | | L 2 | | + e + sup|<p| i | a ( ^ ) - a ( « I - ) | + 0 + £ ' | | g | | l , + 2 s u p | / | f \g\ ^ 
•=I H 

s £(||L2 | |+ ||g|L. + i) + 26 sup 1/1+ 2e sup | / | 3= KB 

with a K independent of e, by which the equality 
i 

¿2 / = ./ fg ( / € ^ [ 0 , 1]) 
0 

is verified, and the necessity of our condition is proved. 
The necessity of the condition in Corollary 2 follows easily from the above 

consideration, all what we have to mention is that, by the positivity of L and by 

||L|| = 1, we have //¡ = 0, 2 ft — ' ' and in the case 2 ft ^ ' the derivative of 
i = l i = l 

K(X) = L2X[O,X] is positive because L2 is also a positive functional (notice that for 
every n and / S O 

L f ^ L { Z /(t ;)*«,>) = 1 tt/(Tf)). i=l i=l 

After these let us turn to the sufficiency part of our proof. Obviously it is suffi-
cient to prove this for Corollary 2, and since a functional of the form 

¿ / = 1 A',•/(*,•). ft s o, 2 f t = 1 
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is easily seen to be a (C, 1 ̂ functional our task has reduced to the verification of the 
following: if 

• i 
Lf= f f g , ( / €^ [0 ,1 ] ) 

o 

I 

where g^L^O, 1], g^O and jg{t)dt= 1 then L is a (C, ^-functional. 
o 

Exactly as in the proof of [4, Corollary 3] one can give a sequence { x j such that 

lim M M , *[o,z,.]) = f g(0 dt (*„({**},fg) = (1 In) 2 g(xk)) » - " J k=1 
is satisfied for a sequence {zj} dense in [0, 1]. By monotonicity and by the con-

z 

tinuity of / g(t)dt we obtain the same relation for every z£[0,1] and hence 
0 i 

l im <T({XJ, h)= f hg 
o 

for every step function h. If f£i%[0,1], e>0 , are arbitrary then there are step 
functions (p, with the properties: 

<p s / s <*>, \<p\, |0 | si sup | / | , 

m(H)<s, where H— {x|<P(x)—<p(x)^e} (see above) and these yield 
I 

Lcp = f <pg= lim ff„ ({**}, <p) S liminf an({xk),f) s 
n-+ OC nOO 0 1 

s lim sup an ({**},/) == lim <ra({xk}, <P) = f <Pg = L<P, 
rt-t-oo n-+ oo •/ 0 

1 1 
L<p ^ L f ^ L0-L<p = f (,<P-<p)g ^ £ f g+ 2sup \f\ f |g|. 

0 O H 

Since here the right hand side can be made arbitrary small by appropriate choice of 
s, these formulas prove the convergence 

lim <rn({xk},f) = Lf fl 

for every / € ^ [ 0 , 1] and the theorem is proved. 
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4. Other summability methods 

In this section we characterize those matrix summability methods which can 
be substituted in [4, Corollary 3] for the (C, l)-method. 

Let thus T—(tn k)^k=1 be an infinite matrix. We say that T sums the sequence 
{i t} to the limit 7-lim sk if 

r-lim sk = lim 2 'nkSk 

holds. If for every convergent {¿fc} we have i 

T-lim s, — lim sk. k I 

then T is said to be regular. By the well known Toeplitz theorem T is regular if 
and only if 

(i) lim tnk=0 for every A:, 

(ii) ¿ | f j = 0 ( l ) , k = 1 

(Hi) lim 2 t n k = l 

hold. 
By analogy to (C, l)-functionals let us call a functional L£C[0, 1] a T-func-

tional if there exists a sequence {xjjr=i = [0> 1] such that 

Lf = T-lim f(xk) 
k 

holds for every /£C[0,1] . In order to avoid unnecessary technical difficulties we 
assume T to be non-negative. Our matrices T=(tnk) will have the property that 

