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A generalization of a theorem of G. Freud
on the differentiability of functions

TORD SJODIN

0. Introduction

Let f be a function defined on R! and let m be a positive integer. Then f has
a Taylor polynomial of order m at x=a if and only if there is a number C,, such that

.1 AP f(x) = C, k™ +((x — a)"+h™)e(x, h),

where &(x, h)—0, as x—»a and h--0.

This result was announced by G. FREUD in [3]. It is our purpose to prove an
LP-version of (0.1) for functions in R”, 1=p=, and differentiability of order ./=0.
This involves finding the LP-form of (0.1). (See Section 1 for the exact definitions.)
The methods of proof use approximation theorems of Jackson type due to H. WHIT-
NEY [10] and Ju. A. BrRuUDNYI [1]. As an application we consider the problem to
characterize differentiability in terms of L”-differentiability together with certain
additional conditions. Such problems have been studied by the author in [4]—{6).
See also B.-M. STOCKE [8].

Section 1 contains our notation and the definitions. Our results are then stated
in Section 2 and proved in Sections 4 and 5. The lemmas needed in the proofs are
given in Section 3.

1. Notation and definitions
1.1. We use standard notation for points x=(x,, ..., x,) and real or complex
valued functions f(x) in R". For ECR" we denote Lebesgue outer measure and

Lebesgue measure by |E[* and |E| respectively. Integration with respect to Lebesgue
measure is written j f(x)dx and LP(E) denotes the usual Lebesgue classes, 1=p=
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272 T. Sjodin

= oo. All functions considered are measurable. We define || /1| .oz, =( f | f()|Pdx )P,
E

1=p=-o, with the usual modification when p=-c. When E=R" we justwrite | f1i,.

We let I=1I(a,s) denote a cube in R" with its sides parallel to the axes, its
centre in a and having diameter s. The ball with centre at a and radius r is denoted by
B(a,r). The density of a measurable set E at x, is defined by 1’1_13(1’ [ENB(xy, P -

|B(xy, r)|7%, if the limit exists. We let c¢(a, 8, ...) denote constants, which may
be different at each occurrence, depending on a, B, ... . Constants only depending
on n are denoted by c. Polynomials Pare written P(x)=_> C,x*, where the summa-
tion is over multi indices a.

1.2. Let I=0. A function f is said to be (ordinary) differentiable of order /
at x=a in R" if there is a (Taylor) polynomial P(x) of degree at most / such that
R(x, a)=f(x)— P(x)=0(|x—al"), as x—~a. We say that f is L?-differentiable at x=a
of order / if

(1Ba, ™ [ IRG, a)lPdx)"” = o(r'), r 0,

B(a,r)

for a suitable polynomial P. Here we make the usual modification when p=-oo
The polynomials P are unique in all cases.

The differences 4} f(x) are defined inductively by 42 f(x)=f(x) and A"'“f(x) =
=A7f(x+h)— 45 f(x). It is easily verified that if P(x)— Z' C,x%, then Ap}P(x)=
=m! 2 C,- k%, for all x. For more properties of 47/, see [5] and [9, p. 102].

la[= i
1.3. In this section we define a smoothness property for functions called Cci,

using j-th order differences. We considered a slightly different property, also denoted
by C, in [5). For a comparison of these properties, see the second remark following
Definition 1.1. :

Definition 1.1. Let j be a positive integer and let 0=s=j+1. Let f be a
function defined in a neighbourhood of x=a in R". We say that f has property
CJ at x=a if there exist numbers C,, |x|=j, such that for every ¢>0 there are
t and 6, O<t<min (¢, 1) and 6=0, such that
1.1 sup |4f(x)—j! J Ch| =¢e|x—al,

{hl=t|x~al [a}=J
for all x, O0<|x—a|<é. We take C,=0, [a|=/, if s=/.
Replacing (1.1) by '

12 (BO,tlx—ah|t [ |4 fe-it 2 C. 1P dh)"? = ejx—al,

B(0,t|x—al}

1=p=c, gives an equivalent definition of property C/. For the proof, see
[5, Lemma 5.2).
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The numbers C, in (1.1) and (1.2) are unique, when' s>/. In the case when s=j,
(1.1) and (1.2) are independent of the choice of C, in the sense that they hold with
all C,=0 if and only if they hold for some arbitrary C,, |x|=j.

