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A generalization of a theorem of G. Freud 
on the differentiability of functions 

TORD SJÛDIN 

0. Introduction 

Let / be a function defined on R1 and let m be a. positive integer. Then / has 
a Taylor polynomial of order m at x=a if and only if there is a number Cm such that 
(0.1) AHf(x) = C,„hm+((jc-a)m + hm)six, h), 

where e(x, /i)—0, as x-*a and /i—0. 
This result was announced by G. FREUD in [3]. It is our purpose to prove an 

¿/-version of (0.1) for functions in R", 1 and differentiability of order / > 0. 
This involves finding the ¿/-form of (0.1). (See Section 1 for the exact definitions.) 
The methods of proof use approximation theorems of Jackson type due to H. W H I T -

NEY [10] and Ju. A. BRUDNYI [1]. As an application we consider the problem to 
characterize differentiability in terms of ¿/-differentiability together with certain 
additional conditions. Such problems have been studied by the author in [4]—[6]. 
See also B . - M . STOCKE [8]. 

Section 1 contains our notation and the definitions. Our results are then stated 
in Section 2 and proved in Sections 4 and 5. The lemmas needed in the proofs are 
given in Section 3. 

1. Notation and definitions 

1.1. We use standard notation for points ..., x„) and real or complex 
valued functions fix) in R". For EczR" we denote Lebesgue outer measure and 
Lebesgue measure by |£|* and \E\ respectively. Integration with respect to Lebesgue 
measure is written j fix) dx and L"iE) denotes thé usual Lebesgue classes, 1 

E . . . . 
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^oo. All functions considered are measurable. We define | | / | | L P ( £ ) = ( J \f(x)\pdx)llp, 
E 

l S p S o o , with the usual modification when p=°°. When E=R" we just write | | / | j p . 
We let I=I(a, s) denote a cube in R" with its sides parallel to the axes, its 

centre in a and having diameter s. The ball with centre at a and radius r is denoted by 
B (a, r). The density of a measurable set E at x0 is defined by lim \EC\B(x0, r ) | • 
• |B(x0, r ) | - 1 , if the limit exists. We let c(a, /5, ...) denote constants, which may 
be different at each occurrence, depending on a, /?,.. . . Constants only depending 
on n are denoted by c. Polynomials P are written P(x)—2 where the summa-
tion is over multi indices a. 

1.2. Let / > 0 . A function / is said to be (ordinary) differentiable of order / 
at x—a in R" if there is a (Taylor) polynomial P(x) of degree at most / such that 
R(x,a)=f(x)—P(x)=o(\x—a\t), as x-»a. We say t h a t / is L"-differentiable at x=a 
of order I if 

( |Z?(a,r) |-i / |«(x, a)\"dxfp = o(r'), r - 0, 
B(0,r) 

for a suitable polynomial P. Here we make the usual modification when p = °°. 
The polynomials P are unique in all cases. 

The differences A™f(x) are defined inductively by A°hf(x)=f(x) and A™+1f(x) = 
=A™f(x+h)-A'Zf(x). It is easily verified that if P(x)= 2 O * , then A%P(x) = 

|or| i n 
=m\ 2 c a- h", for all x. For more properties of A™f, see [5] and [9, p. 102]. 

|a| = m 

1.3. In this section we define a smoothness property for functions called C{, 
using j-th order differences. We considered a slightly different property, also denoted 
by C{, in [5]. For a comparison of these properties, see the second remark following 
Definition 1.1. 

D e f i n i t i o n 1.1. Let j be a positive integer and let O S i ^ / ' + l . Let / be a 
function defined in a neighbourhood of x=a in R". We say that / has property 
C{i at x=a if there exist numbers C a , |a |=y, such that for every e=-0 there are 
t and <5, 0< /<min ( f i , 1) and ¿ > 0 , such that 