5 (T) := lim 2 n -~*=i 

exists. We say that T is decomposed into the matrices Tlt ..., Tn, ... (in abbrevia-
tion T—(J T„) if the columns of each T„ are columns of T, they follow each other 

it 
in T„ in the same order as in T, and each column of T belongs to exactly one of 
the matrices T„. Now let us call T.completely regular if T can be decomposed into 
the matrices 7 \ , T2 such that S(T1)=S(T2)=S(T)/2 is satisfied, furthermore Ty 

and T2 can be decomposed into Tllt T12 and T21, T2a, respectively such that i S ( r u ) = 
=...=S(T22)=S(T)/4 is satisfied, TU,...,T22 can further be decomposed into 
T m , . . . and so on. E.g. the complete regularity of the (C, 1) matrix is a trivial fact. 

We shall prove 
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T h e o r e m 4. Let T be a non-negative matrix. The following assertions are equiv-
alent: 

(i) every PLl functional on C[0,1] is a T-functional, 
(ii) there exists a sequence {xfc}Q[0,1] such that 

T-limf(xk)= f f ( t ) d t 
" o 

for every f£C[0,1], 
(iii) T is regular and completely regular. 

C o r o l l a r y 3. Any of (i)—(iii) implies that to every L£C*[0,1] there are 
bounded sequences {ck}™=1 and 1] such that 

(4.1) T-\imckf(xk)=Lf 
k 

holds for every f£C[ 0,1]. 

R e m a r k s 1. In (ii) the functional / — J f can be exchanged for every func-
tional f - * j f dp. with continuous p., but it cannot be exchanged for one with dis-
continuous p. 

2. In Theorem 4 we characterized the matrices by which every PLl functional 
can be represented rather than those by which every L€C*[0,1] can be represented 
in the form (4.1). Clearly, if (4.1) holds and if we multiply the columns of T by 
certain numbers and at the same time we divide the ck s by the same numbers then 
the T' and {c'k} obtained still satisfy (4.1); therefore the characterization of the T's 
with the (4.1) representability property is rather hopeless. 

P r o o f . (i)=>(ii) is obvious. First we show that (iii) implies (i). To this.end we 
need the following definition and lemma. For x€[0,1] and £ > 0 let 

( 0 if | i - x | > e 
f ^ = U-lt-x\/e if 

We say that x is a singular point of the PLl functional L if 

Hx = l iminf£/ A j C = Hm Lf > 0. £-»0+0 E — 0+0 

(Note that this notion differs from that used in the proof of Theorem 3). 
A functional L having the form Lf=£ p¡f(T¡), I'¡=1, ' = 0 , will be called 
discrete. 

L e m m a 3. Let L£C*[0,1] be a PLl functional. 
(a) The set of the singular points of L is countable and 2 Px — 

X 

(P) L=pL1+(l—p)L2 where 1, Ll and L2 are PLl functional, L^ is 
discrete and L2 does not have singular points. 
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(y) If the PLl functional L has no singular point then to every t] > 0 there 
exists an e > 0 such that Lfx ^t] for every 1]. 

P r o o f . If t i , ..., Tk€[0,1] are distinct points and e l5 ..., ek. are so small that 

2 /„.„ ^ 1 
1 = 1 

is satisfied then 

OS iz/I (>I i S I 
i = 1 

which proves (a). 
Let r l 5 r2 , ... be the singular points of L and let 

¿1 / = (i/*0 2 ^ r n , n = 2 ^ (/€ C[o, 1]). ¡=1 ¡=1 

I f / i < l then L 2 =( l / (1 — fi))(L—¡iL^) is without singular points. For every / ^ 0 , 
¿ > 0 and fcs 1 there are e l5 ..., £ t > 0 with 

¡=i 
by which 

L f ^ ( 1 - 5 ) ¿ / ( t , . )L / t „ £ , M l ¿ / ( t i ) ^ , . 
¡=i ¡=i 

Since here ¿ > 0 and k^ 1 are arbitrary we can deduce that L2 is again a PLl 
functional which proves (/J). 

