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Approximation by modified Szász operators 

S. M. MAZHAR and V. TOTIK 

1. Introduction 
I. J. L. DURRMEYER [5] defined the approximation process 

Dnf{x) = Í J / bnk(t)f(t) dt) bnk(x), M*) = (j)**Cl-*)""* 

l 
which can be used for restoring / if its moments J / ( ^ f d t are given. In a recent 

o 
paper M. M. DERRIENNIC [3] proved several results concerning these operators that 
have certain analogues with the corresponding results for Bernstein polynomials 
from which the operators D„ originate. 

Now we shall similarly modify the Szász—Mirakian operators [7, 8] 

Sn(f; X) = 2 fWn)p„tk(x), Pnik(x) = e~nx(nx)k/k\ (x ^ 0) 
k=0 

and prove exact estimates and saturation results for the modified operator. Actually, 
we have two modifications in mind: 

L„(fl x)=f(0)p„Ax) + n 2 ( f f(t)Pn,k-i(t)dt)pn>k(x) , k—1 o 
and 

Ln(f; x) = n 2 ( / f(t)pn,k(.t) dt)Pnyk(x). 
k—0 o 

Clearly L„ is the perfect analogue of D„ but it will turn out that L„ has much nicer 
properties than L„; the main difference between them is that L„ reproduces every 
linear function while L„ reproduces only the constant ones. 
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Since we are interested in uniform approximation and the transforms L„(f) 
and L a ( f ) are continuous on [0, (if they exist at all), in what follows we assume 
the continuity o f / on [0, Besides, when treating uniform approximation we shall 
always assume the boundedness of / as well. 

We shall prove global results, i.e. the whole interval [0, will be considered, 
but because of the strong localization valid both for L„ and L„, these also solve 
the corresponding local problems. 

In what follows let || • || denote the supremum norm and q>(x)=]fx. 

2. Weighted estimates 

I. Results. Let 

A\(f\ x) =f(x-h)-2f(x)+f(x + h) (x^h) 

be the usual symmetric second difference of / and 

a>2(/; 5) = sup M | ( / ; x)\ 

the modulus of smoothness o f / . 

T h e o r e m 1. For every function / € C [ 0 , we have 

(2.1) \Ln(f x)-f(x)\^\]co%f, f i f c ) . 
C o r o l l a r y . Let / € C [ 0 , be bounded. Then there exists a non-negative and 

continuous function \¡j : [0, i¡/(0)=0, such that 

\Ln(f, x) - f ( x ) | S Ki¡j (xln) ( x S O , « = 1 , 2 , . . . ) 

holds if and only if f is uniformly continuous on [0,°°). 

The proof of Theorem 1 follows that of [1, Theorem 8] and it gives somewhat 
more: if {Ln} is an arbitrary sequence of positive operators reproducing the linear 
functions and (1/2) L„ ((/ - x f ; x)=£ (x), then 

\L„(f; x)-f(x)| á ll<u2(/; n„(x)) (x ^ 0). 

The saturation result is as follows: 

T h e o r e m 2. Let / € C [ 0 , oo),f(x)=0(eAx) (A>0). If Ln(f; x)-f(x)=ox(x/n) 
(xsO,/!—«>), then f is a linear function; furthermore 

\L„(f; *)-/(*)I S Kxjn (x ¿ ' .0 , n = 1,2, ...) 

holds if and only i f f has a derivative belonging to Lip 1, where 

Lip 1 = { / : \f(x+h)-f(x)\^K,h, x § 0 , /J>0}. . 
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The next result solves the so-called non-optimal approximation problem. Let 

Lip2a = {/¡SC[0, oo): w 2 ( / ; 5) S Kft5«, 8 > 0}. 

With this notation we have: 

T h e o r e m 3. Let f£C[0, «») bounded. Then with 0 < a < l , 

I W ; * ) - / ( * ) ! ^ *(*/«)" (* s o , n = 1 , 2 , . . . ) 

holds if and only if / € Lip2 2a. 

For L„ the situation is much more complex. We mention only that if oi\f, 8) 

denotes the ordinary modulus of continuity of / , then 

M / ; * ) - / ( * ) ! K m ^ i f ] / (x+l /« ) /» ) (* > 0, n = 1,2, . . .) 

follows from a result of SHISHA and M O N D [4 , p. 28] and by well known prop-
erties of to1 this implies that 

(2.2) (1/(1 \La(f; x)-f(x)\ s Ko>\f 1 / / « ) (x > 0, n = 1, 2, ...). 

