Характеристические функции распределений притягивающихся к устойчивому закону с показателем $\alpha = 1$

С. Г. ТКАЧУК

Функция распределения (ф. р.) F(x) притягивается к (ф. р.) G(x), если для соответствующих характеристических функций (х. ф.) f(t) и g(t) существуют последовательности постоянных $\{a_n\},\{b_n\},\ b_n>0$, таких, что при любом t, $-\infty < t < \infty$.

(1)
$$\lim_{n\to\infty} \exp\left\{-ita_n/b_n\right\} f^n(t/b_n) = g(t).$$

Множество предельных х. ф. в (1) совпадает с четырехпараметрическим семейством устойчивых х. ф. $g(t, \alpha, \beta, \gamma, c)$. В интересующем нас случае $\alpha = 1$ имеет место представление

где γ — действительная постоянная, $c > 0, -1 \le \beta \le 1$.

Обозначим $D(\alpha, \beta)$ — множество ф. р., притягивающихся к устойчивой ф. р. $G(x, \alpha, \beta, \gamma, c)$. К настоящему времени подробно изучены (см. [2], [6], [4]) свойства F(x) и f(t) связанные с условием $F(x) \in D(\alpha, \beta)$. Например, теорема 2.6.5 из [2] содержит необходимые и достаточные условия равенства (1) в терминах х. ф. f(t). Однако в работе [4] отмечено, что в случае $F(x) \in D(1, \beta)$ утверждение этой теоремы неверно. В свою очередь приведенное в [4] условие (см. конец раздела 2 в [4]) для случая $F(x) \in D(1, 0)$ также является неточным.

Целью настоящей заметки является исчерпывающее рассмотрение данного вопроса.

Поступило 5 июня 1983 г.

Теорема. 1. Если $F(x) \in D(1, \beta)$, то при $t \to 0$

$$\ln f(t) = -(\pi/2) \left(1 - F(1/|t|) + F(-1/|t|) \right) + i \left[t \int_{0}^{1/|t|} \left(1 - F(u) - F(-u) \right) du - CE(\beta) \left(1 - F(1/|t|) - F(-1/|t|) \right) \right] + o \left(1 - F(1/|t|) + F(-1/|t|) \right),$$

где C — постоянная Эйлери, $E(\beta)=0$ при $\beta=0$, $E(\beta)=1$ при $\beta\neq 0$. 2. $F(x)\in D(1,\beta)$ тогда и только тогда, когда при $t\to 0$

(4)
$$\ln f(t) = -|t|h(1/|t|) + it \left[\int_{0}^{1/|t|} \left((2\beta/\pi)(h(u)/u) + q(u) \right) du + o(h(1/|t|)) \right],$$

где h(u)/u и q(u) интегрируемые на любом конечном интервале из $[0, \infty)$ функции такие, что при $u \to \infty$ h(u) — медленно меняющаяся функция, a q(u) = = o(h(u)/u).

Следствие. Если $F(x) \in D(1, \beta)$, то при $t \to 0$

(5)
$$|f(t)| \sim \exp\left\{-(\pi/2)\left(1 - F(1/|t|) + F(-1/|t|)\right)\right\} \sim \exp\left\{-|t|h(1/|t|)\right\}$$

(6)

$$\left|\ln f(t)\right| \sim \left|t\int_0^{1/|t|} \left(1 - F(u) - F(-u)\right) du\right| \sim \left|t\int_0^{1/|t|} \left((2\beta/\pi)(h(u)/u) + q(u)\right) du\right|, \quad \beta \neq 0,$$

(7)
$$|\ln f(t)| \sim \left\{ t^2 h^2(1/|t|) + \left[t \int_0^{1/|t|} q(u) du \right]^2 \right\}^{1/2}, \quad \beta = 0,$$

где h(u) u q(u) me же, что u s (4).

Оценка (5) уточняет соответствующее утверждение, полученное в [2] на стр. 110 в случае $\alpha=1$. Оценки (6) и (7) не следуют, соответственно, из теоремы 2.6.5 монографии [2] и из условия приведенного в работе [4], поскольку в [2] на месте интеграла в представлении (4) находится функция $(2\beta/\pi)h(1/|t|) \ln |t|$, а в работе [4] в представлении (4) отсутствует функция q(u). Указанные обстоятельства позволяют построить