Finally, if (y) were not true then there would be an t j^O and a sequence 
xt, ..., x„,... with Lf x ^ 1 / n ^r] . If x is a cluster point of {*„} then to every e > 0 there 
would be an n with (1/2)/Xn>i/„S/x>£ by which Lfx^(l/2)t] (e>0) contradicting 
the assumption that L does not have any singular point. 

Now in the proof of (iii)=>(i) we prove first that every PLl functional L with-
out singular points is a T-functional. An easy argument gives that T can be con-
verted into a triangle-matrix T*=(t*J (i.e. t*k=0 for k>ri) which is also regular 
and completely regular and the limits J-lim sk and T*-\im sk exist at the same 
time and they are equal for every bounded sequence { s j (first make T to be row-
finite and then repeat the rows of T sufficiently many times). Thus, from the point of 
view of our problem T and T* are equivalent, so we may assume without loss of 
generality T to be a triangle-matrix. 

Also one can show easily that the complete regularity of T implies the following: 
if O S s S 1 then T can be decomposed into T1 and Ta so that S(T^=s, 1 -s 
are satisfied, furthermore, to every and 1 —5 the obtained Tx and 
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r 2 can be decomposed into Tn, r 1 2 , T21 and T22 so that S(T11)=r1, S(T12)=s— 
S(T21)=r2, s(T22)=(l ~s)~r2 a r e satisfied, etc. We shall call such decompositions 
completely regular. 

Let us consider the functions 

gim)(*) = 
1 if k \ 2 m ^ x ^ \ , 
0 if Ors x S(k-l)l2m, m= 1,2, . . . , 
linear on [(k- l)/2m, fe/2m], 

gi->(*)= 1. 
2M 

Let q ^ ^ L g ™ and ¿ M " 0 ( 0 S k ^ 2 m , 1, 2, ...). By positivity we have 
2»» 

/><m)s0 and ¿ > i m ) = l.. 
Jt = 0 

Let T0
(1) U r ' 1 ' U be a completely regular decomposition of T such that 

s m = p p , s(n»)=pii\ sm=P?> 

are satisfied, and let 

,(1,0) = 

1 if « e i n d y ^ , 
1/2 if «f ind 7\(1), 
0 if /jeindr0

(1> 

where ind T' denotes the set of those natural numbers j for which the /-th column 
of T belongs to 7". It is clear, that there exists a number N(1-0) such that for 0) 

we have 
№*?•*>}, g h - L g W d P 0 = 0, 1,2), 

where the notation 
s 

'*({**}> g ) := 2hkg(xk) k — 1 
is used. 

For a given m and 0 ^ k ^ 2 m let us consider the functions 

(A')\ otrn+l) /,(171 +1) „(m+1) „(m) „(m) „(m) V*-*) go ' gl ' •••' 62k > gk + li ofc + 2? •••» g2m • 

In the following (p will denote any of these functions. Let p2k
m+1) be defined by 

<4m + 1) = 4l\+Ptim+1) if 2/c < 2m + 1 and ptftt1* = p%tl\ 

We suppose that for the pair (m, &) we have already defined the completely regular 
decomposition of T into the matrices 

J(m +1) rr(m + l) T(m + 1) -¡n*(m + l) Trim) T("0 
0 ' > •••> 2it—1 > •'2k ; -"fc + l , •••J /2m , 
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the sequence {.x£m't)}~=0 and the number N(-m,k) so that 

5(7o(m+1)) = pt+1), 5(r4"_V>) - pfcJi», S(7l<m+1>) = pUm+1\ 

» = S(T£>) = pg>, 

for n > Nlm,K) we have 

y(m,k) -An — 

and for s s N(m'k^ 

i/2m+1 if /j£ind7}(m+1) (i = 0, 2k-l), 
2fe/2m+1 if n6indr2V"+ 1 ) , 
ijlm if «eind r / m ) (i = k+\, ..., 2), 

WW"'«}, <P)-L<p\ < 1/2"* 

are satisfied for every <p from (4.2). We want to go over to the pair (m, fc+l) (if 
k=2 m then to the pair (m+1,0) ; this case can be treated similarly as the fol-
lowing one). 