It can be shown that in general (2.2) cannot be improved since neither the weight 
{l + / x } _ 1 nor the rate co1(/; i / f n ) can be replaced by a smaller quantity. An 
analogue of Theorem 1 holds for L„ as well. However it is far less obvious how the 
analogues of Theorems 2—3 look like in the case of L„. 

n . Proofs. P r o o f of T h e o r e m 1. We follow the argument of [1, Theorem 8]. 
Using the relations 

oo 

/ PnAx)dx = W")Pn,k(x) = xp„A.t(x) (n = 1, 2, ..., k & 0) 
o 

one cah easily verify that L„(g; x)=g(x) for every linear function g, furthermore 

(2.3) Ln((t-xf,x) = x\n (x > 0, n = 1, 2, ...). 

First let us suppose that / is twice continuously differentiable on [0, By 
Taylor's formula 

At) =f(x)+(t-x)f'(x)+ f j f"(u) duds = 
X X 

( 2 . 4 ) ^ , 

-Ax)+(t~x)f'(x)+f(t-z)f"(x)dT. 

Here 

1/ jf"(u)duds\ s \\f"Ut-x)*l2, \ 
X X 

17* 
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hence 
(2.5) | L J J \ x)~f(x)\ ^ \\f"\\Lni(t~xm; x) = \\/"\\x/n. 

Now let 
hi 2 A/2 

(2.6) /»(*) = ( 2 / A ) 8 / / [ 2 / ( x + * + / ) - / ( * + 2 + 
о о 

By [1, (21)], we have | | / - / J ^co 2 ( f ; A), | | / ; | | S 9 / T V ( / ; A) and so using (2.5) for 
fh, we obtain 

M / : *)-/(*)! S ILn(f-fb, x)\ + \ ( f - f h ) ( x ) \ + \Ln(fb, x)-fh{x)\ = 

co2(f; h)+9h-2co2(f,h)x/n, 

and putting here h=Yx/n we obtain (2.1). 

P r o o f of C o r o l l a r y . We have to prove only the necessity part. Let 
x ^ l and n=M[x\. Exactly as in the proof of Theorem 4 below we have \L'n(f\ х ) | ё 
= 11 /IIУ nix and so if we assume 

x ) - f ( x ) \ * Кф(]Гф) 

we obtain that 

|/(х)-/(х+й)| ^2Кф(У7+Й/УМ[х\) + \Ьп(/; x+h)-Ln(f, *)| ^ 

^ 2Кф ( 3 / / M ) +h ll/H ]fM 
which can be made arbitrarily small by choosing first a large M and then sufficiently 
small h. 

P r o o f of T h e o r e m 2. First we prove the following strong localization result: 
if f(x)=0(eAx) and f ( x ) vanishes on an interval (a—e, b+s) ( s>0) , then L„ ( / ; * ) = 
=0(n~2) uniformly on [a, b]. In fact one can easily see that if A is an integer, then 

with a constant Ax and so . 
a—e " » 

\L„(f; x)\^Kn 2eWpn,k(x)(f + f)pn-A,k(t)dt = A + /2: 
*=° 0 b+c 

oo oo 

I2SnK( Z PnAx) f Pn-A,k(')dt+ 2 P M W ^ 1 " " f Pn-A,Mdt) 
fcS(b+e/2)B b+£ '. k^b+,12)n g 

2 PnAx)+K 2 Pn,k{b)eA*'nn^ П *S(6+i/2)n *»(6+i/2)n 

S Кп-*+КпрйшКЬ+,/т(b) exp [А.ф+e/2)] S Kn~2, 
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where to obtain the second inequality we used the estimate (see [6, p. 212]) 

J (e~kuuk/k\)du Si Kk3j(t]nf, 

for the second and third ones we used the facts that p„tk(x) increases on the interval 
(0, k/ri) and 

Pn,k+1(b)lpn,k(b) s (¿/(6+8/2)) exp (AJn) s l - e / 2 b 

for sufficiently large n and k>(b+e/2)n, and to obtain the last one we used Stirling's 
formula. 

One can get similar estimates for and thus our assertion concerning the localiza -
tion of L„ has been proved. For later applications let us mention that in view of 
our proof, the same holds true for the operators L„. 