(1.1) sup \Alf(x) -j[ 2 Ca h" | S is - a 
\h\St\x-a\ |«| =j 

for all x, 0 < | x - a | < 5 . We take Cx=0, \a\=j, if s^j. 
Replacing (1.1) by 

(1.2) ( | £ ( 0 , i | x - a | ) | - * / \Mf{x)-j\ 2 Cah*\'dhy" ^e\x-a\\ 

lSp^co, gives an equivalent definition of property C{. For the proof, see 
[5, Lemma 5.2]. 
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The numbers Ca in (1.1) and (1.2) are unique, when •?>/. In the case when sSj, 
(1.1) and (1.2) are independent of the choice of C s in the sense that they hold with 
all Ca=0 if and only if they hold for some arbitrary C a , | a | = / 

R e m a r k . We get an equivalent definition of property C{ if we in (1.1) or (1.2) 
replace A[f by the binary differences BJ

hf, see [5, p. 51]. In proving this it is.no loss 
of generality to assume that Ca=0, |a| =j, in (1.1) and (1.2) and hence the proof 
of [5, Lemma 5.4] applies. We leave the details to the reader. 

R e m a r k . The present definition of property C{ differs from the one in [5, 
p. 53] only when s > j . For example in the case of [5, Theorem 3.2], the two defini-
tions agree. It can be proved that there is an alternative formulation of Theorem 3.2 
in [5] based on (a)—(c) in [5, pp. 53—54] and using property C{. Finally we note 
that property C* in the same as property Bs in [4, p. 9], when 

2. Main results 

2.1. Our first theorem is a characterization of ¿"-differentiability which gene-
ralizes G . F R E U D ' S result in [ 3 ] . 

T h e o r e m 2.1. Let f(x) be a function defined in a neighbourhood of x=a in 
R". Let / > 0 , 1 »о and let m^l<m+1, where m is a non-negative integer. 
Then f is IF-differentiable at x=a if and only if there are numbers Ca, |a|=w, 
such that 

(2.1) sup (\B(a, 0 | _ 1 f \A%f{x)-m\ 2 CM"dxYlp = o(t'), as t 0 . 
WsX B(a,t) l«l=»> 

We make the usual modification in (2.1) when 
As we mentioned in the introduction, Theorem 2.1 also holds for the case of 

differentiability in the ordinary sense with (2.1) replaced by 

(2.2) sup sup | A f f ( x ) - m \ 2 Cah'\ = o(sl), . 
|A|ss \x-a\Ss | i | = m 

as s-~ 0. Essentially the same proof applies. We omit the details. 

R e m a r k . In the case 0 < / < l , we have m=0 and A°hf(x)=f(x). Then (2.i) 
is just the definition of ZAdiflferentiability. In the case when / s i and (2.1) holds, 
there exist numbers C e , | a | ^ m — 1, such that the //-differential o f . / a t x=a is 
given by P(x)= 2 Cx(x-af. 

|A|SM 

2.2. Next we use ideas from [4]—[6] and combine Theorem 2.1 with (2.2) to 
prove results on the connection between differentiability and //-differentiability. 

18 
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T h e o r e m 2.2. Let / > 0 and Let.m be an integer such that 
•c-iw+ l, when /£1 and m=i, when 0 < / < l . Then f is differentiable at x=a 
of order I if and only i f f has an Lp-differential of order I at x=a and f has property 
C? at x=a. 

The following variant of Theorem 2.2 can be proved with the same methods. 

T h e o r e m 2.3. Let 0 < / < « , where m is an integer, and let. l ^ / j g « » . Then 
a function f is differentiable at x=a of order I if and only i f f is LP-differentiable at 
x=a of order I and f has property C™ at x=a. 

Theorems 2.2 and 2.3 should be compared to the corresponding results in [4] 
and [5]. Theorem 2.3 generalizes Theorem 3.2 in [5] and Theorem 2.2 is a generaliza-
tion of the alternative formulation of Theorem 3.2 in [5] which was mentioned in the 
second remark following Definition 1.1. Examples show that property CJ" alone 
does not imply differentiability of order I in Theorems 2.2 and 2.3. 