The regularity of T implies that if we cancel those columns of the matrices 
T2*(m+1), which belong to the first N(m-k) columns of T then the obtained matrices 
W2*(m+1\ Wk

(™l are still completely regular. Let us unite W£im+1) and W£m) into 
the matrix Vk

(m) (the columns in Vk
(m) follow each other in the same order as in T), 

and then decompose Vk
(m) into the completely regular matrices T ^ + t ^ 

so that 

= ptf+v, S(T<!T+\») = pfrtfK S(T&?s+1)) -

be satisfied. This is possible because 

pttt^+^rMptiS? +/4m+1) = ?i?+,) = Ptim+1)+Pil\ + qim
+\-

Now we set 
2k/2m+1 if wgind T£k'+1), 
(2/c + l)/2m+1 if /z£ind 
(2k+2)/2m+1 if n e i n d r ^ Y 1 » , 
xim,k) otherwise. 

v(m,k +1) — 

It follows easily that for 0 ^ r ^ 2 k + 2 

2m 2k+l 
lim /S({4"-H 1 )}, gim + 1 )) = 2 S(T}^) + S{Tik<^)+ 2 S(T/-+«) = 

j=k+2 }=r 
2m 2Jt+l = 2 P^+Pttt^+2 />J"+I) ^ <7r(m+1) = Lg<"+1> 

J=k +2 j —T 
and similarly for k + 2 s r s 2m 
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Therefore, there exists a constant N<m-k+1)>N(m-k) such that for s^N(m'k+1) 

we have 
- 1 / 2 " 

where i¡f denotes any of the functions 

g<m+1>, O s f g 2k+2, g<m>, 

(If we adjoin the omitted columns to T^+it^ w e obtain again a completely regular 
decomposition of T and the prescribed properties hold for the pair (m, k+1).) 
Thus, for all in and we can define the sequences which have 
also the property that for and for m'>m or m'=m and k'>k, 
x(m.k) c o i n c i d e s w i t h x(

n
m':k'\ i.e. Hence the limit 

x„ = lim x<m-k) 

exists for every n and x„€[0, 1]. We show that 

T-\imgimHxn) = Lgjr> 
n 

for every m and k which already implies 

J-lim / (x„) = Lf n 

for every / € C [ 0 , 1 ] because the linear combinations of the g£m)'s constitute a dense 
set in C[0,1]. 

Let 

j^m.k) _ | 7 j e i n d j.*(m +1)? N(m,k) -g „ ^ ^(m.k + 1)^ 

jgn.k) = | „ € i n d Nim,k) -g n ^ ^(m.fc + l)^ and 

K(m,k) = m y t 

K<m,k) ^ m a x 2 h i -

We claim that K[m'k)-Q, K¡m-k)-*0 as N(m<k)^<~. Suppose not, e.g. 
S s > 0 for infinitely many pairs (m, k). For each such (m, k) we have by our 
construction 

\<s({xím-k)}, gti+1))~tA{4m-k)h g f t 

which together with the estimates 
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yield for infinitely many (m, k) 

\Lg№ > e —2/2m, 

but this contradicts Lemma 3 (y) (L is assumed to have no singular point). 
Now if | / | S 1 is arbitrary then for N^v <s^N*-m'k+1) 

\ts({xn},f)-ts({xim-k>},f)\ ^ 2(Kim^+Kt-k)) 

and so, according to what we have just proved, to every there exists an N 
such that if JSiV then 

l's({*n}> <p)~L<p\ < e 

for an arbitrary function <p from (4.2) with (m, k) satisfying Nim-k)<s^Nim'k+1). 
But for m ^ m every one of the g£m,)'s is a convex linear combination of such <p's 
by which 

lim ',(({*„}, gim)) = ¿ g r ) 
S-»oo 

for every m and 0 s f c s 2 m , and the proof is complete. 
Now let L be discrete: 

z r = 2 t o f ( ? d > ft s o , 2 P i = 1. 
i i 

By assumption we have matrices Tt with T = | J 7 ,
i , 5 ( 7 ^ ) = ^ , hence putting 

i 
x„=ti if «6ind T, we obtain 

Lf = T-\imf(xn). n 

Finally, if jL=/iX!+(l — h)L2, where Lx is discrete and L2 is with-
out singular points then there are completely regular matrices Tu Tt such that 
T=T1\JT2, S(T1)=n, S(T2)= 1 —¡i. Above we proved that there are sequences 
{*«} and { x f } with 