Remark. We get an equivalent definition of property C/ if we in (1.1) or (1.2)
replace 4] f by the binary differences Bjf, see [5, p. 51]. In proving this it is.no loss
of generality to assume that C,=0, |¢|=j, in (1.1) and (1.2) and hence the proof
of [5, Lemma 5.4] applies. We leave the details to the reader.

Remark. The present definition of property C!/ differs from the one in {5,
p. 53} only when s>j. For example in the case of [5, Theorem 3.2], the two defini-
tions agree. It can be proved that there is an alternative formulation of Theorem 3.2
in [5] based on (a)—(c) in [5,.pp. 53—54] and using property CJ. Finally we note
that property C} in the same as property B, in [4, p. 9], when O<s=1.

2. Main results

2.1. Our first theorem is a characterization of LP-differentiability’ which gene-
ralizes G. FREUD’s result in [3]. S

Theorem 2.1. Let f(x) be a function defined in a neighbourhood of x;a in
R'. Let 1=0, 1=p=c and let m=l<m+1, where m is a non-negative integer.
Then f is LP-differentiable at x=a if and only if there are numbers C,, la|=m,
such that

@1 sup (IB(a D [ |45 (x) — m! 2 C h’l"dx)llp =o(t), as t—0.
B(a,t) : .
We make the usual modification in (2.1) when p=oe
As we mentioned in the introduction, Theorem 2.1 also holds for the case of
differentiability in the ordinary sense with (2.1) replaced by
2.2 _ sup sup ]A'"f(x) m! 2’ C.h* ] =o(s"),

{hf=s [x— alss
as s—0. Essentially the same proof applies. We omit the details.

Remark. In the case 0</<l1, we have m=0 and 4%f(x)=f(x). Then (2.1)
is just the definition of LP-differentiability. In the case when /=1 and (2.1) holds,
there exist numbers C,, |a|=m—1, .such that the LP-differential of f at x=a is
given by P(x)—- 2 C.(x—a).

2.2. Next we use ideas from [4]—[6] and combme Theorem 2.1 with (2. 2) to
prove results- on the connection between differentiability and- LP-differentiability.

18
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Theorem 2.2. Let >0 and 1=p=oc. Let.m be an integer such that m=l<
<m-+1, when 1=1 and m=1, when O<l<l. Then f is differentiable at x=a
of order 1 if and only if f has an LP-differential of order | at x=a and. f has property
Cl at x=a.

’l'he followmg variant of Theorem 2.2 can be proved with the same methods.

Theorem 2.3. Let O<I<m, where m is an integer, and let. 1=p=co. Then
a function f is differentiable at x=a of order 1if and only if f is L’-differentiable at
x=a of order 1 and f has property CI" at x=a.

“Theorems 2.2 and- 2.3 should be compared to the corresponding results in [4]
‘and [5]}. Theorem 2.3 generalizes Theorem 3.2 in [5] and Theorem 2.2 is a generaliza-
tion of the alternative formulation of Theorem 3.2 in [5} which was mentioned in the
second remark following Definition 1.1. Examples show that property Ci* alone
does not imply differentiability of order / in Theorems 2.2 and 2.3.

Our results in [4], [5] and the present paper can be summarized as follows. We
want to characterize differentiability of a function f(x) at x=a by LP-differentiability
together with certain additional conditions. These additional conditions can roughly
be described as follows (differentiability of order I, 1=m=l<m-1, where m is
an integer):

@) ([4)) f. has property C} at x=a, where fm(x)—f(X)— HZS C.(x—a),

(i) ([5]) f has properties C} "at x=a, for 1=j=m+1, and suit—a’i‘)le s,

(iii) (present paper) f has property C* (or C;'*Y) at x=a.

The case (i) was applied to Bessel potentials of LP-functions in [4]. The advantage
of (iii) compared to (ii) is that it has just one single condition.

2.3. It was proved in [4, Lemma 5.2] that property C;, 0<I=1, at x=a
implies that |f(x)—b|=M - |x—al', for suitable numbers b and‘M when x is close
to a. Our next theorem generalizes this result Roughly $peaking, we prove that
property CT' is of Lipschitz type.

