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The approximate point spectrum of a pure quasinormal operator

L. R. WILLIAMS

In this paper all Hilbert spaces are over the complex scalars. If # is a Hilbert
space, let £ (o) denote the algebra of all bounded linear operators on . (In
this paper the term operator shall mean an element of & (#).) If T is an operator,
let o(T’) denote the spectrum of T, let o,,(T) denote the approximate point spectrum
of T, let T denote the image of T in the Calkin algebra % (#)/% under the natural
projection, where ¢ denotes the ideal of all compact operators in % (), and let
.(T) denote the essential spectrum of T, i.e., o,(T)=a(T). C. R. PurNam proved
in [12] that the planar Lebesgue measure of the spectrum of a pure hyponormal
operator is positive. There exist, however, pure hyponormal operators which have
essential spectra of measure zero. (The unilateral shift is an example.) Let 7 be a pure
hyponormal operator. It follows from Putnam’s inequality [12] that =||7*T— TT*| =
=my(0.(T)), where m, denotes planar Lebesgue measure. So if my,(s,(T))=0,
then the self-commutator T*T—TT* is compact. The converse is not true, even
in the subnormal case. (See Example 2.4.) Yet the following question which was
posed by the present author in [15] remains open: If T is a pure subnormal opera-
tor that has a finite rank self-commutator, then is my(0,(T))=0? The results of
this paper were motivated by the above question. In Section 1 we show that the
above question is equivalent to a similar question about the approximate point
spectrum and to a question posed by J. Conway about the measure of the spectrum
of the minimal normal extension of a pure subnormal operator. In Section 2 we
compute the approximate point spectrum of a pure quasinormal operator and then
present a formula for the planar Lebesgue measure of it. In Section 3 we present
a class of pure subnormal operators for which the answer to the above question is
affirmative.

We present here some terminology and notation. Let T be an operator. Recall
that T is hyponormal if T*T—~TT*=0, T is subnormal if T has a normal extension,
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and T is quasinorma!l if 7 commutes with 7*T. It is known that each quasinormal
operator is subnormal and each subnormal operator is hyponormal. Each operator
T is unitarily equivalent to T,®T,, where T, is normal and T, is pure, i.e., if #
is a reducing subspace for T, and T,|# is normal, then #=(0). The operator
T, is the normal part of T and T, is the pure part of T. (Note that either of the opera-
tors T, or T, may be the zero operator on the zero Hilbert space.) Observe that
if T is a hyponormal operator, then any eigenspace of T reduces 7. Thus the point
spectrum of a pure hyponormal operator is empty. We shall use this fact freely.
Finally, let 2 (T) denote the kernel of T and 2(T) the range of T.

1. Pare subnormal operators with finite rank self-commutators

. We begin this section by observing that if T is a pure subnormal operator on a
Hilbert space ## and N is its minimal normal extension on a Hilbert space ¢,
where £ C 2, then N is unitarily equivalent to the operator

o [o &)

on # @, for some Hilbert space 5. But since A is the closed linear span of
{(N*)’x: x€2#, n a nonnegative integer} [6], we have dim (#")=dim (2#). OLIN
has observed in [10] that N* is the minimal normal extension of § if and only if
T is pure (and it follows that N is the minimal normal extension of T if and only
if S is pure). Thus, since T is pure, an argument similar to the one above shows
‘that dim (')=dim (2%). Hence N is unitarily equivalent to the operator in (1)
on X @H.
We now state the following questions.

‘ QAuestion s. Suppose that T is a pure subnormal operator that has a finite
rank self-commutator and suppose that N is its minimal normal extension.

