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Approximation by modified Szasz operators

S. M. MAZHAR and V. TOTIK

1. Introduction

I. J. L. DURRMEYER [5] defined the approximation process
—_ < . - . n g n—k
D,f) = 2 ([ bu®f®)d1) b, bu(x) =) *1-»)
=Y o

1
which can be used for restoring f if its moments f f@)£dt - are given. In a recent
0

paper M. M. DERRIENNIC [3] proved several results concerning these operators that
have certain analogues with the corresponding results for Bernstein polynomials
from which the operators D, originate.

Now we shall similarly modify the Sz4sz—Mirakian operators [7, 8]

S,(f: %) = kg';f(k/n)pn,k(x), Pur(®) = e (mx)k!  (x = 0)

and prove exact estimates and saturation results for the modified operator. Actually,
we have two modifications in mind: :

L,(f: ) =/ Opus@+n 3 ( [ S Opsrd)poe® .

and

LG D=1 3 ([ FOpa®de) pred).

Clearly L, is the perfect analogue of D, but it will turn out that L, has much nicer
properties than L,; the main difference between them is that L, reproduces every
linear function while L, reproduces only the constant ones. -
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Since we are interested in uniform approximation and the transforms L,(f)
and L,(f) are continuous on [0, =) (if they exist at all), in what follows we assume
the continunity of fon [0, ). Besides, when treating uniform approximation we shall
always assume the boundedness of f as well.

We shall prove global results, i.e. the whole interval [0, «) will be considered,
but because of the strong localization valid both for L, and L,, these also solve
the corresponding local problems.

In what follows let ||-|| denote the supremum norm and (p(x)=}/;.

2. Weighted estimates

L. Results. Let
A4(f; x) =fx—h)=2f(x)+f(x+h) (x=h)
be the usual symmetric second difference of f and

@*(f; )= sup IA f; 2l

. 0z=h=6,x=
the modulus of smoothness of f.,

Theorem 1. For every function feC[0, <) we have

@1 L (f; )—f()| = 1e*(f: Valn).

Corollary. Let fe¢C[0, «). be bounded. Then there exists a non-negative and
continuous function Y : [0, «)—~R, , Yy (0)=0, such that

IL,(f; X)—f) =K¢(x/n) (x=0, n=1,2,..))
holds lf and only i f fis umformly continuous on [0, ).

The proof of Theorem 1 follows that of [1, Theorem 8] and it gives somewhat
more: if {L,} is an arbitrary sequence of positive operators reproducmg the linear
functions and (1/2) L, ((r—x)?; x)=p3(x), then

IL(f; x)—f()| = l*(f; u,(x)) (x =0).
The saturation result is as follows:

Theorem 2. Let feC[0, =), f(x)= O(e“") (A>0) If L.(f, x)—f(x) o,,(x/n)
(xZO n—-oo), then f is a linear function; furthermore :

IL(f; X)—f(x)l <KXIn x=0,n=12.)
holds if and only if f has a derwatne belonging to Lip l where
Lipl={f: |f(x+B)-f(x)|=K,;h, x=0, h>0}. .
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The next result solves the so-called non-optimal approximation problem. Let
Lip*a = {f€CI0, =): w?(f: 6) = K,5%, & > 0}.
With this notation we have:
Theorem 3. Let fEC[b o) be bounded. Then with O0<a<]1,
IL{f; 0)=f@)] = K&x[n)f* (x=0, n=1,2,..)
holds i f and only if fe Llp2 2a.

For L, the situation is much more complex. We mention only that if w'(f;J)
denotes the ordinary modulus of continuity of f, then

IL.(f; D= = Ke*(f; Vx+1/n)n) (x>0, n=1,2,..)
follows from a result of SHISHA.and MoND [4, p. 28] and by well known prop-
erties of @’ this implies that -
22 (YA+HVRDILYE D—f@)] =K' (f, 1/Vn) =0, n=1,2,..)

It can be shown that in general (2.2) cannot be improved since neither the weight
{14+Vx}* nor the rate @(f; 1//n) can be replaced by a smaller quantity. An
analogue of Theorem 1 holds for L, as well. However it is far less obvious how the
analogues of Theorems 2—3 look like in the case of L,.

I Proofs. Proof of Theorem 1. We follow the argument of [] Theorem 8§}.
Using the relations

f pnk(x>dx-1/n, K[ Pas(¥) = xPui-1() (1= 1,2, .. k= 0)

one can easxly verify that L -(g; x)=g(x) for every linear function g, furthermore
.3) L((t—x2.x)=x/n (x=0, n=12,..).