Пример 1. Пусть F(x)=1/3 при $|x| \le 3$, а при x > 3

$$F(-x) = 1/x$$
, $1 - F(x) = (1 + 1/\ln x)/x$,

тогда (см. условие (12) и равенство (13), приводимые ниже) $F(x) \in D(1, 0)$, и из представления (3) следует, что при $t \to 0$

$$\ln f(t) = -\pi |t| - it (\ln \ln 3 - \ln |\ln |t|) + o(t),$$

в то время как соответствующие утверждения из [2] и [4] дают в этом случае неверную оценку

$$\ln f(t) = -\pi |t| + i\gamma t + o(t), \quad \gamma = \text{const.}$$

Заметим, что в общем случае o(h(1/|t|)) в правой части (4) нельзя внести под знак интеграла. (Эту проблему указали автору А. В. Нагаев и Л. А. Анорина.) Это показывает

Пример 2. Пусть случайным величинам η , ζ , ξ соответствуют φ . р. $F_{\eta}(x)$, $F_{\xi}(x)$, $F_{\xi}(x)$ и х. φ .

(8)
$$f_{\eta}(t) = a \int_{3}^{\infty} x^{-2} \ln x \exp \{itx\} dx, \quad a = \left(\int_{3}^{\infty} x^{-2} \ln x dx\right)^{-1},$$

(9)
$$f_{\zeta}(t) = b \sum_{k=1}^{\infty} 2^{-k^2} \exp\{it2^{k^2}\}, \quad b = \left(\sum_{k=1}^{\infty} 2^{-k^2}\right)^{-1},$$

(10)
$$f_{\xi}(t) = (f_{\eta}(t) + f_{\xi}(t))/2.$$

Далее будет показано, что $F_{\xi}(x) \in D(1, 1)$, а функции

(11)
$$\varphi(u) = \operatorname{Im} u \ln f_{\varepsilon}(1/u), \quad \psi(u) = \operatorname{Re} u \ln f_{\varepsilon}(1/u),$$

где u=1/t, $t\neq 0$, не являются абсолютно непрерывными ни в одном интервале. Следовательно, $\varphi(u)$ нельзя представить в виде интеграла с переменным верхним пределом u=1/t. Отметим также, что $f_{\zeta}(t)$ и $f_{\xi}(t)$ являются новыми примерами нигде не дифференцируемых х. ф.

Доказательство теоремы. Известно (см. [2] стр. 93), что $F(x) \in D(1, \beta)$ тогда и только тогда, когда при $x \to \infty$

(12)
$$F(-x) = x^{-1}l(x)(c_1+o(1)), \quad 1-F(x) = x^{-1}l(x)(c_2+o(1)),$$

(13)
$$(c_2-c_1)/(c_1+c_2)=\beta,$$

где $c_1 \ge 0$, $c_2 \ge 0$, $c_1 + c_2 > 0$, l(x) — медленно меняющаяся функция. 1. Обозначим

(14)
$$m^{-}(x) = x(1 - F(x) - F(-x)), \ m^{+}(x) = x(1 - F(x) + F(-x)).$$

Ввиду условия (12) имеем

(15)
$$m^{-}(x) = l(x)(c_2-c_1+o(1)), \quad m^{+}(x) = l(x)(c_1+c_2+o(1)).$$

Легко проверить, что

(16)
$$f(t)-1 = it \int_0^\infty \frac{\cos tu}{u} m^-(u) du - |t| \int_0^\infty \frac{\sin |tu|}{u} m^+(u) du.$$

Слегка изменив рассуждения леммы 2.5.1 из [2], получим ввиду (15) при $t \rightarrow 0$

(17)
$$\int_{0}^{\infty} \frac{\sin|tu|}{u} m^{+}(u) du = \frac{\pi}{2} m^{+} \left(\frac{1}{|t|}\right) (1 + o(1)),$$

(18)
$$\int_{0}^{1/|t|} \frac{1 - \cos tu}{u} \, m^{-}(u) \, du = E(\beta) m^{-} \left(\frac{1}{|t|}\right) \int_{0}^{1} \frac{1 - \cos u}{u} \, du + o\left(l\left(\frac{1}{|t|}\right)\right),$$

(19)
$$\int_{1/|t|}^{\infty} \frac{\cos tu}{u} m^{-}(u) du = E(\beta) m^{-} \left(\frac{1}{|t|}\right) \int_{1}^{\infty} \frac{\cos u}{u} du + o\left(l\left(\frac{1}{|t|}\right)\right),$$

где $E(\beta)$ определено в (3). Из (18) и (19) следует, что

(20)
$$\int_{0}^{\infty} \frac{\cos tu}{u} m^{-}(u) du = \int_{0}^{1/|t|} \frac{m^{-}(u)}{u} du - CE(\beta) m^{-}\left(\frac{1}{|t|}\right) + o\left(l\left(\frac{1}{|t|}\right)\right),$$