A. Then is my(o.(T))=0?
B. Then is my(o(N))=0?
C. Then is my(0,,(T))=0?

. As mentioned earlier Question A was posed by the present author in [15] and
Question B was posed by J. CoNwAY in [6]. We shall show that the three questions
are equivalent. In order to see that Questions A and B are equivalent, let T and
N be as above and observe that N is unitarily equivalent to the operator in (1) on
H# ®3#. The operator S is also a pure subnormal operator (and is called the dual
of T). Sincé N is normal, a matrix calculation shows that T*T—-TT*=XX*
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and S*S—SS*=X*X. Since T has a finite rank self-commutator, S also has a
finite rank self-commutator and X has finite rank. Hence ¢.(N)=0c.(T)U0c.(§*).
Since N is normal, ¢(N)\o.(N) is countable; thus my(oc(N))=my(o (N)). It
follows that m,(o(N))=0 if and only if m,(c.(T))=0 and my,(s,.(S))=0. Now
suppose that the answer to Question A is affirmative. Then, since both T and S-are
pure subnormal operators having finite rank self-commutators, my(o,.(T))=
=my(0.(S))=0. Thus .my(c(N))=0. So the answer to Question B is affirmative
also. On the other hand it is clear from the above discussions that if the answer to
Question B is affirmative, then the answer to Question A is affirmative also. So
Questions A and B are equivalent. _
The following theorem and corollary will show that Question C is equivalent
to Questions A and B. Recall that an operator T is semi-Fredholm if either X (T)
or J (T™) is finite dimensional and £ (T') is closed-and is Fredholm if both 4 (T)
and A (T*) are finite dimensional and #(T) is closed. Recall also that ¢,(T)=
={2€C: T—2 isnot Fredholm} and &,,(T)={A€C: T—A is not bounded below}.
If T is a pure hyponormal operator, then, since the point spectrum of T is empty,
0., (T)={A€C: Z(T~2) is not closed} and thus 0,(T)So.(T). If T is semi-
Fredholm, let i(T)=dim (o (T))—dim (#"(T*)) denote the index of T.

Theorem 1.1. Suppose that T is a hyponormal operator and that T*T—TT*
has rank n, where n is a nonnegative integer. Then if A is a complex number and T—A
is semi-Fredholm, then 0=i(T—2A)= —n.

The following corollary follows from Theorem 1.1 and from the above char-
acterizations of the essential spectrum and the approximate point spectrum of a pure
hyponormal operator.

Corollary 1.2. If T is a pure hyponormal operator and T*T—TT* has finite
rank, then o,,(T)=0.(T).

The following lemma is needed in the proof of Theorem 1.1. Its proof is an
easy exercise.

Lemma 1.3. If 5# is a Hilbert space, # an arbitrary subspace of 3, & a finite
_dimensional subspace of #, and H =M+ N, then dim (A*+)=dim (N).

Proof of Theorem 1.1. We first consider the case that T is a pure hypo-
normal operator on a Hilbert space 3. Let P=yT*T—TT*. Then for each com-
plex number 2, (T—2)*(T—2)=(T—A)(T—A)*+ P2. By Theorem 2.2 of [8] we have
R(T-ER(T—2))+R(P). Since #(P) is finite dimensional, R((T—1))~+
+2(P) is closed and contains Z((T—A)*)". But (T —A)*)~ = since X (T—1)=
=(0). Thus #=%((T—A))~+2Z(P). Lemma 1.3 implies that dim (" (T'—A)*))=
=dim (B(T~1)*')=dim (#(P))=n. Thus if T—1 is semi-Fredholm, then
0=i(T—2)= —n., The general case follows readily.
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" 2. The approximate point spectrum of a pure quasinormal operator

If »# is a Hilbert space, let = 2"633?’,‘, where for each positive integer k,

X, = 9? If TE.?(J?’) deﬁne an operator T in £(#) by T— Z@Tk, where

for each posmve integer k, T,=T. Let ¥, denote the unilateral shlft on #, ie.,

Ve (x1, xg, ...)=(0, X1, X3, ...) for each (x;,X,,...) in #. ARLEN BROWN proved
in [3] that each pure quasinormal operator is unitarily equivalent to V,e P, for some
Hilbert space 5# and for some positive definite operator P in £(s¢),i.e., P is posi-
tive and S (P)=(0). The present author showed in [14] that

.oV P)= {2€C: |A] = |P|},
0. (Ve P) = {2€C: |Aea(P)U {4€C: |4 = | P}
if 3¢ is infinite dimensional, and
c.(VeP) = {AcC: IAIEG(P)}

“if ## is finite dimensional. Here we compute the approximate point spectrum of ¥, P

_ Theorem 2.1. If P is a positive definite operator on a nonzero Hilbert space #,
then Oap (Vx,ﬁ) {2€C: |A|€a(P)).

