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The approximate point spectrum of a pure quasinormal operator 

L. R. WILLIAMS 

In this paper all Hilbert spaces are over the complex scalars. If is a Hilbert 
space, let denote the algebra o f all bounded linear operators o n 2/f. (In 
this paper the term operator shall mean an element of If T is an operator, 
let a(T) denote the spectrum of T, let <7ap(T) denote the approximate point spectrum 
of T, let f denote the image o f T in the Calkin algebra ^ ( J f ) / 1 ^ under the natural 
projection, where <& denotes the ideal o f all compact operators in J S f p f ) , and let 
ae{T) denote the essential spectrum o f T, i.e., ae(T)=a(f). C. R. PUTNAM proved 
in [12] that the planar Lebesgue measure o f the spectrum of a pure hyponormal 
operator is positive. There exist, however, pure hyponormal operators which have 
essential spectra o f measure zero. (The unilateral shift is an example.) Let T be a pure 
hyponormal operator. It fo l lows from Putnam's inequality [12] that n || f*f— 7T*| | ^ 
=mz(ffe(T)), where m2 denotes planar Lebesgue measure. So if m2(ae(T))—0, 
then the self-commutator T*T— TT* is compact . The converse is not true, even 
in the subnormal case. (See Example 2.4.) Yet the fol lowing question which was 
posed by the present author in [15] remains open: If T is a pure subnormal opera-
tor that has a finite rank self-commutator, then is m 2 (a e ( T ) ) = 0 ? The results of 
this paper were motivated by the above question. In Section 1 we show that the 
above question is equivalent to a similar question about the approximate point 
spectrum and to a question posed by J. Conway about the measure o f the spectrum 
o f the minimal normal extension o f a pure subnormal operator. In Section 2 w e 
compute the approximate point spectrum of a pure quasinormal operator and then 
present a formula for the planar Lebesgue measure o f it. In Section 3 w e present 
a class o f pure subnormal operators for which the answer to the above question is 
affirmative. 

W e present here some terminology and notation. Let T be an operator. Recall 
that T is hyponormal if T*T— TT* SO, T is subnormal if T has a normal extension, 
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and T is quasinormal if T commutes wi th T*T. It is known that each quasinormal 
operator is subnormal and each subnormal operator is hyponormal . Each operator 
T is unitarily equivalent to TX®T2, where is normal and T2 is pure, i .e. , if M 
is a reducing subspace for T2 and T2\Ji is normal, then Jt=(0). T h e operator 
Tx is the normal part of T and T2 is the pure part o f T. ( N o t e that either o f the opera-
tors Tx or T2 may be the zero operator on the zero Hilbert space.) Observe that 
i f T is ai hyponormal operator, then any eigenspace o f T reduces T. T h u s the po int 
spectrum of a pure hyponormal operator is empty. W e shall use this fact freely. 
Finally, let Jif(T) denote the kernel o f T and <%(T) the range o f T. 

We begin this section by observing that if T is a pure subnormal operator o n a 
Hilbert space and N is its minimal normal extension on a Hilbert space JT, 
where tf, then N is unitarily equivalent t o the operator 

o n ^ " © J f i for some Hilbert space But since J f is the closed linear span o f 
{(N*)"x: x^JV, n a nonnegative integer} [6], w e have dim ( X ) = d i m (^F) . O U N 
has observed in [10] that N* is the minimal normal extension o f S i f and only if 
T is pure (and it fo l lows that N is the minimal normal extension o f T if and only 
i f S is pure). Thus, since T is pure, an argument similar to the one a b o v e shows 
that d im ( J f ) = d i m ( ^ j ) . Hence N is unitarily equivalent to the operator in (1) 
o n <?f ©<?f. 

W e n o w state the fo l lowing questions. 

Q u e s t i o n s . Suppose that T is a pure subnormal operator that has a finite 
rank self-commutator and suppose that N is its minimal normal extension. 

A . Then is ms(cre(T))=0? 
B. Then is m 2 ( a ( N ) ) = 0? 
C. Then is m 2 (<r a p (T))=0? 