Our results in [4], [5] and the present paper can be summarized as follows. We 
want to characterize differentiability of a function f ( x ) at x=a by //-differentiability 
together with certain additional conditions. These additional conditions can roughly 
be described as follows (differentiability of order /, l S m S / < m + l , where m is 
an integer) : 

(0 ([4]) fm has property C\ at x=a, where / m (x) = / ( * ) - 2 Ca(x-a)\ ISMSm 
(ii) ([5]) / h a s properties C{ at ,x=a, for 1 Sj^m+l, and suitable s, 
(iii) (present p a p e r ) / h a s property CJ" (or C?+1) at x=a. 

The case (i) was applied to Bessel potentials of / /-functions in [4]. The advantage 
of (iii) compared to (ii) is that it has just one single condition. 

2.3. It was proved in [4, Lemma 5.2] that property C f , 0 < / S l , at x=a 
implies that | / ( x ) — | x - a | ' , for suitable numbers b and M, when x is close 
to a. Our next theorem generalizes this result. Roughly speaking, we prove that 
property C7 is of Lipschitz type. 

T h e o r e m 2.4. Let m be a positive integer and s>m—1, and let f be a func-
tion. Assume that there are s > 0 , ¿ > 0 and 0 < f < l such that 0<|x—a|s<5 implies 

(2.3) sup \A%f(x)\^£\x-a\\ 
| A | s r | x-a\ 

Then there is a unique polynomial P(x) of degree at most. (m— 1) such that 

(2.4) l / W - P W I s A / l x - a p 

for 0«= <3[s4<5/5, where M is a suitable number depending on n, m, s and t. 



Generalization o f a theorem o f G. Freud 275 

C o r o l l a r y . Let f have property C? at x=a, where I and m are as in Theo-
rem 2.2. Then there is a unique polynomial P of degree less than I such that 

\f(x)-P(x)\^M\x-a\' 

for 0-<=|x—<i|<5, where ¿ > 0 and M are suitable constants.. 

The corollary follows easily from Definition 1.1 and Theorem 2.4. 

3. Some lemmas 

It is well known that if a function f ( x ) satisfies lim sup \A™f(x)\< for every 
x in a measurable set 2s, then / is bounded in a neighbourhood of a.e. x£E, cf. 
[7, p. 249]. We need the following Z/-form of that result. 

L e m m a 3.1. Let m be a positive integer and 1 S/?Soo. Assume that for every 
x0 in a measurable set EczR", there is r 0 = r 0 ( x 0 ) > 0 such that 

f dh f \AZf{x)\*dx 
| A | S r 0 | * - j r „ | S r 0 

if 1S/j<«>, and 
ess sup ess sup \A^f(x)\ <», 
| x - * 0 | S r 0 | fc |=ir 0 

if p=oo. Then for a.e. x0€2s there is r=r(xQ)>0 such that f belongs to LP(JS), 
where B=B(x0, r). 

P r o o f of L e m m a 3.1. Let It is no loss of generality to assume 
that / i s finite in E. Define for i = 1 ,2 , . . . 

= f dh J \A%f(x)\>dx^i}, 
| d | s l / i | x - x 0 | a = l / i 

then E=\JEt. In contrast to the case in [7], the sets Et are here measurable. There 
i 

exists a closed subset P of E, with |£"\J° | arbitrarily small, such that the restric-
tion of / to P is continuous on P. Define Bi={x; Et has density one at x}, 

E© 

C = { x ; P has density one at x} and Ai=-BtC\C, i= 1,2,.... Let A=[J Ah then 

E\A c ( U № \ 5 , ) ) U ( £ \ P ) U ( P \ C ) . 
i 

We get since E i \ B t and P\C have measure zero. It is our 
purpose to prove that / is locally in LP near every point in A. Let / be fixed and 
let x0£A,. 
»* 
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We now have the following identity 

( - l)ra(/(*)-/(*„)) = "z ( - iy[T){f{x,)-f(2+sh))+ AHf(z), 
s—0 ^ ' 

where z+mh=x. Let x be fixed, 0<|A'- .Y 0 |</ \ We use [5, Lemma 4.3] to split 
the last term in the above identity as follows 