Using the above localization, one can see that the proofs of [4, Theorem 5.1] 
and [4, Theorem 5.4] hold for Ln on every finite interval [a, b] ̂  [0, «>) and we 
obtain that 

Ln(f,x)~f(x) = ox( 1) 

implies that / is locally and hence globally linear, furthermore 

U f ; x ) - f ( x ) = O (x/n) 
implies that / has a derivative which is absolutely continuous on every interval 
(a, <=°). But using again our localization, the proof of [4, Lemma 5.5] 
yields that 

Vim (nlx)(L„(f; x)-f(x)) =f"{?c)/2 

at every point x, where f"(x) exists. So 

Ln(J; x ) - f ( x ) = 0(x/n) implies / ' ( * ) = 0 ( 1) 

and this is the same as / ' £ Lip 1. 
The sufficiency of the condition / ' £ Lip 1 follows from Theorem 1 since it 

implies co2(f; 5)=0(S2). 

P r o o f of T h e o r e m 3. Here, again, the sufficiency directly follows from Theo-
rem 1. 

To prove the necessity of the condition / 6 Lip2 2a, first we verify the inequality 

(2.7) \Ll(f, x) | ^ KojHJ- S)(n/x + d~2) (S, x > 0, n = 1, 2, ...) 

(cf. also [1, (23)]). Let 

(2.8) Fn0(f) = / ( 0 ) , Fnk(f) - n f m p ^ - d O d t (fe = 1, 2, ...). 
o 

Since 
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simple computation gives that with y„tk=(k/n—x)2—k/ns, 

(2.9) 

and so 

K i f \ x) = (n/x)2 2ynAx)Fn.t(f)PnAx) = 
k=0 

= n- 2 {Fn,k(f)-2F„,k+l(f) + Fnik+2(f))p^(x) k = 0 

ICC/; *)l s (ntxf 2 | y n . * « l | f n . * ( / ) - ^ . t ( / a ) l / v * ( * ) + 
k—0 

+ «2 2 \Fn.k if a) ~2F„tk + 1 ( f 6 ) + Fn_k + , (fa)\pn_k (x) = /t + /2, 
k=0 

where the function fs is the same as defined in (2.6). 
Since 

\Fn,k(f)-FnM>)\ ^ FnA\f-fs\) •"• II/-/*II - or(f;b) 

wc have by [1, (27)] 

h S ® 2(/; S)(n\xr 2 lv„.*(*)lA,.*M ^ KojHf- 5)nix. *=0 

In /2 we use the Taylor expansion (2.4) for fs. Let first 1. Then integra 
tions by parts give that 

"21 K. k(f*)-2Fn ,k + , ( / , ) + i v „ + 2(/a) | = 

2nt (mf 
= n f ¿A..-!« [l • - ^ + T f f I y ] ( / / / / («) ds) dt 

oo r 5 oo • 

= «1/ { p ^ M ' U jn\u)duds)dt\ = n\f pn,k + l(t)fs'(t)dt\ S 
0 x x 0 

S I I / / I I S 95--0,«(/; 5). 

A direct but rather long computation verifies the identity 

(2.10) /¿(0) —2n / e—ft{f)dt + n / e~m(nt)fs(tydt = / te-«fi(t)dt, 
0 0 0 

by which 

"2 |F„.o(/a)-2/-„,1(/a) + ^ ,2( / , ) l £ l № / = | | / / | | S 95-*<»*(/; S). 
0 

Collecting our estimates we obtain (2.7). 
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Now using (2.7) and | / ( x ) - £ , „ ( / ; x)\ = 0((x/nf) we get 

\Al(f; x)\ \f(x)-L„(f; x)\+2\f(x+h)-L,(f; x+h)\ + 
hh 

+ \f(x+2h)-L„(f, x+2h)\+\f f LZ(f,x+s+t)dsdt\ ^ ' 
0 0 

^ K((x/ny + h2(n/x+d-2)co*(f; 3)). 

Putting here 5 = ix\n we obtain 

co2(f; h) ^ K(d2*+(h/S)2a>*(f; <*)) (h, 3 > 0) 

and it is well-known (see [2, Lemma]) that this and the boundedness o f / i m p l y 
c°2(/; h)=0 (ft2*), i.e. / £ Lip2 2a. 

Our proofs are complete. 