A s mentioned earlier Question A was posed by the present author in [15] and 
Quest ion B was posed by J. CONWAY in [6]. W e shall s h o w that the three quest ions 
are equivalent. In order to see that Questions A and B are equivalent, let T and 
N be as above and observe that N is unitarily equivalent to the operator in (1) o n 
«?f ®«3f. The operator S is also a pure subnormal operator (and is cal led the dual 
o f - T ) . Since N is normal, a matrix calculation shows that T*T-TT*=XX* 

1. Pure subnormal operators with finite rank self-commutators 

(1) 
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and S*S—SS*=X*X. Since T has a finite rank self-commutator, S a lso has a 
finite rank self-commutator and X has finite rank. Hence <RE(N)=AE (T) U AE (S *). 

Since N is normal , A(N)\OE(N) is countable; thus m 2 (cr (AO)=m2 (<R E (N)). It 
fo l lows that M2(A(N))=0 if and only if M2(<RE(T))=0 and m 2 ( o - e ( S ) ) = 0 . N o w 
suppose that the answer to Quest ion A is affirmative. Then, since both T and S are 
pure subnormal operators having finite rank self-commutators, M^{OE(T))= 

=M2(<TE(S))=0. T h u s m 2 ( f f ( iV) )=0 . So the answer to Quest ion B is affirmative 
also. O n the other hand it is clear f rom the above discussions that if the answer to 
Quest ion B is affirmative, then the answer to Quest ion A is affirmative also. So 
Quest ions A and B are equivalent. 

T h e fo l lowing theorem and corollary will s h o w that Quest ion C is equivalent 
to Quest ions A and B. Recall that an operator T is semi-Fredholm if either J f (T) 
or Jf(T*) is finite dimensional and 0t(J) is c losed and is Fredholm if both JiT(T) 
and X(T*) are finite dimensional and £%(T) is closed. Recall also that ae(T)— 
= {XeC: T-X is n o t Fredholm} and <R A P (T)={A€C: T—X is n o t bounded below}. 
If T is a pure hyponormal operator, then, since the po int spectrum o f T is empty, 
<rap(T)= {A£C: ®(T-X) is n o t c losed} and thus aap(T)Qoe(T). If T is semi-
Fredholm, let z ' ( r ) = d i m ( j f (T) )—dim (jX~(T*)) denote the index o f T. 

T h e o r e m 1.1. Suppose that T is a hyponormal operator and that T*T—TT* 
has rank n, where n is a nonnegative integer. Then if X is a complex number and T—X 
is semi-Fredholm, then 0 n . 

The fo l lowing corollary fo l lows from Theorem 1.1 and from the above char-
acterizations o f the essential spectrum and the approximate point spectrum o f a pure 
hyponormal operator. 

C o r o l l a r y 1.2. If T is a pure hyponormal operator and T*T—TT* has finite 
rank, then AAP(T)-AE{T). 

The fo l lowing lemma is needed in the proof o f Theorem 1.1. Its proof is an 
easy exercise. 

L e m m a 1.3. If J? is a Hilbert space, Jt an arbitrary subspace of JP, J/~ a finite 
dimensional subspace of and then d im ( ^ x ) s d i m {Jf ). 

P r o o f o f T h e o r e m 1.1. We first consider the case that T is a pure hypo-
normal operator o n a Hilbert space Let P= ]/T*T— TT*. Then for each com-
plex number X, (T-X)*(T~ X)=(T—X) (T—X)*+P". By Theorem 2 .2 o f [8] w e have 
@((T-X)*)Qi%((T-X))+0l(P). Since 3t(P) is finite dimensional, M((T-X))- + 
+M(P) is closed and contains £%((T—A)*)~. But @((T-X)*)~ since X(T-X)= 
= ( 0 ) . Thus 3P=0l((T-X))-+@(P). Lemma 1.3 implies that dim ( X ( ( r - A ) * ) ) = 
= d i m (0t((T—A))-1-)S.dim (P))=n. Thus if T-X is semi-Fredholm, then 
O s / ( T — A ) S — n. T h e general case fol lows readily. 
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2. The approximate point spectrum of a pure quasinormal operator 

oo 
If tf is a Hilbert space, let where for each positive integer k, 

k=1 
^=3?. If define an operator f in i f ( ^ ) by f = 2®Tk, where 

for each posit ive integer k, Tk=T. Let V x denote the unilateral shift o n JC, i .e. , 
Vje(x1,x2,...)=(0,x1,x2,...) for each (xlt x2, . . . ) in ARLEN BROWN proved 
in [3] that each pure quasinormal operator is unitarily equivalent to V X P , for s o m e 
Hilbert space JP and for some positive definite operator P in i.e., P is posi -
tive and J f ( P ) = ( 0 ) . T h e present author showed in [14] that 

. ° ( y * P ) = |A| == ||P||}, 

VeiXrP) = {KC: | A | € a ( P ) } U { ; . 6 C : |A| ^ \\P\\} 

if J f is infinite dimensional, and 

if Jtf is finite dimensional. Here we compute the approximate point spectrum of V^P. 