( - l)m(/(*) -/(*<>)) = m£ ( - l)s M (f(xo) -f(z+sh)) + s=0 ^ / 

+m2 ( - 1 ) ' " ( ? ) a T I / « ) № - » / ( * + « » ) + ( - 1 T W - J X * ) -i=l \ / 

Let | z — x 0 | , where M is to be chosen below, then | / i | ^ ( A f + l ) r . Taking 
the £,p-norm over we get 

(3.1) \f(x)-/(x0)\ ti J ; ' ( 7 ) \f(xo)~~f(z+sh)\ + 

+ c(n, M)m2 (\B(0, r)|"A f \AZf(z+jh)\'dWyip + 
j = 0 |w|S(M + 2)r 

+ c(n, m,M)(\B(0, r ) | - 1 / \AZf{x)\"dwfp = / 1 ( Z ) + / 2 ( Z ) + / ; , (A) . 
|w|S(M + 2)r 

There are r > 0 and M=M(r) such that the density at x0 of the set 

5 = {z; ( j / m ) x + ( l - j / m ) z £ P , for j = 1, 2, ..., m - 1 and | z - x 0 | — M | x - x 0 | } 

is arbitrarily close,to one, for all. 0 < | x — x 0 | < r , cf. [7, p. 267]. Further, 

f I2(zydzsc(n,M)r—i" 
B(.x„,r) 

if .0 < r s c ( « , m) • (1//). Hence, if r is small enough, we can for every x, 0 < \x—x0\<r, 
find z£S such t h a t / i ( z ) is arbitrarily small and / 2 ( z ) s c ( n , M, r, p). Integrating 
the/7-th power of (3.1) w.r.t. x over the set B(xQ, r) yields 

/ \f(x)-f(x0)\"dx^c(n, M,r,P) 
• B(x0, r) 

for some r > 0 . 
We have proved that / is locally in LP a t every point of A. ¡The conclusion of 

the lemma follows since | £ \ / 4 | can be made arbitrarily small: The case p= .<» is 
treated analogously and we omit the details. 
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L e m m a 3.2. Let 1 s p g t » and assume that (2.1) holds. Then f is locally in 
L" at a. 

P r o o f of L e m m a 3.2. Let 1 By (2.1) there are positive numbers 8 
and M such that |/i|ë<5 and \x0-a\^8 imply 

f \A^f(x)\"dx^M". 
B(x0,S) 

Then by Lemma 3.1 there are x 0 , with |JC0—a|«5/2, and positive numbers r and 
A'' such that J . \f(x)\" dx=N" There is nothing to prove unless r^8. 

B(x0.r) 
Consider the identity 

(3.2) A"h'f(x) = m£(- 1 R - ' ["l)f(x + ih)+f(X + mh). 

Let \h\=r/m. We integrate the p-th power of (3.2) w.r.t. x over B(x0, s), where 
s=r—(m— 1) - \h \=r/m. This gives 

/ \f(y)\p dy = (M+2m N f . 
B(x0+mh,s) 

Since a certain portion of B(x0+mh, s) lies outside B(x0, r), a simple geometrical 
argument shows that J \f(y)\pdy is finite, where r 1 = r + \h\H. If r±>8 we 

are done. Otherwise, repeating this procedure a finite number of times, we find 
r0><5 such that f \f(x)\"dx^ f \f(x)\"dx< 

oo. The casé p=«> is handled 
B(a,i/2) fl(x0> r0y 

analogously. This completes the proof of Lemma 3.2. 
Our next lemma is a slightly generalized form of a lemma due to De Giorgi, 

see [2, p. 140]. We omit the proof. 

L e m m a 3.3. Let I ^ I f a u ) and I2=I(b, v) be two cubes such that /iC/2. 
Let j be a non-negative integer and Then 

sup |£«P(x) | à c(n, j)(vluy v-'"I ( l A l - 1 / \P(x)\>dx)llp 

for all polynomials P of degree =j. The lemma also holds for balls instead of cubes. 