3. Uniform approximation 

I. Results. Let CB be the set of bounded and continuous functions defined on 
[0, oo). A very natural question is the following: For which funct ions / do the trans-
forms L„(f) (Ln(f)) approximate / uniformly on the whole interval [0, «>)? The 
answer is given by 

T h e o r e m 4. If f£CB, then Ln(f)~f=o(l) (n — <*>) is satisfied uniformly on 
[0, «>) i f f fix2) is uniformly continuous on [0, «=). 

The saturation result sounds as 

T h e o r e m 5. Let f£CB. Then L„(/)-/= o(1/n) (n-<~) uniformly on [0, °°) 
i f f f is constant, furthermore Ln(f)—f—0(l/h) i f f f has a locally absolutely con-
tinuous derivative with \xf"(x)\^Kf (x>0) . 

Finally concerning the non-optimal approximation we have 

T h e o r e m 6. Let f£CB and 0 < a < l . Then L„(f)-f=0(n~") holds uni-
formly on [0, i f f 

(3.1) *•№*(/; x)\^Kh" (x>h, h>0) 
is satisfied. 

The analogues of Theorems 4 and 5 for L„ are: 

T h e o r e m 7. If f£CB, then L„(/)-/= o(1) (« — «>) holds uniformly on [0, oo) 
i f f f { x 2 ) is uniformly continuous on [0, <»). 



264 S. M. Mazhar and V. Totik 

T h e o r e m 8. Let f£CB. Then Ln(f)~f=o()/n) (n-*«=) i f f f is constant, 
furthermore L„(f)—f=0(l/ri) i f f f has a continuous derivative with * / ' (*)£ Lip 1. 

We can see that {£„} and {L„} do not differ f rom the point of view of uniform 
approximation but they do differ from the point of view of global saturation, e.g. if 
f£CB is twice continuously dififerentiable on (0, and 

log* Jt6[0, 1] 

then / belongs to the saturation class of {L„} but not to that of {/.„} (it is easy to see 
that the former includes the latter). 

In the proofs of Theorems 4—6 we shall use the general results of [9]. Theorems 7 
and 8 do not come so easily, they require special considerations. 

U. Proofs. P r o o f of T h e o r e m 4. Since L„ reproduces the linear functions 
and satisfies (2.3) we can apply [9, Theorem 2] and the remark made after it, according 
to which Ln(f)—f—o( 1) and the uniform continuity of 

With the notation (2.8) we get by an application of the Schwartz inequality 

IL'Af; X)\ = (nix)| 2Wn-x)Fn,k(f)pn,k(x)\ S (nlx)\\f\\ J \k/n-x\pn,k(x) s 
k=0 k=0 

^ {nlx)\\f\\(2 (kln-xTpntk(x))x>* = 11/11 ]fn/]fx, 
k=0 

where at the last step we used the fact that 2 (x—k/n)2pnJc(x)=x/n. This proves 

the theorem. 

P r o o f of T h e o r e m 5. The first part of the statement of the theorem follows 
from Theorem 2 and the boundedness o f / . Let e > 0 and 

X 

fog-^x) =f(x*) (g(x) = (1/4) / (1 l<p(t))dt, <p(x) = |/-x) 
o 

are equivalent provided we can verify that 

L'n(f; x) == KJ<p(x) (x > 0, <p(x) = f x ) . 

(t-xf for ¡/-*|S£, 
0 for \t—x\ < e. 

By [9, Proposition 1) the second part will also follow if 

Ln(hx,el x) = ox>e(\/n) (n 
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is satisfied for every x > 0 and e > 0 . Since a stronger result was proved in the 
proof of Theorem 2, the proof is over. 

P r o o f of T h e o r e m 6. Let 

0>o(/; <5) = sup ( / ; x)\ (<p(x) = f x ) 

be the modified modulus of smoothness o f / Putting h = 5 Y x into (3.1) we can see 
that (3.1) is equivalent of cov(f; 8)=0(8*"). Now by [9, Proposition 2, Corollary] 
the theorem will be proved if we verify ; 

(3.2) \xL:(f, *)| Kn S l / i l ( f d CB), 

and for any / € C„ having an absolutely continuous derivative 

(3.3) \xK(f- x)\^K\\<p*f"\\. 