T h e o r e m 2.1. If P is a positive definite operator on a nonzero Hilbert space 
then aip(V„P)={kiC: \X\£o(P)}. 

P r o o f . Let r = { A 6 C : |A|€ff (P)} and let E be the spectral measure o f P. 
Suppose that A £ C \ r . If |A |> | |P | | = 1 1 ^ 1 1 , then ?4<r:ip(VjeP). So assume that 
|A|< | |P | | . There exists a positive number s such that (|A| —s, | A | + e ) r i f f ( . P ) = 0 . 
Let Jf=@(E([\X\+e, | |P||])), let R=P\Jt, and let Q=P\Jt±. Then V X P is 
unitarily equivalent to VMk®Vui_Q. Since \\VM±Q\\ = \\Q\\^\X\-e, ?4o(VJtxQ). 
A l s o since <x( /?)g[ |A|+e , | |P||], we have ||J?x|| S ( |A |+e) | | ; t | | for each x in J l . 
Thus = 11^11 H M | S s | | x | | for each x in J ( . It 
fo l lows that X^a^VjtR), and, therefore, A^a a p (F j e P) . W e have shown that 
oap(V*P)Qr. 

N o w suppose that p€r. For each positive integer n, let y//n=M(E([\n\ — 1/n, 
M + l/n])), let Rn=P\M, and let Qn=P\M±. N o t e that VieP is unitarily equivalent 
to VM K®VJUI-(LN and"that A(VM J? n )={A£C: |A|s| |i?„||}. Since for any operator 
T, do(T)Qa^(T), we have {AeC: |A| = | | J U } g * . P ( V ^ Q o ^ P ) . But M s 
^\\R„\\^\p\ + l/n, n=l,2, ...; thus | | i ? J - | / i | . Hence, since <r a p ( V X P ) is c losed, 
( A € C : |A| = | / i | } g < r a p ( ^ / ) . This argument shows that r Q a ^ V ^ P ) , and the 
proof is complete. 

We next discuss the relation between quasinormal operators and s o m e other 
important classes o f operators. In the fol lowing let be a separable, infinite d imen-
sional Hilbert space, let P be a positive definite operator o n JF, and let ( B Q T ) denote 
the class o f biquasitriangular operators in J£? ( ^ f ) . The present author showed in [15] 
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that a hyponormal operator T belongs to (BQT) if and only if <J^(T)-<J(T). This 
fact shall be used freely in the fo l lowing discussions. The fol lowing corollary is easy 
to verify. 

C o r o l l a r y 2.2. The operator ) ^ P € ( B Q T ) if and only if o(P) = [0, | |P||], 

' * Lét (Ni)~ denote the norm-closure o f the class o f nilpotent operators in Z£($C). 
(See [11] for a discussion o f the classes ( B Q T ) and (Ni )~ . ) APOSTOL, FOIA§, and 
VOICULESCU gave the fo l lowing characterization o f (Ni )~ in [1]: (N i )~ = 
= {RE(BQT) : both A(T) and AE(T) are connected and 0€cr e(T)}. Hence we have 
the fo l lowing corollary. 

C o r o l l a r y 2.3. The operator V/eP£(BQT) if and only if VyeP^( N i )~ . 

Let ( E N ) denote the class of essentially normal operators, i.e., T 6 ( E N ) if 
and only if T*T-TT* is compact , and let (N+K)={N+K££'(Y<?): N is normal 
and K is compact}. It is known that (N+K) = ( B Q T ) D ( E N ) [4], [11]. Suppose that 
J ^ P £ ( E N ) . Then P is compact and Corollary 2.2 implies that l ^ P í ( B Q T ) . Hence 
there are n o pure quasinormal operators in the class ( N + K ) . 