Proof. Let I'= {A€C: |A|€o(P)} and let E be the spectral measure of P.
Suppose that 2C\I". If |A|=||P|=|VPl, then Ad¢c,,(VP). So assume that
|A|<[Pll. There exists a positive number ¢ such that (ji|—¢, |A|+&)No(P)=0.
Let #=R(E(|A|+¢, |P|]), let R=P|#, and let Q=P|#*. Then ¥V, P is
unitarily equivalent to V,R&V,.0. Since [V, 0l=IQl=|i]|—¢, A¢a(V,L0).
Also since o (R)S[|A|+¢, | Pl], we have |Rx|=(|A]+e)|x|| for each x in .A.
Thus |(V,R—2)x| =V, Rx|—| x| =||Rx]| —||Ax|| =e|ix|] for each x in .Z It
follows that A¢a,,(V,R), and, therefore, A¢a,,(VyP). We have shown that
0, (Ve P)ET.

Now suppose that pu€rI'. For each positive integer n, let 42, =2(E([|u|—1/n,
|u[+l/n])) let' R,=P|, , and let Q,=P|,L. Notethat ¥V, P is unitarily equivalent
to ¥, R eI{,,J.Q and that o(Vy R)={4€C: |AI=(R,|}. Sirice for any operator
T, 30(T)So,,(T), we have {A€C: |A[=|R,I}S 0, (% R,)S 0,y (Ve P). But |u|=
s[RI =lpu|+1/n, n=1,2,...; thus ||R,]|—~|u]. Hence, since o,,(¥P) is closed,
{A€C: 12|=|u|}S 0,,(Ve F). This argument shows that I'C aap(V P), and the
proof is complete,

- 'We next discuss the relation between quasinormal operators and some other
important classes of operators. In-the following let # be a separable, infinite dimen-
sional Hilbert space; let P be-a positive definite operator on 3#, and let (BQT) denote
the class of biquasitriangular operators in & (5#).-The present author showed in [15]
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that a hyponormal operator T belongs to (BQT) if and only if 6,,(T)=0(T). This
fact shall be used freely in the following discussions. The following corollary is easy
to verify.

Cdrollary 2.2. The operator VePc(BQT) if and only if o(P)=[0,|P|).

-+ Let (Ni)~ denote the norm-closure of the class of nilpotent operators in £ (5¢).
(See [11] for a discussion of the classes (BQT) and (Ni)~.) ArostoL, Foias, and
VoicULEscU gave the following characterization of (Ni)~ in [1]: (Ni)—=
= {T€(BQT): both ¢(T) and ¢,(T) are connected and 0€o,(T)}. Hence we have
the following corollary.

Corollary 2.3. The operator V,, PE(BQT) if and only if V,,Pc(Ni)~.

Let (EN) denote the class of essentially normal operators, i.e., T€(EN) if
and only if T*T—TT* is compact, and let (N+K)={N+KeZ(#): N is normal
and K is compact}. It is known that (N+K)=(BQT)N(EN). [4], [11]. Suppose that
V,» PE(EN). Then P is compact and Corollary 2.2 implies that ¥, P¢(BQT). Hence
there are no pure quasinormal operators in the class (N+X).

In [11] C. PEARCY observed that each operator in &% () has a nontrivial invari-
ant subspace if and only if each operator in (Ni)~ does. He then wrote (Ni)~ as
the disjoint union of four subsets and he conjectured that if there exists an opera-
tor in £ (o) that does not have a nontrivial invariant subspace, then that opera-
tor belongs to the ‘“mysterious” fourth subset which consists of those operators
in (Ni)~ that are neither essentially normal nor quasinilpotent. The above shows
that pure quasinormal operators in (BQT) are examples of operators in this fourth
subset of (Ni)~. But, of course, pure quasinormal operators do have nontrivial
invariant (and hyperinvariant) subspaces. ' '

Even though there are no pure quasinormal operators in (N+K), there are
general nonnormal quasinormal operators in this class. For example, let N be a
normal operator such that o(N)=0,(N)=D, where D denotes the open unit disk,
and let ¥ denote the unilateral shift (of multiplicity one). Then N@V is clearly
quasinormal and essentially normal, and, since 0,,(N®V)=6(N®OV)=D,
NeVe(BQT). Thus NOVeE(N+K).