First let us suppose that f is twice continuously differentiable on [0, ). B);
Taylor’s formula

SO =@ +e=0 @+ [ [ 1) duds =
Q@49 | T
| =@+ =Df )+ [ (=01 @ de.

Here

If f f"(u)dudsl Hf” (t x)*/z

17*
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hence
(2.5) \L(fs ) =S = [ /7 Lot —%)3/2; x) = | /"] x/n.

Now let
K2 K2

(2.6 LG =@y [ [fG+s+0—f(x+2(s+0)] ds dt.

By (1, (21)], we have || f—fill =0 f; ), || £}l SOk~ %w?(f; h) and so using (2.5) for
4, we obtain
L, (f; ©)=f)| = IL,(f~fu; ONHIF=SID+IL,(fo; 0=/ ="
=20 (f; h)+9r2w%(f, h)x/n,
and putting here h=Vx/n we obtain (2.1).
Proof of Corollary. We have to prove only the necessity part. Let

x=1 and n=M([x]. Exactly asin the proof of Theorem 4 below we have |L (f; x)|=
=|| fllVn/x and so if we assume

IL.(f; )—f(¥)|.= K!P(VX/}!)

we obtam that
f)—f(x+h)| = 2K!//(Vx+h [V [x)+|L ; x+h) L,(f; x)l =
= 2Ky (3/VM) +hIf VM

whlch can be made arbitrarily small by choosing first a large M and then suﬁicxently
small A.

Proof of Theorem 2. First we prove the following strong localizatiép result:
if f(x)=0(e"*) and f(x) vanishes on an interval (a—e¢, b+¢) (¢>0), then L,(f;x)=
=0(n~?) uniformly on [a, b]. In fact one can easily. see that if 4 is an integer, then

e p, (1) = Ke™"p,_ . ()
w1th a constant A,and so .

L. (f; %)| = Kn ze'*x"/"p k(x)( f f )pn “(z)dt—11+12

bie

L=nK( 3 pui(®) an Ak(t)dt'*‘ 2 " Pa k(-x)e""ml an Ak(t)dt)

k=(b-+e/2)n bte >(b+e/2)n

K
e —
=72

2 p...k(x)+K > pn,k(b)eAlk/"né

RS(b+z/2)n >(b+elz)n

n 2+K”17n 1o +e/2m) (D) €XP [Ax(b +3/2)] =Kn"?,
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where to obtain the second inequality we used the estimate (see [6, p. 212])
(e ™ u*/k!) du = Kk¥/(nn)®,

lu—k|=>nn
for the second and third ones we used the facts that p, ,(x) increases on the interval
(0, k/n) and
Pa,k+1(0)/ P, (b) = (b/(b+¢/2)) exp (Ay/n) = 1 —¢/2b
for sufficiently large n and k=>(b+¢/2)n, and to obtain the last one we used Stirling’s
formula. '

Oge can get similar estimates for 7, and thus our assertion concerning the localiza-
tion of L, has been proved. For later applications let us mention that in view of
our proof, the same holds true for the operators L,.

Using the above localization, one can see that the proofs of [4, Theorem 5.1]
and [4, Theorem 5.4] hold for L, on every finite interval [a, B]<[0, ) and we
obtain that

L,(f, x)—f(x) = 0. (1)

implies that f is locally and hence globally linear, furthermore

L{f; X)~f(x) = O(x/n)

implies that f has a derivative which is absolutely continuous on every interval
(a, b)S[0, ). But wusing again our localization, the proof of [4, Lemma 5.5]
yields that

Tim (rfx)(Ly(f; 2)—f () = 1" ()2

at every point x, where f”(x) exists. So

L(f; x)=f(x) = O(x/n) implies f”(x)=O(1)

and this is the same as f'€Lip 1.
The sufficiency of the condition f’¢Lip1 follows from Theorem 1 since it
implies w( f; 8)=0(6?).

Proof of Theorem 3." Here, again, the sufficiency directly follows from Theo-
rem 1.
To prove the necessity of the condition - f€ Lip? 2a, first we verify the inequality

2.7 IL,’,’(f, x)| = Ko¥*(f; )(n/x+67% (b, x>0, n=12,..)
(cf. also [1, (23)]). Let ' ‘

Q) Ee)=SO, EuD=1 [ [P k=12..).

