Integrability of Rees-Stanojević sums

S. ZAHID ALI ZAINI and SABIR HASAN

1. A sequence $\left\{a_{n}\right\}$ of positive numbers is called quasi-monotone if $n^{-\beta} a_{n} \nmid 0$ for some β, or equivalently, if $a_{n+1} \leqq a_{n}(1+\alpha / n)$.

Ram [3] defined that a sequence $\left\{a_{k}\right\}$ of numbers satisfies condition (S^{*}) if $a_{k} \rightarrow 0$ as $k \rightarrow \infty$ and there exists a sequence $\left\{A_{k}\right\}$ such that $\left\{A_{k}\right\}$ is quasi-monotone,

$$
\begin{equation*}
\sum_{k=0}^{\infty} A_{k}<\infty \tag{1}
\end{equation*}
$$

and
(2)

$$
\left|\Delta a_{k}\right| \leqq A_{k} \text { for all } k .
$$

Condition (S^{*}) is weaker than the condition (S) of Sidon introduced in [4]. Rees and Stanojevté [2] (see also Garrett and Stanosević [1]) introduced the modified cosine sums

$$
\begin{equation*}
g_{n}(x)=(1 / 2) \sum_{k=0}^{n} \Delta a_{k}+\sum_{k=1}^{n} \sum_{j=k}^{n} \Delta a_{j} \cos k x \tag{l.1}
\end{equation*}
$$

and obtained a necessary and sufficient condition for the integrability of the limit of (1.1).

Ram [3] proved the following theorem in which he showed that condition (S^{*}) is sufficient for the integrability of the limit of (1.1).

Theorem A. Let the sequence $\left\{a_{k}\right\}$ satisfy condition (S^{*}). Then

$$
g(x)=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left[(1 / 2) \Delta a_{k}+\sum_{j=k}^{n} \Delta a_{j} \cos k x\right]
$$

exists for $x \in(0, \pi]$, and $g(x) \in L(0, \pi)$.

We say that a sequence $\left\{a_{n}\right\}$ of numbers satisfies condition ($S^{* *}$) if $\left\{a_{n}\right\}$ is a null sequence and

$$
\begin{equation*}
n \Delta a_{n}=O(1) \quad(n \rightarrow \infty) \tag{3}
\end{equation*}
$$

We claim that our condition ($S^{* *}$) includes a more general class of sequences $\left\{a_{n}\right\}$ than that of Ram's condition (S^{*}).

Example. The sequence

$$
a_{n}=\frac{(-1)^{n+1}}{n \log (n+1)} \quad(n=1,2, \ldots)
$$

does not satisfy the conditions (S^{*}) of Ram as $\left|\Delta a_{n}\right| \geqq\left(n \log (n+1)^{-1}\right)$ and so $\sum\left|\Delta a_{n}\right|=\infty$. This in fact contradicts conditions (1) and (2) of (S^{*}). On the other hand this sequence satisfies the condition (3) of ($\mathrm{S}^{* *}$).

The object of this paper is to show that condition ($\mathrm{S}^{* *}$) is sufficient for the integrability of the limit of (1.1).

Theorem. Let the sequence $\left\{a_{n}\right\}$ satisfy condition $\left(S^{* *}\right)$. Then

$$
g(x)=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left[(1 / 2) \Delta a_{k}+\sum_{j=k}^{n} \Delta a_{j} \cos k x\right]
$$

exists for $x \in(0, \pi]$, and $g(x) \in L(0, \pi)$.
2. We require the following lemma for the proof of our theorem.

Lemma. Let $\left\{a_{n}\right\}$ be a null sequence and $n \Delta a_{n}=O(1), n \rightarrow \infty$. Then

$$
\sum(n+1) \Delta^{2} a_{n}<\infty .
$$

Proof. Applying Abel's transformation, we find

$$
\sum_{m=0}^{n} \Delta a_{m}=\sum_{m=0}^{n} 1 \cdot \Delta a_{m}=\sum_{m=0}^{n-1}(m+1) \Delta^{2} a_{m}+(n+1) \Delta a_{n},
$$

and since $(n+1) \Delta a_{n} \rightarrow 0$ but $\sum_{m=0}^{n} \Delta a_{m}=a_{0}-a_{n} \rightarrow a_{0}$ as $a_{n} \rightarrow 0, n \rightarrow \infty$, then

$$
\sum_{m=0}^{n-1}(m+1) \Delta^{2} a_{m} \rightarrow a_{0}
$$

i.e. the series $\sum_{m=0}^{\infty}(m+1) \Delta^{2} a_{m}$ converges.
3. Proof of the Theorem. We have

$$
\begin{gathered}
g_{n}(x)=\sum_{k=1}^{n}\left[(1 / 2) \Delta a_{k}+\sum_{j=k}^{n} \Delta a_{j} \cos k x\right]= \\
=\sum_{k=1}^{n}(1 / 2) \Delta a_{k}+\sum_{k=1}^{n} \Delta a_{k} \cos k x-a_{n+1} D_{n}(x)+(1 / 2) a_{n+1}
\end{gathered}
$$