We make the usual modification in the right hand side of the inequality when 
p — 
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- 4. Proof of Theorems 2.1 and 2.2 

4.1. P r o o f of T h e o r e m 2.1. The proof of the necessity follows easily by 
integrating the identity . . . . 

. A^f(x)-m\ 2 Cah« = AZ(f-P)(x), 
M =m 

where P ( x ) = 2 ^ Л х ~ а Т - The details are left to the reader: 

Suppose that (2.1) holds. We may assume that C a = 0 for ; | a | = m , and that 
f(x)=0 outside some neighbourhood of x—a. Then by Lemma 3.2 we may also 
assume that / is in LP. 

Let Is=I(a,s) be a cube. Define ipwh={x; x+kh£Is,"for k=0,1, ..., m), 
then I s i h a l s . Now by [1, Theorem 1'] there is, for every 0, a polynomial P , 
of degree at most (m - 1 ) such that - . 

lf-Ps\\mi,) s Ф, m) sup MJT/lkpu,,,,). 

Then by our assumption (2.1) we get 

(4.1) s Ms), 

- where I>(J) is a non-decreasing function tending to zero as j—0. 
. Now let Pk be the polynomial Ps, when s=2~k, k=1,2, . . . . We intend to 

prove that the sequence converges uniformly on compact sets to a polynomial 
P with the desired properties. More exactly, we prove that there is a polynomial P 
of degree at most (m—1) such that 

(4.2) \DtPk(a)-D'P(a)\ = o(2-k^-^), as к 

for | a | s m — ! . ' It then follows from Taylor's formula that for s—2~k we have 
sup | P t ( x ) - P ( x ) | = o ( 2 - " ) , as fc—oo. Combining this with (4.1) we get the con-
fe r . 
elusion of the theorem with the polynomial P defined above. 

It remains to prove (4.2). Now (4.1) and Lemma 3.3 give that for | a |Sm—1, 

\1УРк+1(а)-£ГРк(а)\ ^ ф , m) (\Ik+1\^ J \Pk+1(x)-Pk(x)\> dx)Vp s 
' 'fc + t • • 

S c ( n , m ) 2 ^ ~ ' h ( 2 - k ) . 

Then for / >fc we get by summation 

\1УР,(а)--1ГРь(р)\ ^ 2 \ I T P j + 1 ( a ) - £ r P j ( a ) \ s c(n, m, 1 ) 2 ^ - 1 > и ( 2 ~ к ) . 
к 
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Hence the sequences { iyp k (a ) }" , | a | sm—1, converge and there is a polynomial P 
such that 

|D a P t (a ) -D a
J P(a) | = 0(2^1«'-''), 

as A:—oo. This proves (4.2) and thereby completes the proof of Theorem 2.1. 

4.2. P r o o f of T h e o r e m 2.2. We omit the necessity part of the proof since 
it is straightforward, cf. the corresponding results in [4] and [5]. Assume that f is 
//-differentiable of order / and that / has property C,m at x=a, for / and m as in 
the theorem. We first assume that l s m s / < m + l . Let P(x)= 2 Cx(x—af be 

the ¿"-differential of / at x=a. Then the constants Ca, |a|=/w, in P(x) are the 
same as the constants Ca in (2.1) by the remark following Theorem 2.1. We claim 
that it is no loss of generality to assume that we have the same constants Ca, | a |=m, 
in (1.1) and (2.1). 

When l = m our claim follows from the fact that in this case (1.1) is independent 
of the choice of constants C„. Now let m < / < m + 1 and denote these constants in 
(1.1) and (2.1) by Ca and C'a respectively. Then. 

|m! 2 (Q-C)H 3E\A?f(x)-m\ 2 CJi'\+\A^f(x)-ml 2 Q'4 
|a|=m |»|=m |«|=m 

Let 0 < £ < 1 be arbitrary and choose t and 8 as in Definition 1.1. Let 0 < s < 
<min (t, 8/2) and \h\Sst. We integrate the above inequality to the/>-th power 
w.r.t. x over the set Es={x\ s^\x—a\^2s}. Then using (1.1) and (2.1) we get 

sup \m\ 2 (Cx-C^)h"l =s o(s')+2'es', as s - 0. 
|/1 last ' |<z|=m 

It follows easily that Cx—C'x, | a |=m, by letting s tend to zero, since Thereby 
our claim is proved. 