((\lLi)T,)-\\mf(x^) = L,f, ((1/(1 -AI) J 2 ) - l im/(xf>) = L 2 f , 

and hence putting 

x„ = rfP if the n-th column of T is the A>th column of j = I or 2, 

we obtain 

T-lim /(*„) = Ti-lim / « ) + 7-2-lim f(x?>) - piLlf+( \ -¿)LJ=Lf 
n k k 

and the proof of the implication (iii)=>-(i) is complete. 
Finally we prove that (ii) implies (iii). Let 

. f f - 7-lirn /(.v„) 
' / " 
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for all /<GC[0,1]. P u t t i n g / = 1 we obtain 

lim y , t n k = J - l i m l = / 1 = 1. 
*=i g 

Thus, T is regular if lim tnk=0 is also satisfied for every n, but this obviously 
EO 

follows from the complete regularity of T which we show in a moment. 
If / £ [ 0 , 1 ] is an interval let | / | denote its length, and let the matrix TI be 

determined by 
ind 77 = {« | *„£/}. 

We claim that S ( T 7 ) = | / | which already implies the complete regularity of T. For 
any functions / i , / 2 € C [ 0 , 1] satisfying O S / u / j ^ l , fl(x)=0 for f2(x)= 1 for 
x £ l we have, if /„ denotes the sum of the elements of T, in the n-th row, 

1 1 
f / , =s lim inf ln lim sup /„ f f2 

0 0 

and since to every e > 0 there are f unc t i ons^ and f2 of the above kind satisfying 

—e— f f i — \I\ — f fz — \I\+E 

0 0 
we have indeed 

S(TJ) = lim /„ = | / | . 
Tl-*oo 

The proof is complete. 
Corollary 3 can be proved easily using Theorem 4. 

5. Density measures 

Let X= {xfc}r=i b e a sequence from the n dimensional Euclidean space. We 
say that X has density a in the set A Q R" if the number of the first n points belong-
ing to A divided by n tends to a i.e. if 

|{fc| 1 =§ k n, xk£A}\ln = (1/«) 2 Xa(*J " « (« —)• 
4=1 

Let J" be the ring of the Jordan measurable sets of R". A set function ¡i : J" — R + 

is said to be density measure if there is a sequence X= such that X has 
density fi(A) in every Jordan measurable set A. In this section we characterize these 
density measures. It will follow among others that they are really measures, i.e. 
they are countably additive and they can be extended to a Borel measure. 
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T h e o r e m 5. A ft: J "—R + is a density measure if and only if it has the form 

oo 

with suitable ¿/¡^0, t ^ R " ( / '=1,2, . . . X g s O ^ e L ^ R " ) satisfying 2 " f t = U and 
i=X 

In other words the density measures are the convex combinations of the dis-
crete and (with respect to the Lebesgue measure of R") absolutely continuous 
measures. 

C o r o l l a r y 4. Every density measure is a-additive and hence it can be extended 
to a Borel measure o / R " . 

R e m a r k 1. One could try to extend the notion of the density measure to 
other domains than the Jordan measurable sets but such extensions can result in 
that the only "density measures" are the discrete ones. This happens e.g. if we 
require n to be defined for all open (and hence for all closed) sets of R". 

2. One could also use other summability methods, i.e. n can be defined as 

for some Ar={xfc}QR" and a non-negative regular matrix T. A similar argument 
that will follow proves that Theorem 5 holds word for word for this "modified 
density measure". 

P r o o f . We shall only sketch the proof. The details are very similar to those 
of Section 3. 