Theorem 2.4. Let m be a positive integer and s>m—1, and let f be a func;
tion. Assume that there are ¢=0,>=0 and O<t<1 such that 0<|x—a|=J implies

@3 - o P 45 f()| = elx—al. .
Then there is a unique polynomial P(x) of degreé at most (m—1) such that
Q4. . . f-P@| = Mx—af

for - 0<|x—a|=45/5, ‘where M s a suitablée number depending or'n, m, s and .
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Corollary. Let f have property C7' at x=a, where l and m are as in Theo-
rem 2.2. Then there is a unique ponnomxaI P of degree less than I such that

f®)-P®)| = Mix—af
for O<|x—a|<&, ‘where 6>0 and M are suitable constants..

The corollary follows easily from Definition 1.1 and Theorem 2.4.

3 Some lemmas

It is well known that if a function f(x) satisfies lin,}  Sup |4pf(x)|<eo, for every

x in a measurable set E, then f is bounded in a neighbourhood of a.e. x€E, cf.
[7 p. 249]). We need the following L?-form of that result.

‘Lemma 3.1. Let m be a positive integer and 1=p=oc, Assume that for every
x, in a measurable set ECR", there is ro=ro(xo)=>0 such that ’

[ [ 1 0P dx <,
|h)=ry |x = xq0] =Erg
if 1=p<eo, and : .
. ) ess sup ess sup |4Pf(x)] < oo,

Jx—xol=ry |hl=r,
if p=co. Then for ae. x,€E there is r=r(xy)>0 such that f belongs to L?(B),
where B=B(x,,r).

Proof of Lemma 3.1. Let 15p<oo It is no loss of generahty to assume
that fis finite in E. Define for i=1,2,.

E={x¢E; [dn [ |pfeoPdxsi},
. =1)i jx—xl=1/i
then E= —D E;. In contrast to the case in [7], the sets E; are here measurable. There

exists a closed subset P of E, with IE\Pl arbitrarily small, such that the restric-
tion of fto P is: contmuous on P. Define B;={x; E has densxty one at x},

C={x; P has density one at x} and 4; B;ﬂC i=1,2,.... Let A= UA,, then
ENA (U (Ei\B.-)')U(E\P)uw\C).

We get |ENA|=]|EN\P|, since EN\B; and P\C have measure zero. It is our
purpose to prove that f is locally in L? near every pomt in A Let i be ﬁxed and
let x,€4;. ) .

-9g*



276 AR T. Sjodin . -
" ‘We now-have the following identity

U@ —reo) = (1 (7) e s +sh)+ ap s,

where z+mh=x. Let x be fixed, Oélx—xol~<r. We use 5, Lemma 4.3] to split
the last term in the above identity as follows

(@ 1) = 2 17 (7) (e -t +sm)+
73 1 (7)Ao S+ 1 870 00—

_ Zm’ (-1 (m) Ay, (j/m)(-k wf(2).

Let |z—xo| =M |x—x,|, where M is to bechosen below, then |h|S(M + I)r Takmg
_thé LP-norm over |k|<r we get

G0 re—fe = 3 (2) 7 eo—re+shi+

von )5 (BO.N [ las b dw)in+

w]=(M +2)r

+e(n,m, M)(IBO, NI f |Awf(x)lpdw),1’"=Il(z)+12(z).+n,(_x>.

fwl=(M +2)r
There are r=0 and M= M ) such that the densnty at x, of the set
S= {z (]/m)x+(l—]/m)z€P for ]—l 2,..,m—1 and . lz— x0|5M|x —x}
is arbitrarily close to one, for all O<|x—xo|<r; cf. [7, p. 267). Further,

f Iz(z)" dz =c(n, M)r"'

) B(xq, 1) : )
if O<r=c(n, m)-(1/f). Hence, if r is small enough, we can for every x, 0<|x—x,|<r,

find z€S such that I,(z) is arbitrarily small and IL(z)=c(n, M, r, p). Integrating
the p-th power of (3.1) w.r.t. x over the set B(x,, r) yields

J @) =f(x)lP dx = e(n, M, r, p)
«B(xq, P : .
for some r=0.

- We have proved that f is locally in L? at every point of 4. The conclusion of
the lemma follows since |EN\A| can be made arbitrarily small: The case p=oo is
treated analogously and we omit the details.
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Lemma 3.2. Let 1=p=c and assume that (2.1) holds. Then f is locally in
I? at a. .
" Proof of Lemma 3.2. Lét 1=p<co, By (2.1) there are posmve numbers o
andM such that |h|=6 and |x,—a|=d imply
S 1apsGr dx = .

B(xq, 8)

Then by Lemma 3.1 there are xg, with Ixo—ai<5/2 -and positive numbers r and
N such that f | f(x)|Pdx=NP<o. There is nothing to prove unless r=4.