Now consider the identity 

f(x)-P(x) = (-\Y{A?f(x)-m\ 2 C.h')-
|«|=m 

- 1 ( fc) ( - lf{f(x+hk)-P(x+ kh)). 

Let e > 0 be arbitrary. Choose t and 5 as in Definition 1.1 and let 0<|x— 
Then integrating this identity to the p-th power w.r.t. h over the set \h\^t\x—a\ 
and using (1.1) and the definition of the ¿"-derivative yields 

\f(x)-P{x)\^t\x-a\l+o(\x-a\i), as x^a. 

This proves the theorem when / s i . The case 0 < / < l is much simpler and its 
proof is left to the reader. 
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5. Proof of Theorem 2.4 

The proof is a combination of the methods of proof in Theorem 2.2 and [4, 
Lemma 5.1]. Therefore we will not go into so many details. 

Let x0 be such that | x 0 =a | = 4<5/5 and let L denote the line segment between 
a and x0 . Define a sequence {x,}~ of points on L such that « 1 = ^ = ^ ( 1 — t/4)', 
i= 1 , 2 , . . . , where /o=|x„—a\. Then |x{—x i+1 |=(//4)|x f —a\. Define Bt= 
=B(xt, (f/4)|X|—a|), / = 0 , 1, . . . . If x and x+mh belong to Bh then \h\^t\x-a\ 
and hence (2.3) and the definition of Bt give 

I 4 7 W I ^ £ ! x - f l | s S a - 2 s | x f - a | s . 

Now by BRUDNYI [ 1 , p. 1 5 8 ] there is a polynomial Pi of degree at most m — 1 

such that 
(4.3) . !/(*)-/»,(*)! S c (« ,m,s )8 | j c l -a | ' , 

for all x£Bi, / '=0,1, ... . We claim that the sequence {P;(x)}^ of polynomials 
converges uniformly on compact sets to a polynomial P(x) with the desired prop-
erties. 

We first note that for xÇ.BiC\Bi+1, i=0, 1, ... , we have |P,-(x)-.Pf+1(x)|=2 
=Sc(n, m, j )e |x ; -a | s . Define Et=B(a, 2 | x i - a | ) , / = 0 , 1 , ... . Now BtC\Bi+i 

contains a ball B\ of radius ( / / 8 ) | x ; — a n d B'iczEi,.i=0, 1, . . . . We apply Lemma 
3.3 to thé. balls B\ and Ei and we get 

|jypt(a)-irp1+i(a)\ ^ c(n, m, s, 0«!'*, — 

for | a | ëm—1 and / = 0 , 1 , . . . . 
By the triangle inequality and summation of the last inequalities we get, since 

•v => m—1, 
\D*Pi(a)-jyPj(a)\ c(n, m, s, i)el-^i — « | a | 

for _/>j. It now follows that there is a polynomial P of degree at most (m — 1) such 
that \D"P(a)-Dc'Pi(a)l^c(ti, m, s, i)e|x i-a|s~1 '11 for 1 and ¿=0,1 , . . . . 
This proves the first part of our claim. Taylor's formula and (4.3) yield the estimate 

(4.4) , | / M - / > ( x ) | ^ c ( « , m, s, t)£\x-a\s 

for X€(J£; . j 
We now repeat thé procedure above with other points Xq, a|=4<5/5, such 

that the corresponding sets U-®,- cover the set {x; 0<|x—a|ë4<5/5}. This can 

be done in N steps, where N only depends on n and t. If x0 and x'0 are such that 
OO CO 

the sets (JBj and (J-®; overlap, then the polynomials constructed above must 
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be identical , because of (4.4). I t fo l lows t h a t (4.4) ho lds f o r all x, 0 < | j t — a \ ^ 4 5 / 5 . 
T h i s settles t he r ema in ing p a r t of o u r c laim. 

Final ly , t he un iqueness of t he po lynomia l P fo l lows easily f r o m (2.4), since 
s>m— 1. T h i s comple tes the p r o o f of T h e o r e m 2.4. 
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