так как (см. [3], стр. 627)

$$\int_{0}^{1} \frac{1 - \cos u}{u} du - \int_{1}^{\infty} \frac{\cos u}{u} du = C,$$

где C — постоянная Эйлера. Ввиду представления (16), соотношений (15), (17) и (20)

(21)
$$f(t)-1=it\left(\int_{0}^{1/|t|}\frac{m^{-}(u)}{u}du-CE(\beta)m^{-}\left(\frac{1}{|t|}\right)\right)-\frac{\pi}{2}|t|m^{+}\left(\frac{1}{|t|}\right)(1+o(1)).$$

Далее, легко проверить, что

(22)
$$\left|\operatorname{Im}(f(t)-1)\right| < |t| \int_{0}^{\infty} \frac{\cos tu}{u} m^{+}(u) du = |t| L\left(\frac{1}{|t|}\right),$$

где L(u) — медленно меняющаяся функция. Соотношения (14), (15), (21), (22) вместе с оценкой

$$\ln f(t) = f(t) - 1 + O(|f(t) - 1|^2)$$

доказывают утверждение пункта 1.

2. Лемма 1. Медленно меняющаяся функция h(x) допускает представление

(23)
$$h(x) = \int_{0}^{x} (q_1(u)/u) du + q_2(x),$$

где $q_1(x)/x$ — интегрируемая на любом конечном интервале из $[0, \infty)$ функция и при $x \to \infty$ $q_i(x) = o(h(x))$, i = 1, 2.

Доказательство леммы 1. Известно (см. [1], гл. II), что

(24)
$$h(x) = h_1(x) + q_3(x),$$

где $h_1(x) \in C_{\infty}$ и при $x \to \infty$ $q_3(x) = o(h(x))$. Используя (24) и представление Карамата (см. [6], стр. 342)

(25)
$$h(x) = a(x) \exp\left\{ \int_{1}^{x} (\varepsilon(u)/u) du \right\},$$

где $\varepsilon(x) \to 0$ и $a(x) \to c$, $0 < c < \infty$, при $x \to \infty$, легко проверить, что

$$(26) h_1'(x) = o(h_1(x)/x), \quad x \to \infty.$$

Из (24) и (26) следует (23), где можно положить

$$q_1(x) = x(h'_1(x) + h_1(0) \exp\{-x\}) = o(h(x)),$$

$$q_2(x) = q_3(x) + h_1(0) \exp\{-x\} = o(h(x)).$$

Лемма 1 доказана. Необходимость представления (4) вытекает теперь из (3), (14), (15) и (23).

Достаточность представления (4) будет доказана, если найдутся последовательности $\{a_n\}$, $\{b_n\}$ такие, что

(27)
$$\exp \left\{-ita_n/b_n\right\} f^n(t/b_n) \to g(t).$$

Положим при достаточно больших п

(28)
$$b_n = \{\inf\{t: \text{Re } \ln f(t) = c/n\}\}^{-1}, \quad a_n = nb_n \text{Im } \ln f(1/b_n) - \gamma b_n.$$

Используя (4) и свойства медленно меняющихся функций, нетрудно проверить, что при $n \to \infty$

(29)
$$b_n = c^{-1} nh(b_n) (1 + o(1)),$$

(30)
$$a_n = n \int_0^{b_n} Q(u) du - \gamma b_n + o(b_n), \quad Q(u) = (2\beta/\pi) (h(u)/u) + q(u).$$

Из (29), (30) следует, что при любом фиксированном $t \neq 0$ и $n \to \infty$

(31)
$$nh(b_n/|t|)/b_n = (nh(b_n)/b_n)(h(b_n/|t|)/h(b_n)) = c + o(1),$$

(32)
$$(n/b_n) \left(\int_0^{b_n/|t|} Q(u) du - \int_0^{b_n} Q(u) du \right) = (n/b_n) \int_{b_n}^{b_n/|t|} Q(u) du =$$

$$= \int_0^{1/|t|} \frac{h(ub_n)}{h(b_n)} \frac{1}{u} \left(\frac{2\beta c}{\pi} + o(1) \right) du = -\frac{2\beta c}{\pi} \ln|t| + o(1).$$

Представление (4) и соотношения (29)—(32) позволяют записать, что при $n \to \infty$ и любом фиксированном $t \ne 0$

$$n \ln f(t/b_n) - ita_n/b_n = it\gamma + itnb_n^{-1} \left(\int_0^{b_n/|t|} Q(u) \, du - \int_0^{b_n} Q(u) \, du \right) - \\ - |t| nh(b_n/|t|)/b_n + o(1) = i\gamma t - c|t| \left(1 - i(2\beta/\pi) \ln|t| \operatorname{sgn} t \right) + o(1),$$

следовательно, выполняется (27). Доказательство пункта 2 и самой теоремы завершено.