Consider the ’d:gc&tr))’
3.2 apf(x) = 21 (=t [’:’] S(x+ih)+f(x+mbh).

Let |h|=r/m. We integrate the p-th power of (3.2) w.r.t. x over - B(x,, 5), where
s=r—(m—1)- |h|=r/m. This gives
/P dy = (M+2"NY.
B(xo+mh,s) .
Since a certain portion of B(x,+ mh, s) hes outside B(x,, r), a simple geomemcal
argument shows that f | fO)IPdy is finite, where ry,=r+|h)/2. If r,=6 we

B(xo,71)
- are done. Otherwise, repeating this procedure a finite number of times, we find

>0 suchthat [ |f(x)Pdx= [ |f(x)Pdx<ce. Thecase p=co is handled
B(a,3/2) B(x9, Fo) :
analogously. This completes the proot‘,1 of Lemma 3.2.

Our next lemma is a slightly generalized form of a lemma due to De Giorgi,
see [2, p. 140]. We omit the proof.

Lemma 3.3. Let LL=I(a,u) and I,=I1(b,v) be two cubes such that LClI;.
Let j be a non-negatwe integer and 1=p=co. Then

5P 1D"PEI] = el Dl o= ¥ (L] [1PColrdx)™”

1

for all polynomzals Pof degree =j. The lemma also holds for balls instead of cubes.

We make the usual modlﬁcatlon in the right hand 51de of the inequality when
p=
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++ 4,.Proof of Theorems 2.1 and 2.2

4.1. Proof of The‘orem 2.1. The proof of the necessxty follows wsxly by
integrating the identity

Af)—m! 2 Ch“=4"'(f—P)(x),

where P(x)— Z C.(x—a)". The detalls ‘are left to the reader:

Suppose that (2.1) holds. We may assume that C,=O0 .for: |¢|=m, andthat
f(x)=0 outside some neighbourhood of x=a. Then by Lemma 3.2 we may also
assume that fis in L?.

Let I,=I(a,s) be a cube.. Define I a={x; x+khel;, for k=0,1,...,m};
then [, ,c1I,. Now by [1, Theorem 1’} there is, for every 5=0, a polynom1a1 P
of degree at most (m—1)- such that

If— s"L“(I) c(n, m) S“P RA:'."f |lu(r, Ry
Then by our assumption (2.1) we get
@y L W Plugy =50,

- where »(s) is a non-decreasing function tending to zero as ',s——Of.. e
. Now let P, be the polynomial P,, when s=27% k=1,2,.... We. intend to
prove that the sequence {P,};> converges uniformly on compact sets to a polynomial
P with the desired properties. More exactly, we prove that there is'a -polynomial‘ P
of degree at most (m—1) such that

4.2 . |D*Py(a)-D*P(a)| = 0(2"‘“ 12y, as k>0

£

for |x|=m—1." It then follows from Taylor’s formula that for s=2% we have
sup |P,(x)— P(x)|=0(2"™), as k—oo. Combining this with (4.1) we get the con-

clus:on of the theorem with the polynomial P defined above.
It remains to prove (4.2). Now (4.1) and Lemma 3.3 give that for |oz|<m—l

w*rkﬂ(a) Dark(a)lsc(n,m)(umtl S 1Py (0— Pk(x)wdx)"’

k+t

= c(n, m)2Xlal =Dy (2-%),

Then for i>k we get by summation

|D* Pi(a) D‘Px(a)lSZ' |D"Pj 11 (@) —D* Py(a)| = c(m, m, h2HI=1-Dp(2~5),
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Hence the sequences {D*P,(a)}y, l¢|=m—1, converge and there is a polynomial P
such that

|D* P(a)—D° P(a)| = o(2*1e1-1), :
as k—oo. This proves (4.2) and thereby completes the proof of Theorem 2.1.

4.2. Proof of Theorem 2.2. We omit the necessity part of the proof since
it is straightforward, cf. the corresponding results in [4] and [5]). Assume that f is
Lr-differentiable of order / and that f has property CT* at x=a, for / and m as in
the theorem. We first assume that 1=m=I/<m+1. Let P(x)- Z’ C,(x—a)* be

the L?-differential of f at x=a. Then the constants C., Ia[—m, m P(x) are the
same as the constants C, in (2.1) by the remark following Theorem 2.1. We clalm
that it is no loss of generality to assume that we have the same constants C,, |a|

in (1.1) and (2.1).