Since
Pok(X) = 0(Pp 41 (X) = P s (X)) = (k/x— 1) p, (),
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simple computation gives that with y, ,=(k/n—x)>—k/n?,

n(fa X) = (n/x)2 2 Yn k(x)Fn k(.f)pn k(x)
2.9)

§’(ﬂ k(f) oD+ Fass) s

and so

L7 (f: %)) = (nfx)2 =§ Wak G e () = Fo e ()] P (3 +

+"2k,_2; IFn,k(f;S)—an,k+1(f;5)+Fn,k+2(_/;)lpr_|.k(x) =NL+1,

where: the function f; is the sarﬁe as defined in (2.6).

Since - : -
| Fo k() — ,k(ﬁ)l»é Fn.k(lf_fJ') = [fSsl = 0*(f;9)
we have by [1, 27)] -

= *(f; 5)(n/X) Z [Vn, k(V)IP., k(x) = Ko® (f 5)n/x

In I, we use the Taylor expansxon 2. 4) for S5 Let first k>1 ‘Then integra-
tions by parts give that R

12| Fy o (f3) = 2Fp i)+ Fone(f)| =

j P P - 1(z)[ 2”' k((li"l1)](ffﬁ,”(u)a;}ds)dz|=

= 1| [ o) ([ [ fi @ auds)ai = n| [ prrurs0fi @ =

= | =972 w*(f; 9).

A direct but rather long computation verifies the identity

(2.10)  £;(0)—2n j e fi(Ndt+n f e‘"‘(nt)f,(t)dt f te="f; (1) dt,
by which ‘
1| Fp () = 2Esa(f) + Fop (] = 15 [ (e~ dt = |7 = 96-2a(f; 9).

Collecting our estimates we obtain (2.7). -
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Now usmg (2.7) and" | f(x)—L,(f; x)l-—O((x/n)’) we get
43(: | = |/ ~Lo(f: | +21/ e+ 1) - -L 3 x+h)+

+ |f(x+2h)—L,,(f; x+2h)|+|f f L, )lc+sA+t)ds'dt| =

= K((x/ny+h2(nfx +5-)02(f; J)).
Putting here d=Vx/n we obtain
@?(f; ) = K(@©@>+(h/9)w?(f; J)) (h 9 >0)

and it is well-known (see [2, Lemma]) that this and the boundedness of f 1mply
o?(f; B)=0(h™), i.e. feLip?2a. »
Our proofs are complete.

3. Uniform approximation

I. Results. Let Cj, be the set of bounded and continuous functions defined on
[0, ==). A very natural question is the following: For which functions f do the trans-
forms L,(f) (L,(f)) approximate f uniformly on the whole interval [0, )? The
answer is given by

Theorem 4. If fECB, then L (f)—f—-o(l) (n—>oo) is satt.sﬁed umformly on
[0, ) iff f(x?) is uniformly continuous on [0, ).

The saturatlon result sounds as

Theorem 5. Let f€Cy. Then L (f)—f—o(l/n) (n— ) uniformly on [O oo)
iff f is constant, furthermore L,(f)—f=0(/n) iff f has a locally absolutely con-
tinuous derivative with |xf"(x)| =K, (x>0).

" Finally concerning-the non-optimal approximation we have

Theorem 6. Let fcCy and O<a<1. Then L,(f)—f=0(n"%) holds uni-
Jormly on [0, =) iff : : N

(3.1) 2|43(f; )| = Kh= (x> h; h > 0)

is satisfied.

The analogues of Theorems 4 and 5 for L,,'are:

Theorem 7. If fcCp, then L,(f)—f=0(1) (n—) holds uniformly on {0, =)
iff f(x®) is uniformly continuous on [0, o).
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Theorem 8. Let f€Cyz. Then L, (f)—f=o0(l/n) (n~<) iff f is constant,
Jurthermore L(f)—f=0(1/n) iff f has a continuous derivative with xf’(x)€Lip 1.

We can see that {L,} and {L,} do not differ from the point of view of uniform
approximation but they do differ from the point of view of global saturation, e.g. if
feCy is twice continuously differentiable on (0, =) and

1
F) = {; ogx x€[0,1]

x =>2,

then f belongs to the saturation class of {L,} but not to that of {L,} (it is easy to see
that the former includes the latter).

In the proofs of Theoréems 4—6 we shall use the general results of [9]. Theorems 7
and 8 do not come so easily, they require special considerations.