In [11] C . PEARCY observed that each operator in i f (J?) has a nontrivial invari-
ant subspace if and only if each operator in (Ni) ~ does. H e then wrote (Ni)~ as 
the disjoint union o f four subsets and h e conjectured that if there exists an opera-
tor in £ £ ( № ) that does not have a nontrivial invariant subspace, then that opera-
tor belongs to the "mysterious" fourth subset which consists of those operators 
in ( N i ) - that are neither essentially normal nor quasinilpotent. The above shows 
that pure quasinormal operators in (BQT) are examples of operators in this fourth 
subset o f ( N i ) - . But, o f course, pure quasinormal operators do have nontrivial 
invariant (and hyperinvariant) subspaces. 

Even though there are n o pure quasinormal operators in ( N + K ) , there are 
general nonnormal quasinormal operators in this class. For example, let N be a 
normal operator such that A ( N ) = A E ( N ) = D , where D denotes the open unit disk, 
and let V denote the unilateral shift (of multiplicity one). Then N®V is clearly 
quasinormal and essentially normal, and, since <rap ( N © V)—G(N® V ) = D , 

N®VE(BQT). Thus N ® V E ( N + K ) . 

The fo l lowing example shows that there are also pure subnormal operators in 
( N + K ) . 

E x a m p l e 2.4. Let S denote the Bergman shift, i.e., the Bergman operator 
for D , and let N be its minimal normal extension. (See [6] for a discussion o f Bergman 
operators.) The operator N is unitarily equivalent to the operator 
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o n where is the Hilbert space on which S acts. W e shall s h o w that 
the dual T o f S belongs to (N+K). T h e operator T is a pure subnormal operator. 
It is k n o w n that a(N)=<je(N)=cr(S)=T) and (Te(S)=8D [6], and it is easy to 
verify that a(T)QD. Since S is a weighted unilateral shift, S has a compact self-
commutator . T h u s X is compact and T 6 ( E N ) because S*S-SS*=XX* and 
T*T-TT*=X*X. Observe that N is a compact perturbation o f S®T*. Suppose 
that A£D. Then N—X is n o t semi-Fredholm; thus T*—X is not semi-Fred-
ho lm since S—X is Fredholm. Hence X£oap(T) since the point spectrum o f T 
is empty. It fo l lows that oap(T)=o(T)=I>; thus 7*6 (BQT). Consequential ly, 
T£(N+K). 

CLANCEY and MORRELL gave an example o f a pure hyponormal operator T 
that is n o t subnormal and that has a rank one sel f -commutator such that <xe(T)= 
=o(T)=D [5]. By Corollary 1.2 < r a p ( T ) = D . Thus Ti(BQT)fl(EN)=(N+K). 
On the other hand if T is a pure quasinormal operator that has a finite rank self-
commutator, then T$(N+K). These facts motivate the fo l lowing question. 

Q u e s t i o n 2.5. D o e s (N+K) or, equivalently, does (BQT) contain any pure 
subnormal operators that have finite rank self-commutators? 

N o w let J f be a nonzero Hilbert space o f arbitrary dimension, let P be a posi-
tive definite operator in J S a n d let mY denote Lebesgue measure o n the real 
line. It is easy to verify that 

m2(a(VJfP)) = J 2nrdm1(r) and m2(ae(KrP)) = j2nrdm1(r), 
[O.FL] [0,6] 

where o = | | P | | and b = | | P | | if JF is infinite dimensional and b=0 otherwise. 
(To get the second equation w e used the fact that {c£<x(P): o | | P | [ } is countable . ) 
W e shall n o w develop a similar formula for m 2 (a a p (V ) F P)) . W e shall need the fo l -
lowing notat ion and lemma. 

Let 38 denote the family o f Borel subsets o f [0, +«>) . If E£3$, let A(E)= 
= {AEC: and let $>={A(E): E£3§}. It is clear that 2 is a <r-algebra c o n -
sisting o f Borel subsets o f C and that A: 38—3d is a one-to-one mapping o f & 
onto 3> that preserves all o f the Boolean operations. 