Using Abel's transformation, we obtain

$$
\begin{gather*}
g_{n}(x)=\sum_{k=1}^{n}(1 / 2) \Delta a_{k}+\sum_{k=1}^{n-1} \Delta a_{k}\left(D_{k}(x)+1 / 2\right)+a_{n}\left(D_{n}(x)+1 / 2\right)- \tag{4.1}\\
-a_{n+1} D_{n}(x)-a_{1}+(1 / 2) a_{n+1}=\sum_{k=1}^{n-1} \Delta a_{k} D_{k}(x)+a_{n} D_{n}(x)-a_{n+1} D_{n}(x)
\end{gather*}
$$

Applying again Abel's transformation, we have

$$
\begin{equation*}
g_{n}(x)=\sum_{k=1}^{n-2}(k+1) \Delta^{2} a_{k} F_{k}(x)+n \Delta a_{n-1} F_{n-1}(x)+a_{n} D_{n}(x)-a_{n+1} D_{n}(x) \tag{4.2}
\end{equation*}
$$

where $D_{n}(x)$ and $F_{n}(x)$ denotes the Dirichlet and Fejér kernels respectively.
If $x \not \equiv 0(\bmod 2 \pi)$, then since $a_{n} \rightarrow 0$, the last two terms of the right hand side of (4.2) tends to zero as $n \rightarrow \infty$. Moreover, at $x \not \equiv 0(\bmod 2 \pi) F_{n}(x)$ always remains finite as $n \rightarrow \infty$ and since $n \Delta a_{n} \rightarrow 0$ therefore $n \Delta a_{n-1} F_{n-1}(x) \rightarrow 0$ as $n \rightarrow \infty$.

Since $F_{k}(x)=o\left(1 /(k+1) x^{2}\right)$ if $x \neq 0$ and $\sum(k+1) \Delta^{2} a_{k}$ is convergent then the series $\sum_{k=1}^{\infty}(k+1) \Delta^{2} a_{k} F_{k}(x)$ converges. Hence for $x \neq 0(\bmod 2 \pi)$

$$
g(x)=\lim _{n \rightarrow \infty} g_{n}(x)=\sum_{k=1}^{\infty}(k+1) \Delta^{2} a_{k} F_{k}(x)
$$

The integrability of $g(x)$ follows from the lemma; indeed, we have

$$
\int_{0}^{\pi} g(x) d x=\sum_{k=1}^{\infty}(k+1) \Delta^{2} a_{k} \int_{0}^{\pi} F_{k}(x) d x=(\pi / 2) \sum_{k=1}^{\infty}(k+1) \Delta^{2} a_{k}<\infty
$$

since $\int_{0}^{\pi} F_{n}(x) d x=\pi / 2$.
Corollary. Let $\left\{a_{n}\right\}$ be a null sequence and $n \Delta a_{n}=o(1), n \rightarrow \infty$. Then

$$
(1 / x) \sum_{k=1}^{\infty} \Delta a_{k} \sin (k+1 / 2) x=h(x) / x
$$

converges for $x \in(0, \pi]$, and $h(x) / x \in L(0, \pi)$.
Proof. From (4.1) we have

$$
g(x)=\sum_{k=1}^{\infty} \Delta a_{k} D_{k}(x)=\left(\sum_{k=1}^{\infty} \Delta a_{k} \sin (k+1 / 2) x\right) / 2 \sin (x / 2)=h(x) / 2 \sin (x / 2)
$$

According to the theorem, $g(x)$ exists for $x \not \equiv 0$, and $g(x) \in L[0, \pi]$ if $n \Delta a_{n}=o(1)$, which implies our result.

References

[1] J. W. Garrett and C. V. Stanojević, On L^{1} convergence of certain cosine sums, Proc. Amer. Math. Soc., 54 (1976), 101-105.
[2] C. S. Rees and C. V. Stanojević, Necessary and sufficient condition for integrability of cosiné sums, J. Math. Anal. Appl., 43 (1973), 579-586.
[3] B. Ram, Integrability of Rees-Stanojević sums, Acta Sci. Math., 42 (1980), 153-155.
[4] S. Sidon, Hinreichende Bedingungen für den Fourier-Charakter einer trigonometrischen Reihe, J. London Math. Soc., 14 (1939), 158-160.

DEPARTMENT OF MATHEMATICS
ALIGARH MUSLIM UNIVERSITY
ALIGARH-202001, INDIA