I1. Proofs. Proof of Theorem 4. Since L, reproduces the linear functions
and satisfies (2.3) we can apply [9, Theorem 2] and the remark made after it, according
to which L (f)—f=o0(1) and the uniform continuity of

fog™i®) =1 (e =/4) [ (o@®)d:, o) =Vx)
ére equivalént provided we can verify that

L,(f; x) = K,Jo(x) (x >0, o(x)= ‘/;)
With the notation (2.8) we get by an application of the Schwartz inequality

IL.(f; )] = (n/x)| é; (kln—x)F, ()P ()] = (nx) | 1] ké') |k/n—x| P, (%) =

= (A1 S (kin=pou P = LF VAV,

where at the last step we used the fact that f (x—k/n)?p, . (x)=x/n. This proves
k=0

the theorem.

Proof of Theorem 5. The first part of the statement of the theorem follows
from Theorem 2 and the boundedness of f. Let ¢é=0 and

(t—x2 for lt—x|=¢,

e =1

for |t—x|<e.
By [9, Proposition 1} the second part will also follow if
Ln(hx,e; x) = ox,z(]/n) (n "’°°)
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is satisfied for every x>0 and ¢=0. Since a stronger result was proved in the
proof of Theorem 2, the proof is over.

Proof of Theorem 6. Let
w,(f; = sup |4y (fs O (¢() = Vx)

0=h=3,x>0

be the modified modulus of smoothness of f. Putting h=48Yx into (3.1) we can see
that (3.1) is equivalent of w,(f;8)=0(6%). Now by [9, Proposmon 2, Corollary]
the theorem will be proved if we verify

3.2 XLy (f; ©)| = Kn|f] (f€Cy),
and for any f€C, having an absolutely continuous derivative
(3.3) IxLa(f; 0| = Klo*f"].

The proof of (3.2) is easy. Using (2.9) we have

IxLy(f; %) = (n¥/x) é; | Fo kO 2,k O] P () =

= n| f]((n/%) i’; (k1 — %) P (5) + () kg‘; (/1) Py (%) = 20 £].
In the proof of (3.3) we use again (2.9) so that

KLI(f; %) = ankg";; |Foi ()~ 2Fp 11 () + Fo 2 ()| P,
By (2.10)

349

2 x|F, o(f)—2F, {()+ F, o () Pn,o(x) =

= o2/ (n [ e dr) nxe=™ = |* f7].
0
For k=1 let us apply Taylor’s formula (2.4) by which

3.9 x|Fn k(f)—zEr,k+l(f)+Fn,k+2(.f)| =

2nt (nf)? d .
nxfpnk(t)( — (k+l)(k+2))f(t——r)f () dedi.

Here

l]_ 2nt + (nt)? _(1_ nt )2I< (nt)
k+1 " (k+1D(k+2) k+1)] 7 (k+1)2(k+2)
and by

Ij((t-t)/r)drl = I j((t—x)/x)d‘tl = (—x)¥x
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we also have .

| [ C—r @ dd| = 1631 -0 x.

Hence we can continue (3.5) as

nt \? (no)?

= Wf”llnof Pui (D) [(1— 7))+ (k+])2(k+2)](t—x)“’dt =

S . ‘ 2nt (nt)? ) 2(nt)?
= [o*f "”ofp""‘(’)[(" k+1 +(k+1)(k+2)]+ k+ D2k +2)

= 10%/ "1 (Bu= 2B 11+ B )+ 2B af (k4 1),

](t—x)zdt =

where
E. =n f e~ ((nDM k) (1 —x)2dt = (k+ D (k+2)/n*—2(k + D) x/n+x=.
Now ' ’ o :
E—2E i1+ Egrs =2/, 2Eq,of/(k+1) = 3((k+9/n*—2x/n+x3/(k + 1))

and so

n*x 2' w(f)— 2 mkr1()+F,, A+2(f)|17n ()=
= lo2f | ne( 5 @Im) Po(X)+ 3082 Z( ) p, e (6)—

2610 3 pas@+3t 3 pus(Olk+1) =
= 1021114+ 3% (= x]n -+ 2x ]+ (x/n) 3 prpes(3) =

= l@*/” (144 6nxe=") = 20] 92"
and this together with (3.4) prove (3.3), and thus the proof is.complete. .
Proof of Theorem 7. First let us suppose that f(x?) is uniformly coatinuous
on [0, w). It is easy to see that then f(x+6Vx l/—)—f(x)—»O as 0—0 uniformly in

x=0 and so to a given >0 there is a 6>0 such that |f(xthVx)—f(x)|=e
whenever 0<h=4. This implies that

fG)—e=2|f]6~ 2(’— )% x <f(f) <f(x)+8+2|lfll5 H(t—x)*x
and hence for x=1
L5 0 =f( = e+2] f167*L,(( =) x)/x =
=e+2|f| 6“’(2x+2/n)/nx =e+8] f]/0%n <2
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provided n=86"2%"1 Since L,(f;x)—f(x)=0(1) (n—+<), 0=x=1, follows from
the analogue of the localization theorem proved in the proof of Theorem 2 and
from (2.2), the sufficiency part of the theorem has been verified.

