Integrability of Rees—Stanojević sums

S. ZAHID ALI ZAINI and SABIR HASAN

1. A sequence $\{a_n\}$ of positive numbers is called quasi-monotone if $n^{-\beta}a_n \downarrow 0$ for some β , or equivalently, if $a_{n+1} \leq a_n (1+\alpha/n)$.

RAM [3] defined that a sequence $\{a_k\}$ of numbers satisfies condition (S*) if $a_k \to 0$ as $k \to \infty$ and there exists a sequence $\{A_k\}$ such that $\{A_k\}$ is quasi-monotone,

$$(1) \sum_{k=0}^{\infty} A_k < \infty$$

and

(2)
$$|\Delta a_k| \leq A_k$$
 for all k .

Condition (S*) is weaker than the condition (S) of Sidon introduced in [4]. REES and STANOJEVIĆ [2] (see also GARRETT and STANOJEVIĆ [1]) introduced the modified cosine sums

(1.1)
$$g_n(x) = (1/2) \sum_{k=0}^n \Delta a_k + \sum_{k=1}^n \sum_{j=k}^n \Delta a_j \cos kx$$

and obtained a necessary and sufficient condition for the integrability of the limit of (1.1).

RAM [3] proved the following theorem in which he showed that condition (S*) is sufficient for the integrability of the limit of (1.1).

Theorem A. Let the sequence $\{a_k\}$ satisfy condition (S*). Then

$$g(x) = \lim_{n \to \infty} \sum_{k=1}^{n} \left[(1/2) \Delta a_k + \sum_{i=k}^{n} \Delta a_i \cos kx \right]$$

exists for $x \in (0, \pi]$, and $g(x) \in L(0, \pi)$.

Received January 24, 1983.

We say that a sequence $\{a_n\}$ of numbers satisfies condition (S^{**}) if $\{a_n\}$ is a null sequence and

(3)
$$n\Delta a_n = O(1) \quad (n \to \infty).$$

We claim that our condition (S^{**}) includes a more general class of sequences $\{a_n\}$ than that of Ram's condition (S^*) .

Example. The sequence

$$a_n = \frac{(-1)^{n+1}}{n\log(n+1)}$$
 $(n = 1, 2, ...)$

does not satisfy the conditions (S*) of Ram as $|\Delta a_n| \ge (n \log (n+1)^{-1})$ and so $\sum |\Delta a_n| = \infty$. This in fact contradicts conditions (1) and (2) of (S*). On the other hand this sequence satisfies the condition (3) of (S**).

The object of this paper is to show that condition (S^{**}) is sufficient for the integrability of the limit of (1.1).

Theorem. Let the sequence $\{a_n\}$ satisfy condition (S**). Then

$$g(x) = \lim_{n \to \infty} \sum_{k=1}^{n} \left[(1/2) \Delta a_k + \sum_{j=k}^{n} \Delta a_j \cos kx \right]$$

exists for $x \in (0, \pi]$, and $g(x) \in L(0, \pi)$.

2. We require the following lemma for the proof of our theorem.

Lemma. Let $\{a_n\}$ be a null sequence and $n\Delta a_n = O(1)$, $n \to \infty$. Then

$$\sum (n+1) \Delta^2 a_n < \infty.$$

Proof. Applying Abel's transformation, we find

$$\sum_{m=0}^{n} \Delta a_{m} = \sum_{m=0}^{n} 1 \cdot \Delta a_{m} = \sum_{m=0}^{n-1} (m+1) \Delta^{2} a_{m} + (n+1) \Delta a_{n},$$

and since $(n+1)\Delta a_n \to 0$ but $\sum_{m=0}^n \Delta a_m = a_0 - a_n \to a_0$ as $a_n \to 0$, $n \to \infty$, then

$$\sum_{m=0}^{n-1} (m+1) \Delta^2 a_m \to a_0,$$

i.e. the series $\sum_{m=0}^{\infty} (m+1) \Delta^2 a_m$ converges.