The following example shows that there are also pure subnormal operators in
(N+K).

Example 2.4. Let S denote the Bergman shift, i.e., the Bergman operator
for D, and let N be its minimal normal extension. (See [6] for a discussion of Bergman
operators.) The operator N is unitarily equivalent to the operator '

TS X ]
0.7T*
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on ¥ @, where # is the Hilbert space on which S acts. We shall show that
the dual T of S belongs to (N+K). The operator T is a pure subnormal operator.
It is known that ¢(N)=¢.(N)=0¢(S)=D and ¢.(S)=9D (6], and it is easy to
verify that ¢(T)SD. Since S is a weighted unilateral shift, S has a compact self-
commutator. Thus X is compact and T¢(EN) because S$*S—SS*=XX* and
T*T-TT*=X*X. Observe that N is a compact perturbation of S@T*. Suppose
‘that A¢D. Then- N—A1 is not semi-Fredholm; thus T*—1 is not semi-Fred-
holm since S—2A is Fredholm. Hence A€oc,,(T) since the point spectrum of T
is empty. It follows that o,,(T)=0(T)=D; thus T€(BQT). Consequentially,
Te(N+K).

CLaNCEY and MORRELL gave an example of a pure hyponormal operator T
that is not subnormal and that has a rank one self-commutator such that ¢ (T)=
=o(T)=D [5]. By Corollary 1.2 6,,(T)=D. Thus T¢(BQT)N(EN)=(N+K).

‘On the other hand if T is a pure quasinormal operator that has a finite rank self-
commutator, then T¢(N+K). These facts motivate the following question. -

Question 2.5. Does (N+K) or, equivalently, does (BQT) contain any pure
subnormal operators that have finite rank self-commutators?

Now-let 27 be a nonzero Hilbert space of arbitrary dimension, let P be a posi-
tive definite operator in % (s#), and let m; denote Lebesgue measure on the real
line. It is easy to verify that

my(o (Ve P)) = f 2nrdmy(r) and my(o.(VeP)) = f 2nr dmy (1),
[0,a] [0,5]
where a=||P| and b=||P|| if 2 is infinite dimensional and b=0 otherwise.
(To get the second equation we used the fact that {c€o(P): ¢>|P|} is countable.)
We shall now develop a similar formula for my(6,,(V £)). We shall need the fol-
lowing notation and lemma. '

Let # denote the family of Borel subsets of [0, +<). If Ec#, let A(E)=
={A€C: |A|€E}, and let 9={A(E): E€#)}. 1t is clear that @ is a g-algebra con-
sisting of Borel subsets of C and that A: #—+2 is a one-to-one mapping of #
onto P that preserves all of the Boolean operations.

Lemma 2.6. Suppose that ECB. Then my(A(E))= [ 2nr dmy(r).
E

Proof. Forin 4, let u(A4(E))= f 2nr dmy(r). 1t is clear that u is a measure

. E
on 2 and that if E=(a,b], then p(A(E))=my(A(E)). An application of the
theorem of Caratheodory shows that n(A(E))=my(A(E)) for all E in B.

Theorem 2.1 and Lemma 2.6 imply the following theorems.

Theorem 2.7. my(0,,(Vie P))= / 2nr dmy(r).
o (P)
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Theorem 2.8. my(0,, (Ve P))=0 if and only if my(c(P))=0.
For compaﬁson, we state the following theorem.
Theorem 2.9. mz(o;e(V#ﬁ))zo if and only if P is compact.