Now let us suppose that L,(f; x)—f(x)=0(1) (n—~<) uniformly on [0, ).
Exactly as in the proof of Theorem 4 one can show that |L.(f; x)|=K,/Vx and so

. . ) . x+oVx :
f(x+8Vx) /)| =20l (D —~f1+Kn| [ v7V2dd] <2

if N is sufficiently large and § is small. Thus f(x+6 1/_) —f(x) tends to zero uni-
formly on [0, =) as 6—~0 and this again is equivalent to the umform continuity
of f(x*). Thus the proof is complete.

Proof of Theorem 8. We shall constantly use the identities -
L(A; x)=1, Lt x)=x+1/n and L,((t—x% x) = 2x/n+2/n".

We separately prove the sufficiency and necessity of the givén conditions.
(1) Sufficiency. Let us suppose that xf’(x)€Lip 1. This yields the absolute

4

continuity of f” and the boundedness of g()=(xf(x)y. We may suppose that
lgl=1. Since then

f) = f(l/r)fg(u)d_udi-}—-c]ogx-{-d,

with some constants ¢ and d, and feC, implies ¢=0, it follows that |[f'|{=1 and

so Ixf"(0)|=1g()~/ ()| =2. ie. |f"(x)|=2/x. For

h.(®) = j j v(du/u)dt,
we have 0
h.() = Ilog A+@—x)/x)—t+x = 1(t—x)x— (t—x) =({—xp/x, t=0

and W ()= l/t and the latter 1mphes (see above) that the functions y, = 2h +f are
convex (7, =0).- Now if y is convex and dlﬁ‘erentlable then, because of the
inequality y(#)—y(x)=y'(x)(t—x), we have

Lyi )=y =y @)L (-, %) =y (2)(1/n).

Puttmg here . y V4 and taking into account that .

e @l = | [ @iwleat S @) = 127G = 1
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we get

L (fs X)—f )| = Ly(hy; X)—he(x)+1/n =
= x7L((—x)% x)+1n = 2(x+1n)/nx+1/n = 5/n,
provided x=1/n.

If 0<x=1/n, then we argue as follows. Since f(z)=f(x)+ f S () dr, we have

(s 0l = IS 1(Fy 110 = Foisa(D)Pae ()| =

|3 [ ne (@t )1 —miih+ 1) [ (e de ] =

i

= |30 [t [ r@ded] = 3n [ panorod|=1r1=1

and so, according to what we have proved above

IL(f; X)—=fC = 2|x—1/n|+|L,(f; m)—fAIn)| =7n O <x=1/n)

and the sufficiency part of the theorem has been established.

(2) Necessity. Let W,(t)=1/t, Wy(¢t)=1. Using Taylor’s formula (2.4) and
the strong localization proved in Theorem 2 (clearly the proof also works for L))
one can easily prove that if f€C, is twice continuously differentiable on [0, =) then

lim (L D) = fim (nky (7 =5 x) b, ([ (=0 @ dr; x) =

= f (X)X () = (xf () = (ARSI ()
and so [4, Theorem 5.7] gives (use also the localization) that
L.(f; x)=f(x) = o(l/n)

implies that f has the form f(x)=clogx+d and so (f€Cy) f is constant. This
proves the first half of the theorem.
Now suppose L,(f,x)—f(x)=0(1/n) uniformly on [0, «). We set

g(x) = im n(L,(f: x)—f(x).

If [a, b]< (0, =) is arbitrary, then g€ L'(a,b). Using once more the localization
result for L, we get from [4, Theorem 5.8] that on (a, b) f has the form

fx) = d+clng+f(l/t)jg(s)dsdr,
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i.e. f* is absolutely continuous on (g, b), and since (a, b) is arbitrary, it follows
that f” is locally absolutely continuous on (0, ). By [4, Lemma 5.9] and our localiza-
tion result

Iim n(L,(f; x) —f) = (f (O}, _,
at every x, where the right hand side makes sense, and so L,(f; x)—f(x)=0(1/n)
yields (x(f(x))’=0(1) and this completes the proof of the theorem.
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