L e m m a 2.6. Suppose that Then m2(A(E))= J 2nrdm1(r). 
E 

P r o o f . F o r in 38, let p.(A(E))= J2nrdm1(r). It is clear that p. is a measure 

o n Q and that if E=(a, b], then ¡i{A(E))=mi{A(E)). A n application o f the 
theorem o f Caratheodory shows that p(A(E))-m2(A(E)) for all E in 38. 

Theorem 2.1 and Lemma 2.6 imply the fo l lowing theorems. 

T h e o r e m 2.7. m»(ffap ( * * / ) ) = f 2nr dmt(r). 
A(P) 
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T h e o r e m 2.8. m 2 ( f f a p ( i ^ . P ) ) = 0 if and only if m1(a(P))=0. 

For comparison, w e state the fo l lowing theorem. 

T h e o r e m 2.9. mi(<Te(Vjg,P)) = 0 if and only if P is compact. 

T h e spectrum of a pure quasinormal operator is connected and its essential 
spectrum has at most countably many connected components . In the fol lowing 
example, w e present a pure quasinormal operator whose approximate point spectrum 
has uncountably many connected components each o f which is a circle. W e then 
use Theorem 2.7 to compute the measure of its approximate po int spectrum. 

E x a m p l e 2.9. Let C denote the Cantor set and let g: [0, l ] - [ 0 , 1 ] be the 

Cantor ternary function (cf. [13]). Recall that g is defined as fo l lows : Let r— 2 £*„/3" 
n = l 

be the ternary expansion o f a number in [0 ,1] . Let N= + «> if for each 
positive integer n, and otherwise let N be the smallest positive integer such that 

N 
1. Let b„=aJ2 for n<N and let bN=1. Then g 0 ) = 2bJ2"- Recall also 

that g is a continuous, monoton ic increasing function o f [ 0 , 1 ] onto itself that is 
constant on the intervals in the complement in [ 0 , 1 ] o f C. Let / > 0 . Def ine a 
function / : [0, l ] — [ 0 , 1 + i ] by f(r)—g(r)+tr. The funct ion / is a monotone 
homeomorphism of [ 0 , 1 ] onto [ 0 , 1 + t ] . Let F=f(C), let P be a positive definite 
operator on a Hilbert space & such that a(P)—F, and let T—V^P. Since F is 
uncountable and totally disconnected, it fo l lows from Theorem 2.1 that oap(T) has 
uncountably many connected components . 

W e n o w compute m2(<rap(T)) by evaluating J" 2%r dm^r). (It is easy to see 

that m 2 ( t r e ( T ) ) = m 2 ( I T ( T ) ) = 7 i | | P | | 2 = 7 i ( l + i )a . ) Let Sk„, k= 1, 2, . . . , 2 " - \ be the 
disjoint subintervals o f [ 0 , 1 ] \ C that have measure equal to 1/3", and let Tk— 
=f(Sk), k=l,2,...,2-\ n=l, 2 , . . . . Let S = [ 0 , 1 ] \ C and T = [ 0 , l + t ] \ F . 

T h e n IJ Skn=S and (J Tk=T. We will first evaluate f 2nr dmt(r). F ix n and k. 
n,k n,k jr 

N o w Sk and T k are open intervals and g=(2k—1)/2" on S*. T h u s / i s differentiable 
•on Sk and, therefore, by the change o f variable theorem, 

f 2nr dmx (r) = f 2nf(r)f (r) dmx (r) = 2nt (2k -1)/6" + i2 / 2 n r dmx (r). 

T h u s 

f 2nrdmt(r) = 2 2* (2nt(2k-lW + t2 f 2nrdm1(r)) = 
T 11=1 * = 1 S* 

= 2 n t ( 2 ( W ) 2 ( 2 k - l ) ) + t2f2nrdm1(r). 
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U s i n g the facts that 

2" 

2 2 (2k - 1 ) = (2"-1)2 and f 2nr dm^r) = f 2nr dm^r) = n 

(since m1(C) = 0), 

we get J2nr dm1(r)=nt+nt2. Hence 
T 

J2nrdm1(r)= J 2nrdm1(r)—J2nr dm1(r) = n(l+t); 
F [0,L+(] T 

thus m2(ffip(T)) = n(\+t). 

3. Quasinormals plus commuting normals 

In this section we present a class o f pure subnormal operators that contains the 
class o f pure quasinormal operators and show that for this class o f operators the 
answer to the equivalent quest ions posed in Section 1 is affirmative. 