Приступим к доказательству оценок (5)—(7). Соотношения (5), (7) вытекают непосредственно из (3), (4). Оценка (6) получается из (3), (4) и известных свойств медленно меняющихся функций (см. [6], стр. 341)

(33)
$$\lim_{x\to\infty} h(x)/\int_0^x (h(u)/u) du = 0,$$

(34)
$$\lim_{x\to\infty} h(x)/\int_{x}^{\infty} (h(u)/u) du = 0,$$

последнее свойство верно, если $\int\limits_0^\infty \left(h(u)/u\right)du$ существует.

Пример 2. Из равенств (8)—(10) следует, что случайная величина η имеет плотность

(35)
$$p_{\eta}(x) = \begin{cases} ax^{-2} \ln x, & x \ge 3\\ 0, & x < 3, \end{cases}$$

случайная величина ζ имеет дискретное распределение

(36)
$$p_k = P\{\zeta = 2^{k^2}\} = b2^{-k^2}, \quad k = 1, 2, ...,$$

а ф. р. случайной величины ξ определяется равенством

(37)
$$F_{\xi}(x) = (F_{\eta}(x) + F_{\zeta}(x))/2.$$

Используя (35)—(37), легко проверить, что при $x \to \infty$

(38)
$$1 - F_{\xi}(x) = (1 - F_{\eta}(x))(1/2 + o(1)) = x^{-1} \ln x(a/2 + o(1)).$$

Поскольку $F_{\xi}(x) = 0$ при x < 0, то ввиду (38) для $F_{\xi}(x)$ выполняются условия (12), (13), где $\beta = 1$. Поэтому $F_{\xi}(x) \in D(1, 1)$.

Из следующих утверждений (доказательство их приводится ниже):

- (a) Re $f_n(t)$, Im $f_n(t)$, $f_n(t)$ дифференцируемые при любом $t \neq 0$ функции,
- (б) $\operatorname{Re} f_{\zeta}(t)$, $\operatorname{Im} f_{\zeta}(t)$ почти всюду недифференцируемые функции,
- (в) $f_t(t)$ всюду недифференцируемая функция,

(г) $f_{\xi}(t)$ — не имеет производной в точке t=0, и равенства (10) следует, что $f_{\xi}(t)$ всюду недифференцируемая функция, а $\operatorname{Re} f_{\xi}(t)$ и $\operatorname{Im} f_{\xi}(t)$ почти всюду недифференцируемые функции. Следовательно, функции определенные в (11) тоже почти всюду недифференцируемы и поэтому не являются (см. [5], стр. 229) абсолютно непрерывными.

Теперь докажем утверждения (а)—(г).

(а) Достаточно установить дифференцируемость функций

$$\operatorname{Re} f_{\eta}(t) = a \int_{3}^{\infty} \cos tx \, x^{-2} \ln x \, dx, \quad \operatorname{Im} f_{\eta}(t) = a \int_{3}^{\infty} \sin tx \, x^{-2} \ln x \, dx, \quad t \neq 0.$$

Дифференцируя под знаком интеграла, мы получим формальные (пока) равенства

(39)
$$(\operatorname{Re} f_{\eta}(t))' = -a \int_{3}^{\infty} \sin tx x^{-1} \ln x \, dx,$$

$$(\operatorname{Im} f_{\eta}(t))' = a \int_{3}^{\infty} \cos tx x^{-1} \ln x \, dx, \quad t \neq 0.$$

Интегралы в (39) не только существуют, но и сходятся равномерно по t, $t \in [c, d]$, в любом промежутке [c, d] не содержащем нуля. Применяя известную теорему анализа о дифференцировании под знаком интеграла, мы видим, что равенства (39) и утверждение (a) справедливы.