I. Necessity. Let X={xk} be the sequence generating ¡i. A standard argu-
ment yields that the number of those points x for which /i({x})>0 is countable. 
Let these be r l 5 r 2 , ... and let /i;=/i({t,}). If Nt is that subsequence of the natural 
numbers N for which k£Ni iff xk=ri then N{ has density in N. contains a 
subsequence N't such that N't has density /<f in N, too, but it is sufficiently sparse, 
namely if TV- = {«'j0, ...} then is satisfied for every k. One can easily 

verify that if X' = {x'} is that subsequence of X for which xk£ X' iff k<{ U K then X' 
¡=i 

oo 

satisfies the property that if n*— 2 ' then X' has density 

(5.1) 

R" 

fi(A) = T-\im/A(Xk) k 

i = l 

^(A) = (\l(l-fi*))(n(A)- 2 ft) 
t , € / t 

in every set A(iJ" and hence 

fi(A)= 2 ft + (l 
- r t ; f t , 6 A f = l 
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If 2 ft — 1 then, clearly, 
H(A) = 2 ft 

t ,iA 

and our task has been reduced to show that there is a function g^L^R") , g = 0 , 
j g— 1 such that 

R» F 

Hi (A)= f g 
A 

is satisfied. 
Let us consider the following mapping <p: R1—R": if x€ R1 has binary 

expansion 

x = . . . o t _ 2 a _ j a 0 , aiaja.T.. 

where infinitely many of the ax , a3 , ... vanish then putting 

xJ =...ctj-„, ccjxj+n..., 7 = 1 , 2 , . . . / / let 
<p(x) = (x\ . . . ,x"). 

Then cp(R1) = R" and for each x£ R", <p~\x) consists of at most 2" points. 
<P([/H/2\ (m+ l)/2k]) is a closed rectangular parallelepiped without one vertex with 
volume 1/2* and 

^ ( { f c , ..., xJ\mJ2k m Xl < (»h+l)!!", ..., m„/2k x„ < ('»„ +1)/2'1}) 

is an interval of length l/2k" plus a nowhere dense set with zero Lebesgue (and 
hence Jordan) measure. It follows that q>(A)£Jn for every AZJ1 and cp'^A^J1 

for every Ad J", furthermore, cp is a measure preserving transformation (cf. also 
[2, pp. 81—83]). Let x* be an element of q>~\x) and let x* = (x])* i.e. x*€<p_1(*/)-
We claim that X* = {xy }~=i has density in every Jordan measurable set of R1. 

Let AeJ1. If X j £ A then x'j£(p(A). Conversely, if x'j£<p(A) but x]$A then 
x*j£(p~ 1 ( ( p = : B. By what we have said above B has Jordan measure 0 and 
hence cp(B) also has Jordan measure 0. But then every B'Q<p(B) is Jordan meas-
urable and X' has density (B') in every such B', furthermore, X' has density 0 
in every point which imply, by an argument similar to that used in the proof of 
Lemma 2, that X' has density 0 in (p(B). By this X* has density 0 in cp~'(cp(B))^B 
and we obtain that for all j but a sequence j„ with 7,,/«—°° the conditions x*£A 
and x'j£<p(A) are equivalent, which proves our assertion. 

It follows also that X* has density fi*(A):=n1((p(A)) in a set A£J\ Since 
/i1({^)(x)})=0 for every x, the consideration of Lemma 2 yields that the function 

a(x) = / r ( ( - x]) = ih('P(- x]) = {the density of X* in ( - *]} 
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is absolutely continuous and increasing, furthermore a(— °°)=0, a(«>)= 1. If 

g(*) = «'(**) (*€Rn) 
then 

HAA) = Sfr-'CA)) = f a' = f g (AW) 
V'HA) A 

because q> is measure preserving, and the proof is complete. 
II. Sufficiency. Let n have the form (5.1). We put 

Lf= 2 *f(?d+(i-2 f f g 
i i 

for every Riemann-integrable function / . Either by the method of Section 3 or by 
using the above transformation q> and applying Theorem 3 one can prove that 
there is a sequence X = R" with 

L/= hm (lln)(f(Xl) +... +f(xnj) 

and an application of this to the characteristic function xA of A yields the desired 
representation. 

We have completed our proof. 
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