Let S be a subnormal operator on a Hilbert space ¿4?. HALMOS has shown that 
S has a normal extension of the form 

5 X r s x 1 

on © (cf. [2], [9]). In fact, as mentioned earlier, if S is pure, then the minimal 
normal extension o f S is unitarily equivalent to an operator o f the form (1) o n 
yf If S is pure and is unitarily equivalent to its dual R, then w e say that S 
is a self-dual subnormal operator. (See [7] for a discussion o f the dual o f a pure 
subnormal operator.) If S is self-dual, then the minimal normal extension o f S i s 
unitarily equivalent to the operator 

5 Z 
(2> [o S*] 

o n J ? A s we mentioned earlier, OLIN has observed in [10] that the operator 
in (1) is the minimal normal extension of S if and only if R is pure. A l s o n o t e that 
any matrix o f form (1) is normal if and only if S*S~SS*=XX*, R*R-RR* = 
=X*X, and S*X=XR. 

T h e o r e m 3.1. Suppose that S is a subnormal operator on a Hilbert space 
that has a normal extension of the form (1) and suppose that N is a normal operator 
in that commutes with S, R, and X. Then T=S+N is also subnormal. More-
over, T is pure if and only if S is pure. 
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P r o o f . A n application o f Fuglede's theorem shows that both N and N* c o m -
mute wi th S, R, X, S*, R*, and X*. Let Q = R+N*. Then T*T~TT* = S*S-
-SS*=XX*, Q*Q-QQ* = R*R-RR*=X*X, and T*X=XQ. Therefore, the 
operator 

on is a normal extension o f T, i.e., T is subnormal. 
N o w suppose that S=S1®S2 on = w h e r e Sx is a normal opera-

tor on the Hilbert space and S2 is a pure operator on the Hilbert space 
Then N = [ N [ j ] , relative to the decomposit ion Since NS=SN and 
N*S—SN*, a matrix calculation shows that N21S1=S2N21 and J V * 2 = S 2 N ? , , . 
Theorem 1.2 o f [15] shows that N12=N2l=0. T h u s N = N n ® N 2 2 and r = ( S ' 1 + i V 1 1 ) © 
®(S2+N22), where Sx + Nn is normal since and Nlt are commut ing normal 
operators. This argument shows that if T is pure, then S is also pure. Since S=T— N, 
a similar argument shows that if S is pure, then T is also pure. 

C o r o l l a r y 3.2. Suppose that S is a subnormal operator on a Hilbert space 
ye that has a normal extension of the form (2) and suppose that N is a normal opera-
tor in ¿¡f(yf) that commutes with S and Z. Then T—S+N is also,subnormal. 

W e remark that if S is a subnormal operator with a normal extension o f form 
(2) and if U is a unitary operator that commutes with S (for example, if U—ixl^, 
where a is a complex number such that ja| = 1), then the operator in (2) is unitarily 
equivalent to the operator 

on ®Jif . Thus even a normal extension o f the form (2) is n o t unique. 
T h e fol lowing theorem is well-known. (Recall that if S is a quasinormal opera-

tor, then S*S~SS*^0.) 

T h e o r e m 3.3. If S is a quasinormal operator, then the matrix in (2) is a normal 
extension of S if Z=\ rS*S—SS*. In particular, if S is a pure quasinormal opera-
tor, then S is self-dual. 

P r o o f . It is clear that S*S-SS*=Z2. T o s h o w that S*Z=ZS, observe 
that Z2S=(S*S-SS*)S=0. Hence ZS=0 since Z is self-adjoint, and thus 
S*Z=(ZS)*=0. Therefore, the operator in (2) is normal. 

C o r o l l a r y 3.4. If S is a quasinormal operator on a Hilbert space and N 
is a normal operator in J t h a t commutes with S, then T=S+N is subnormal. 
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P r o o f . By Fuglede's theorem N also commutes wi th S* and, therefore, wi th 

Z=yS*S-SS*. Hence T is subnormal by Corollary 3.2. 

Let J f be a Hilbert space, and let Sf—{S+N€jP ( J f ) : S is a pure quasinormal , 
N is normal, and NS=SN). The set Sf is a subset o f the set o f all pure subnormal 
operators in SC(Jf ) and contains the pure quasinormals. We show that the opera-
tors in have a fairly simple structure. 