The proof of (3.2) is easy. Using (2.9) we have 

\xl:(A * ) | (nVx) 2 \FnAf)\ ^ > 
k =0 

^ «11/11 ((«/*) 2 W" -xfp„,k(x)+(njx) 2(k/n*)p„Ax)) = 2« Sl/il-
t = 0 i = 0 

In the proof of (3.3) we use again (2.9) so that 

\xL:(f; x)\ S >rx 2 IF„,k(f)-2Fn,k + i ( / ) + Fn,k+2(f)\pn,,(x). 
k = 0 

By (2.10) 
n2x | F n > 0 ( / ) - 2 F „ J f ) + FnAf)\P„Ax) ^ 

(3.4) 

^ \\<P2f"\\ (n f e~"' dt) nxe-* s ||<p8/1-
o 

For fcsl let us apply Taylor's formula (2.4) by which 

(3.5) x | F „ , J t ( / ) - 2 F , u . + l ( / ) + F n > ) t + 2( / ) | = 

2nt (nt)2 

1 -

and by 

/ P n ' k ^ (1~TTT+ (k+Z+2)) / ( ' - ^ ( t ) * * 

2nt (ntf I nt f i (/zQ2 

fc+1 + ( f c + l)(fc+2) I fc+lj I - ( fc+l)2(fc+2) 

| / ( ( Í - T ) / T ) A | ^ | / ( ( / - * ) / * ) DR| == ( / - x ) 2 / x 
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we also have . 

| / ( ' - T ) / " ( T ) < / T | S \\(p*f"\}(t-x)yx. 
X 

Hence we can continue (3.5) as 

£ \\<P2f"\\ n f'Pn.kQ) (fc+^i)(fc + 2)) + (fe+2l)"(fc + 2) ] = 

= [! (Ek-2Ek + l + Ek+s) + 2Ek + J(k + I). 
where 

Ek = n f e-"((ni)klk?)(t-xydt = (k + l)(k+2)/if--2(k + [)x/n + x*. 
o 

Now 

Ek — 2Ek+l+Ei:+2 = 2/n*, 2£ t + a /(/c+l) ^ 3((k+4)/,f-2x/n+xzl(k +1» 

and so 

"2* 2 \KAfj-2F„.k+i(f) + Fn,k+2(f)\p„,k(x) -35 
k=i 

^ \W2f"\\ "2( 2 (2/>r)pn,k(x) + 3n* 2 ((k + 4)ln^p,hk(x)-
k=1 *=1 . 

-2(x/n) 2PnAx)+x2 2PnAxW+1))) = fc =1 k=1 

^ I<PV"\\(14 + 3 « 2 x / n + 2xe'"*\n + (x/n) 2 P„,k + iW)) ^ k = l 

' ^ l<P2/"||(14+6nxe-njc) k 20||<p2/"|| 

and this together with (3.4) prove (3.3), and thus the proof is complete. 

P r o o f of T h e o r e m 7. First let us suppose that f(x2) is uniformly continuous 
on [0, co). It is easy to see that then f(x±8fx)—/(*) —0 as <5—0 uniformly in 
x^O and so to a given e=-0 there is a ¿ > 0 such that \f(x±h^ x)—f(x)\^f. 
whenever 0</i^<5. This implies that 

f(x)-£-2\\f\\5-*(t-.xyix S / ( / ) Sf(x)+B+2\\f\\d-"-(t-x)Vx 

and hence for x s l 

|t„(/; x)~f(x)\ B+2\\f\)S^Ln((,-xy, x)/x = 

= e+21|/|] 5--(2x + 2/n)/nx S e + 8||/||/52n < 2z 
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provided «=-8<5~2e-1. Since L„(f; x)~f(x)=o(l) (n—<=°), O^xSl, follows from 
the analogue of the localization theorem proved in the proof of Theorem 2 and 
from (2.2), the sufficiency part of the theorem has been verified. 

Now let us suppose that L„(f; x)—f(x)=o(l) (n—uniformly on [0, «>). 
Exactly as in the proof of Theorem 4 one can show that x) \^K„/Yx and so 

\f(x+8 ix)-f(x)\ S 21|i-jv(/)—/! +KN | +fr* t-1'2 dr\ < 2e 
• X 

if N is sufficiently large and <5 is small. Thus f(x+8 f x ) —f(x) tends to zero uni-
formly on [0, as <5—0 and this again is equivalent to the uniform continuity 
of f(x2). Thus the proof is complete. 

P r o o f of T h e o r e m 8. We shall constantly use the identities 

/-„(1; x) = I, L„(r, x) = X+1//7 and L„((t-xf, x) = 2x/n + 2//;2. 