(б) Из (36) получается оценка

(40)
$$\sum_{k=m}^{\infty} p_k = b2^{-m^2} + \theta_1 2^{-(m+1)^2}, \quad b < \theta_1 < 2b.$$

Обозначим

$$(41) x_k = 2^{k^2}.$$

Легко проверить, что

(42)
$$f_{\zeta}(t+h) - f_{\zeta}(t) = 2i \sum_{k=1}^{\infty} \sin(hx_{k}/2) \exp\{ix_{k}(t+h/2)\} p_{k} = 2i \left(\sum_{k=1}^{m} + \sum_{k=1}^{\infty}\right) = 2i \left(\sum_{1} + \sum_{2}\right).$$

Положим

$$(43) h = 2^{1-m^2-m}$$

Тогда при $k \le m$ и $m \to \infty$, ввиду (36), (41)—(43) имеем

(44)
$$p_k \sin(hx_k/2) = hx_k/2 + O(h^3x_k^3p_k) = h(b/2 + O(2^{-2m})),$$

(45)
$$\exp\{ix_k(t+h/2)\} = \exp\{ix_kt\}(1+O(2^{-m})),$$

Если же $k \ge m+1$, то ввиду (36), (40)—(43)

(47)
$$|\sum_{2}| \leq b2^{1-(m+1)^{2}} = bh2^{-m-1}.$$

Представление (42) и соотношения (46), (47) позволяют записать, что при h, выбранном в соответствии с (43), при $m \to \infty$ справедлива оценка

(48)
$$f_{\zeta}(t+h) - f_{\zeta}(t) = ih \left(b \sum_{k=1}^{m} \exp\left\{ ix_{k} t \right\} + o(1) \right).$$

Из (48) вытекает, что

(49)
$$\operatorname{Re} f_{\zeta}(t+h) - \operatorname{Re} f_{\zeta}(t) = -h \left(b \sum_{k=1}^{m} \sin \left[\pi \left(2^{k^2} t / \pi \right) \right] + o(1) \right),$$

(50)
$$\operatorname{Im} f_{\zeta}(t+h) - \operatorname{Im} f_{\zeta}(t) = h \left(b \sum_{k=1}^{m} \cos \left[\pi (2^{k^2} t/\pi) \right] + o(1) \right).$$

Используя представление дробной доли вещественного числа в двоичной системе счисления в виде бесконечной последовательности нулей и единиц, легко проверить, что справедлива

Лемма 2. Мера Лебега множества вещественных чисел u, $-\infty < u < \infty$, таких, что при достаточно большом N, N=N(u), для всех n>N выполняется неравенство

$$1/4 < \{2^{n^2}u\} < 3/4, \{z\} - \partial po \delta han \partial o n n z,$$

равна нулю.

Лемма 2 равносильна утверждению: почти все вещественные числа u, $-\infty < < u < \infty$, обладают тем свойством, что существует бесконечно много натуральных чисел n_k , для которых

(51)
$$(\{2^{n_k^2}u\} - 1/4)(\{2^{n_k^2}u\} - 3/4) \ge 0.$$

В свою очередь (51) при $u=t/\pi$, равносильно неравенству

$$\left|\cos\left[\pi(2^{n_k^2}t/\pi)\right]\right| \ge 1/\sqrt{2},$$

которое означает, что почти для всех t, $-\infty < t < \infty$, сумма из правой части (50) расходится при $m \to \infty$. Поэтому не существует предел

$$\lim_{h\to 0} \left(\operatorname{Im} f_{\zeta}(t+h) - \operatorname{Im} f_{\zeta}(t) \right) / h$$

и функция $\text{Im } f_{\zeta}(t)$ не дифференцируема почти при всех t. Аналогично доказывается, что $\text{Re } f_{\zeta}(t)$ также почти всюду не дифференцируемая функция.

(в) Для того, чтобы доказать, что $f_{\xi}(t)$ нигде не дифференцируемая функция, достаточно заметить, что сумма в (48) расходится, поскольку все слагаемые по модулю равны единице при любом t.

(г) Из (38) следует, что при $x \to \infty$

$$x(1-F_{\xi}(x))\to\infty.$$

Это противоречит (см. [6], стр. 635) критерию дифференцируемости х. ф. в нуле, поэтому f'_{ε} (0) не существует.

Литература

- [1] М. А. Евгафов, Асимптотические оценки и целые функции, Физматтиз (Москва, 1962).
- [2] И. А. Ибрагимов, Ю. В. Линник, Независимые и стационарно связанные величины, Наука (Москва, 1965).
- [3] Г. Корн, Т. Корн, Справочник по математике, Наука (Москва, 1968).
- [4] А. В. Нагаев, Некоторые предельные теоремы теории восстановления, *Теория вероятностей и ее применения*, 20 (1975), № 2, 332—344.
- [5] И. П. Натансон, Теория функций вещественной переменной, Наука (Москва, 1974).
- [6] В. Феллер, Введение в теорию вероятностей и ее приложения, т. 2, Мир (Москва, 1967).

МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ ТАШ ГУ ИМ. В. И. ЛЕНИНА ВУЗ-ГОРОДОК 700095, ТАШКЕНТ, СССР