The spectrum of a pure quasinormal operator is connected and its essential
spectrum has at most countably many connected components. In the following
example, we present a pure quasinormal operator whose approximate point spectrum
has uncountably many connected components each of which is a circle. We then
use Theorem 2.7 to compute the measure of its approximate point spectrum.

Example 2.9. Let C denote the Cantor set and let g: [0, 1]-[0, 1] be the
Cantor ternary function (cf. [13]). Recall that g is defined as follows: Let r= Z’ a,/3"

be the ternary expansion of a number in [0,1]. Let N=+4 if g,1 for each
positive integer n, and otherwise let N be the smallest positive integer such that

N .
ay=1. Let b,=a,/2 for n<N and let by=1. Then g(r)=n2;bn/2". Recall also

that g is a continuous, monotonic increasing function of [0, 1] onto itself that is
constant on the intervals in the complement in [0, 1] of C. Let #=0. Define a
function f: [0, 1}-[0,14+¢] by f(r)=g(r)+tr. The function f is a monotone
homeomorphism of [0, 1] onto [0, 14¢]. Let F=f(C), Iet P be a positive definite
operator on a Hilbert space 2 such that o(P)=F, and let T=V,,P. Since F is
uncountable and totally disconnected, it foliows from Theorem 2.1 that 6,,(T’) has
uncountably many connected components.

We now compute my(0,,(T)) by evaluating rf 2nr dmy(r). (It is easy to see

that my(0.(T))=my(o(T))=n||P|2=n(1+7)%) Let Sk, k=1,2,...,2""!, be the
disjoint subintervals of [0, 1]\C that have measure equal to 1/3", and let TF¥=
=f(§Y, k=1,2,..,2"% n=1,2,... Let §=[0,INC and T=[0, 1+7]\F.
Then U Sk=8 and U TE=T. We w111 first evaluate f 2nr dm,(r). Fix n and k.

Now S" and T* are open intervalsand g=(2k—1)/2" on S" Thus £ is differentiable
.on S* and, therefore, by the change of variable theorem,
[onrdmy@) = [20f()f () dmy () = 2t @k~ 1)J6"+2 [ 2mr dmy ().
¥ S sy
Thus
[2rrdm@) = 5 2 (2mt 2k —1)/6" + 12 f 2nr dml(r)) =
T

n=1k=1

n—l

= 2mt (. 2(1/6") z' (2k-—1))+t2 f 2nr dmy (r).
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Using the.facts that

3—1 k-1 =2 and f2m' dmy(r) = j27zr dm(r)==
s

k=1 10,1}
(since m,(C) = 0),
we get f 2nr dmy(r)=nt+nt® Hence
T

f27rr dmy(r) = f 2nrdm, (r) — f?.nr dm,(r) = n(1+1);
F 7

[0,1+¢]

thus m,(o,, (T)); n(141).

3. Quasinormals plus commuting normals

In this section we present a class of pure subnormal operators that contains the
class of pure quasinormal operators and show that for this class of operators the
answer to the equivalent questions posed-in Section 1 is affirmative.

Let S be a subnormal operator on a Hilbert space 5#. HALMOs has shown that
S has a normal extension of the form

o i

on #DH (cf.[2], [9]). In fact, as mentioned earlicr, if S is pure, then the minimal
normal extension of S is unitarily equivalent to an operator of the form (1) on
H®H#. If Sis pure and is unitarily equivalent to its dual R, then we say that §
is a self-dual subnormal operator. (See [7] for a discussion of the dual of a pure
subnormal operator.) If S is self-dual, then the minimal normal extension of S is
unitarily equivalent to the operator ‘

S Z ]

on #@H. As we mentioned earlier, OLIN has observed in [10] that the operator
in (1) is the minimal normal extension of S if and only if R is pure. Also note that
any matrix of form (1) is normal if and only if $*S~SS*=XX* R*R—RR*=
=X*X, and S*X=XR.