When /=m our claim follows from the fact that in this case (1.1) is independent
of the choice of constants C,. Now let m<I/<m+-1 -and denote these constants in
(1.1) and (2.1) by C, and C, respectively. Then.. '

]m' 2 (C,~-¢ )h“l jA;,"f(x)—m!I IZ C. 1| +|dpf(x)—m! [ [2 C. k.

|a] =m
Let O<e<1 be arbitrary and choose 7 and & as in Definition 1.1. Let - O<s<
<min (2, 6/2) and |h|=st. We integrate the above inequality to the p-th power
w.r.t. x over the set E,={x; s=|x—a|=2s}. Then using (1.1) and (2.1) we get

sup |m! . 2’ (C,—CHh| = o(s) +2'es', as s—0.

Injzse ' lof=

1t follows easily that C,=C., ja|=m, by letting s tend to zero, since />m. Thereby
our claim is proved.
Now consider the identity

SO =P = (- 1)"f(4;':'f(x)—n1! Mé'm C.h)—
_é(','c’) - 1)f(f(x+hk)—P(x+ kh)).

Let ¢=>0 be arbitrary. Choose ¢ and J as in Definition 1.1-and let 0<|x—a}<3.

Then integrating this identity to the p-th power w.r.t. h over the set |h|=t|x—al

and using (1.1) and the definition of the LP-derivative yields :
If()—P(x)| = ¢g|x—al+o(jx—al’), as x —a.

This proves the theorem when /=1. The case O</<1 is much simpler-and its
proof is left to the reader.
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5. Proof of Theorem 2.4

The proof is a combination of the methods of proof in Theorem 2.2 and [4,
Lemma 5.1]. Therefore we will not go into so many details. .

Let x, be such that |x,=a|=46/5 and let L denote the line segment between
. @ and x,. Define a sequence {x;};* of points on L such that |x;—al=r;=ro(1—1t/4),
i=1,2,..., where ry=|xo—al. Then |x;—x;.,|=(t/4)|x;—a|. Define B;=
=B(x;, (¢/8)|x;—al), i=0, 1, .... If xand x+mh belong to B;, then ]hlstlx a|
and hence (2.3) and the deﬁmtnon of B; give

AP f(x)| = e|lx—af = ¢-2°|x;—al".

Now by BRUDNYI [1, p. 158) there is a polynomial P; of degree at most m—1
such that

“.3) NfX) = Pi)| = cn, m, s)e|x;—al’,

for all ‘x€B;, i=0,1,.... We claim that the sequence {P;(x)}; of polynomials
converges uniformly on compact sets to' a polynomial P(x) with the desired prop-
erties. . .

We first note that for x€B;NB;,,, i=0,1,..., we have |P;(x)— P, (x)|=
=c(n, m, skjx;—af. Define E,=B(a, 2|x;—a|), i=0,1,.... Now B,NB;;,
contains a ball B; of radius (¢/8)|x;—a| and B;CE,, i=0,1,....- We apply Lemma
3.3 to the balls B; and E; and we get

. |D¢P;(a)—DaPi+l(a)' = c(n,'m, s, Dex;—al~ 1

for le|=m—1 and i=0,1,
" By the triangle mequahty and summation of the last inequalities we get, since

s=m—1, .
|D*P;(a) -D“Pj(a)lv = c(n, m, s, t)sl;c,-—al"'“'

for j=i. It now follows that there is a polynomial P of degree at most (m—1) such
that |D*P(a)—D°P(a)l=c(n, m, s, t)elx;—al ' for Jaj]=m—1 and i=0,1,....
This proves the first part of our claim. Taylor’s formula and (4.3) yield the estimate
44 - N ()= P(x)| = c(n,m, s, elx—alt
for xEDB;.
1 .
We now repeat the procedire above with other points x;, |x;—a|=44/5, such
that the corresponding sets | JB; cover the set {x; 0<|x—a|=46/5}. This can
1 . .
be done in N steps, where N only depends on » and ¢. If x, and x; are such that

the sets | JB; and |JB; overlap, then the polynomials constructed above must
1 1 .
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be identical, because of (4.4). It follows that (4.4) holds for all x, O<|x—a|=46/5.
This settles the remaining part of our claim.

Finally, the uniqueness of the polynomial P follows easily from (2.4), since
s=>m—1. This completes the proof of Theorem 2.4,
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