3. Proof of the Theorem. We have

$$g_n(x) = \sum_{k=1}^n \left[(1/2) \Delta a_k + \sum_{j=k}^n \Delta a_j \cos kx \right] =$$

$$= \sum_{k=1}^n (1/2) \Delta a_k + \sum_{k=1}^n \Delta a_k \cos kx - a_{n+1} D_n(x) + (1/2) a_{n+1}.$$

Using Abel's transformation, we obtain

$$g_n(x) = \sum_{k=1}^{n} (1/2) \Delta a_k + \sum_{k=1}^{n-1} \Delta a_k (D_k(x) + 1/2) + a_n (D_n(x) + 1/2) -$$

$$-a_{n+1} D_n(x) - a_1 + (1/2) a_{n+1} = \sum_{k=1}^{n-1} \Delta a_k D_k(x) + a_n D_n(x) - a_{n+1} D_n(x).$$

Applying again Abel's transformation, we have

$$(4.2) g_n(x) = \sum_{k=1}^{n-2} (k+1) \Delta^2 a_k F_k(x) + n \Delta a_{n-1} F_{n-1}(x) + a_n D_n(x) - a_{n+1} D_n(x),$$

where $D_n(x)$ and $F_n(x)$ denotes the Dirichlet and Fejér kernels respectively.

If $x \not\equiv 0 \pmod{2\pi}$, then since $a_n \to 0$, the last two terms of the right hand side of (4.2) tends to zero as $n \to \infty$. Moreover, at $x \not\equiv 0 \pmod{2\pi}$ $F_n(x)$ always remains finite as $n \to \infty$ and since $n \triangle a_n \to 0$ therefore $n \triangle a_{n-1} F_{n-1}(x) \to 0$ as $n \to \infty$.

Since $F_k(x) = o(1/(k+1)x^2)$ if $x \not\equiv 0$ and $\sum (k+1)\Delta^2 a_k$ is convergent then the series $\sum_{k=1}^{\infty} (k+1)\Delta^2 a_k F_k(x)$ converges. Hence for $x \not\equiv 0 \pmod{2\pi}$

$$g(x) = \lim_{n \to \infty} g_n(x) = \sum_{k=1}^{\infty} (k+1) \Delta^2 a_k F_k(x).$$

The integrability of g(x) follows from the lemma; indeed, we have

$$\int_{0}^{\pi} g(x) dx = \sum_{k=1}^{\infty} (k+1) \Delta^{2} a_{k} \int_{0}^{\pi} F_{k}(x) dx = (\pi/2) \sum_{k=1}^{\infty} (k+1) \Delta^{2} a_{k} < \infty,$$

since $\int_{0}^{\pi} F_{n}(x) dx = \pi/2.$

Corollary. Let $\{a_n\}$ be a null sequence and $n\Delta a_n = o(1)$, $n \to \infty$. Then

$$(1/x) \sum_{k=1}^{\infty} \Delta a_k \sin(k+1/2)x = h(x)/x$$

converges for $x \in (0, \pi]$, and $h(x)/x \in L(0, \pi)$.

Proof. From (4.1) we have

$$g(x) = \sum_{k=1}^{\infty} \Delta a_k D_k(x) = \left(\sum_{k=1}^{\infty} \Delta a_k \sin((k+1/2)x)\right) / 2\sin((x/2)) = h(x) / 2\sin((x/2)).$$

According to the theorem, g(x) exists for $x \not\equiv 0$, and $g(x) \in L[0, \pi]$ if $n \triangle a_n = o(1)$, which implies our result.

References

- J. W. GARRETT and C. V. STANOJEVIĆ, On L¹ convergence of certain cosine sums, Proc. Amer. Math. Soc., 54 (1976), 101—105.
- [2] C. S. Rees and C. V. Stanojević, Necessary and sufficient condition for integrability of cosine sums, J. Math. Anal. Appl., 43 (1973), 579—586.
- [3] B. RAM, Integrability of Rees-Stanojević sums, Acta Sci. Math., 42 (1980), 153-155.
- [4] S. Sidon, Hinreichende Bedingungen für den Fourier-Charakter einer trigonometrischen Reihe, J. London Math. Soc., 14 (1939), 158—160.

DEPARTMENT OF MATHEMATICS ALIGARH MUSLIM UNIVERSITY ALIGARH—202 001, INDIA