Theorem 3.1. Suppose that S is a subnormal operator on a Hilbert space
that has a normal extension of the form (1) and suppose that N is a normal operator
" in L () that commutes with S, R, and X. Then T=S+ N is also subnormal. More-
over, T is pure if and only if S is pure. '
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Proof. An application of Fuglede’s theorem shows that both N and N* com-
mute with S, R, X, S*, R*, and X*. Let Q=R+ N*. Then T*T-TT*=8*S—.
—SS*=XX* 0*0- QQ* R*R—RR*=X*X, and T*X=XQ. Therefore, the
operator

: T X
0 o)

on # @I is a normal extension of T, i.e., T is subnormal.

Now suppose that $§=5§,3S, on Jf:;iﬁ&)éi;z,_ where S, is a normal opera-
tor on the Hilbert space #, and S, is a pure operator on the Hilbert space .
Then N=[N;], relative to the decomposition # =#,@H#,. Since NS=SN and
N*S=SN*, a matrix calculation shows that Ny S,=S,N; and N};,S;=S,N};.
Theorem 1.2 of [15] shows that Ny,= Ny, =0. Thus N=N,; ® Ny, and T=(S,+ N;,)®
®(S:+N,,), where S,+N,; is normal since S; and N;; are commuting normal
operators. This argument shows that if T is pure, then S is also pure. Since S=T-N,
a similar argument shows that if S is pure, then T is also pure.

Corollary 3.2. Suppose that S is a subnormal operator on a Hilbert space
H that has a normal extension of the form (2) and suppose that N is a normal opera-
tor in & () that commutes with S and Z. Then T=S+N is also.subnormal.

We remark that if S is a subnormal operator with a normal extension of form
(2) and if U is a unitary operator that commutes with S (for example, if U=al,,
where « is a complex number such that |x|=1), then the operator in (2) is umtanly
equivalent to the operator
S ZU ]

0 s*

on #®H#. Thus even a normal extension of the form (2) is not unique.
The following theorem is well-known. (Recall that if S is a quasinormal opera-
tor, then S$*$—~S58*=0.)

Theorem 3.3. If Sisa quasino} 'mal operator, then the matrix in (2) is a normal
extension of S if Z=YS*S-SS*. In partzcular, if 8 is a pure quasinormal opera-
tor, then S is self-dual.

Proof. It is clear that S$*S—SS*=Z2 To show that S*Z=ZS, observe
that Z:S=(S*S—855*)S=0. Hence ZS=0 since Z is self-adjoint, and thus
S*Z=(ZS)*=0. Therefore, the operator in (2) is normal.

'Corollary 3.4. If S is a quasinormal operator on a Hilbert space # and N
is a normal operator in ¥ () that commutes with S, then T=S+ N is subnormal.
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Proof. By Fuglede’s theorem N also commutes with S* and, therefore, with
Z=)S*S—SS*. Hence T is subnormal by Corollary 3.2 g

Let .2{ be a Hilbert spaoe and let F={S +N (X ACAE Sisa pure quasmormal
N is normal, and NS=SN}. The set & is a subset of the set of all pure subnormal
operators in £ (o) and contains the pure quasinormals. We show that the opera-
tors in & have a fairly simple structure.

Theorem 3.5. If TCS, then there exist a Hilbert space 3¢ and comniuting
operators P and N in & (#), where P is posztne definite and N is normal, such that T
is umtarzly equwalent to the operator V), P-HV on .

Proof. We have T=S+N;, where S is a pure quasmormal operator; N1
is normal, and. N, S=SN,. There exist a Hilbert space ## and a positive definite
operator P.in % () such that § is unitarily equivalent to VeP. So T is unitarily
equivalent to ¥,P+N,, where N, is normal and commutes with ¥V,P. Then
No=[N;;] on . Since N, commutes with -V, P, a matrix calculation shows-~that
Ny, j+1P=0 and Ny ;.1 P=PN;;, i,j=1,2,.... An induction argument shows
that N;;=0 for i<j. Since Fuglede’s theorem implies that Ny commutes with
VP, we have by a similar argument that N;;=0"for i>j. Thus [N;;] is diagonal,
N, is normal, and N,,;,, P=PNy, i=1, 2 . Using the Putnam——Fligléde’s
theorem, we can see that PN;,, ;,,=N;P also. Honcc P2, and thus P, commutes
with Nj;. It follows that (Niyy,;41—Ni) P=0; . thus .Niyy;03=Ny, i=1,2,....
Therefore, Ny=Ny, and the proof is complete. . .

i

It follows from Theorem 3.5 that if S is a pure quasinormal-and N is a nonzéro
normal operator that commutes with S, then S+~ is not quasinormal. Thus &%
contains operators that are not quasinormal.