We separately prove the sufficiency and necessity of the given conditions. 
(1) Sufficiency. Let us suppose that x / ' (x)€Lip 1. This yields the absolute 

continuity of / ' and the boundedness of g(x)=(xf'(x))'. We may suppose that 
S i . Since then 

X z 

f i x ) — / (1/t) f g(u) du dx + c\ogx+d, 
0 0 

with some constants c and d, and / € C B implies c = 0 , it follows that | / ' | ss 1 and 
so \xf"(x)\ = \g(x)-f'(x)\^ i.e. \f"(x)\^2/x. For 

hjt) = / f(dulu)dr, 
xx 

we have 

hx(t) = tlog(l+(t-x)lx)-t+x S t(t-x)/x-(t-x) = ( t - x f / x , t fe 0 

and hx(t)= l/t, and the latter implies (see above) that the functions y ± = 2 h x ± f are 
convex (y'^feO). Now if y is convex and differentiable, then, because of the 
inequality y(t)—y(x)Sy'(x)(t—x), we have 

Ur; x)-y(x) ^ y'(x)Ln(t-x, x) = y'(x)(l/n). 

Putting here y = 7 ± and taking into account that 

| / ± (* ) | - 1 / ( r f« /« )U ,± / ' ( * ) I = l ± / ' M I ^ 1 
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we get 

!<-„(/; *)-/(*)! ^ K(.K\ x)-hx(x)+\/n ^ 

S ^ - ^ ( ( / - x ) 2 , x) + l /« = 2 ( x + l / n ) / n * + l /n S 5/«, 

provided x ^ l / n . t 
If 0 < x S 1/n, then we argue as follows. Since f(t)=f(x)+ J f'(t) dr, we have 

X 

K ( f \ *)| = I 2 n{Fn<k + 1 { f ) - F n ^ ( f ) ) p ^ k ( x ) \ = 
k=0 

= | i « / «e-"t(C«/)k/fc!)(l-wi/CfcH-1» f f ' ( x ) d x d t \ = 
t = 0 0 x 

= | 2 » f A U + I ( 0 / / ' ( T ) D T D I | = | L N / A . - , * + I ( > ) / ' 0 H S LL/'LL ^ 1 
4 = 0 0 X T = 0 O 

and so, according to what we have proved above 

M / ; * ) - / ( * ) ! S 2 | x - l / « | + |L„(/; l / « ) - / ( l / « ) | ^ 7/« ( 0 < ^ 1/«) 

and the sufficiency part of the theorem has been established. 
(2) Necessity. Let W1(t)=l/t, W2(t) = \. Using Taylor's formula (2.4) and 

the strong localization proved in Theorem 2 (clearly the proof also works for L„) 
one can easily prove that if / € C B is twice continuously differentiable on [0, «>) then 

Km«(L n ( / ; x ) - / ( x ) ) = J i m ( « L n ( / ' ( x ) ( / - x ) ; x) + nLB(f ( / - t ) / " ( r ) dx; x ) = 

= / ' ( x ) + x / " ( x ) = (x/ ' (x)) ' = [ V I W M f ' m ' K x ) 

and so [4, Theorem 5.7] gives (use also the localization) that 

<-„(/; x ) - / ( x ) = 0(1/«) 

implies that / has the form f(x)=c log x + J and so ( / € C B ) / is constant. This 
proves the first half of the theorem. 

Now suppose L„(f,x)—f(x)=0(l/n) uniformly on [0, We set 

g(x) = lim «(!.„(/; x ) - / ( x ) ) . 
oo 

If [a, oo) is arbitrary, then g£Ll(a,b). Using once more the localization 
result for L„ we get from [4, Theorem 5.8] that on (a, b) f has the form 

x t 

f ( x ) = d + c l o g x + / (I/O / g(s)dsdt, 
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i.e. / ' is absolutely cont inuous on (a, b), a n d since (a, b) is a rb i t rary , it follows 
t h a t / ' is locally absolutely con t inuous on (0, By [4, L e m m a 5.9] and our localiza-
tion result 

Hm n(Ln(f, *)-/(*)) = {tf'(i))\=x 

a t every x, where the right h a n d side makes sense, a n d so Ln(f; x)—f(x)—0(l/ri) 
yields ( x ( / ' ( x ) ) ' = 0 ( 1 ) a n d this completes the proof of the theorem. 
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