We can say more.about the structure of those operators in & that have com-
pact self-commutators Let ¥V denote the umlateral shift of multlphcrty one.

Theorem 3.6. Suppose that TeS and T*T—TT* is compact. Then- there
exist an index set A, a set of posmve rumbers {c, }ane 4> and a set of complex numbers
{,l }, ca Such that T is umtarlly equwalent to Z‘ B4, +c V) I f the rank 0 f

T*T—TT* is n, then A= {1, 2 n} otherwise A {1 2,. }

_Proof. By Theorem 3.5 ‘T is unitarily equivalent to. VP+N, where. P is
positive definite in £ (), N is normal in £ (), and. PN=NP. Since T*T TT*
is compact, P is compact. Suppose that cis an elgenvalue of P. Then A (P—c)
is finite dimensional and reduces N. Hence A (P—c) has an orthonormal basis
conisisting of eigenvectors of N. It-follows:that # -has an orthonormal basis {€,},¢ 4
consisting of vectors that are eigenvectors-of both'P and N. For a€ A4, let-c, and
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4, be the eigenvalues of P and N, respectively, associated with e,, and let .#, be
the one-dimensional subspace of # spanned by e,. Then #= > @&.#, and H#
is Milbert space isomorphic to 2 ®.4,. Hence V,P is ﬁmtaarell; eélmvalent to
Z’@c‘, "4, and N is unitarily equlvalent to 2’ Dl 1z ; thus T is umtanly equiv-
alent to aé; ®(A+ .V, ). The proof is complete since for each o in A, V i, 18

unitarily equivalent to V.

Corollary 3.7. If T¢¥ and T*T-TT* hasﬁmte rank, then mz(a,p(T))—
-mz(o'e(T)) 0.

Proof. By Theorem 3.6 T is unitarily équivalent to 2®(lk+ck V). The

k=1

proof is complete since mg(aap @ ))=my(o, (V)) 0.

-Corollary 3. 7 shows that the answer to the three equivalent questions.posed
in Section 1 is affirmative for the class of operators .. In regard to Question 2.5,
note that Corollary 3.7 also implies that if T€% and T has a finite rank self-com-
mutator, then T¢(N+K), since 6,,(T)#0(T). Recall that if T is a pure quasi-
normal operator, then T*T—TT* is. compact if and only if my(0.(T))=0 (see

Theorem 2.9), and if T*T—TT* is compact, then my(0,,(T))=0 (see Theorem
2.8). The next example shows that this i is not the case for the class of operators &.

"Example 3.8. Let {g,};, be.an orthonormal basis for.a Hilbert space .#‘
let {Ak}k ~1bean enumeratxon of all the ratlonal” complex numbers in D, let fak,

be a sequence of posmve numbers such that Z’ G< 1/2, let G={AeD: |A—A|<c),
k=1,2,..., and let G= U G,. Note that G is an open subset of C . and that
k=1 o o .

my(G)= ; é’: nci<mn/2. Since G=D, m,(0G)>n/2. Definea pcs‘itivc' definite operal:or

Pand a normal operator Nin Z(#) by Pe,=c,e, and Ne,=A.e,. Let T=V, P+
+N. Observe that T€¢& and that T*T—TT* is compact (since P is compact).

Observe also that T is unitarily equivalent to f@(&k+ck V) and that JG,=
k=1
=0, M+ V)S 0, (T). Thus (U 0G,)~ S0, (T). It follows that my(6,,(T))=0
k=1
since dGS(|J 0G,)~. We also have my(o.(T))=>0 since o,,(T)So (T).
k=1
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