T h e o r e m 3.5. If T^Sf, then there exist a Hilbert space and commuting 
operators P and N in where P is positive definite and N is normal, such that T 
is unitarily equivalent to the operator V#P-on3@. 

P r o o f . W e have T=S+N1, where S is a pure quasinormal operator, JVX 

is normal, and N1S=SN1. There exist a Hilbert space and a posit ive definite 
operator P in J£?{3tër) such that S is unitarily equivalent to V#P. So T is unita i i ly 
equivalent to V^P+Nq, where N0 is normal and commutes with V^P. Then 
Na=[NtJ] on j ê . Since N0 commutes with V^P, a matrix calculation show:?-that 
NltJ+1P=0 and Ni+ltJ+1P=PNij, i,j= 1 , 2 , . . . . A n induction argument s h o w s 
that NtJ=0 for /</' . Since Fuglede's theorem implies that N* commutes wi th 
VjfP, w e have by a similar argument that N ^ = 0 for /=-/'. Thus is diagonal , 
Nu is normal, and Ni+1:i+1P=PNn, i= 1 , 2 , . . . . U s i n g the Putnam—Fuglede ' s 
theorem, we can see that PNi+lyi+1=NHP also. Hence P2, and thus P, c o m m u t e s 
with Nu. It fo l lows that (Ni+hi+l-Nu)P=0-, thus .Ni+1J+1 = Nu, i = 1, 2, . . . . 
Therefore, N0=fiu, and the proof is complete. 

It fo l lows from Theorem 3.5 that if S is a pure quasinormal and N is a nonzéro 
normal operator that commutes with S, then S+N is not quasinormal. T h u s if 
contains operators that are not quasinormal. 

We can say more, about the structure o f those operators in Sf that have c o m -
pact self-commutators. Let V denote the unilateral shift o f multiplicity one . 

T h e o r e m 3.6. Suppose that T^Sf and T*T~TT* is compact. Then there 
exist an index set A, a set of positive numbers { c a } a € X , and a set of complex numbers 
tya}a£A  suc^ T is unitarily equivalent to 2 ®(Xt+cxV). If the rank of 

T*T~TT*isn, then A = {1,2, ...,«}; otherwise A={1,2, ...}. 

P r o o f . By Theorem 3.5 T is unitarily equivalent to. V^P+N, where P is 
positive definite in N is normal in£C(je), a n d ; PN=NP. Since T*T- TT* 
is compact , P is compact . Suppose that c is art eigenvalue o f P. Then Jf(P-c) 
is finite dimensional and reduces N. Hence 3T(P—c) has an orthonormal basis 
consisting o f eigenvectors o f .AT. It fo l lows that j f has an orthonormal basis {ea}aeA 

consisting o f vectors that are eigenvectors o f b o t h ' P and N. For a£A, let cx and 
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Aa be the eigenvalues o f P and N, respectively, associated with ea, and let be 
the one-dimensional subspace o f № spanned by ex. Then J f = 2 and J ? 

is Hilbert space isomorphic to 2 Hence V#P is unitarily equivalent to 
*(_A 

2 ® c*K<t a n c * ^ i s unitarily equivalent to 2 © 4 ij ; thus T is unitarily equiv-

alent to 2 ®(J-A+C°IKT/J- The proof, is complete since for each a in A , is A 
unitarily equivalent to V. 

C o r o l l a r y 3.7. If TiSf and T*T-TT* has finite rank, then m2(aap(T)) = 
= W A ( < R , ( R ) ) = 0 . 

N 
P r o o f . By Theorem 3.6 T is unitarily equivalent to The 

k = 1 
proof is complete since m2 (erap (V)) = m2(ac (V)) = 0. 

Corollary 3.7 shows that the answer to the three equivalent questions posed 
in Section 1 is affirmative for the class o f operators Sf . In regard to Question 2.5, 
note that Corollary 3.7 also implies that if T£S? and T has a finite rank self-com-
mutator, then T$(N+K), since aip(T)^<r(T). Recall that if T is a pure quasi-
normal operator, then t*t—JT* is compact if and only if m2(ae(T))=0 (see 
Theorem 2.9), and if j*T-TT* is compact , then m 2 ( a a p ( T ) ) = 0 (see Theorem 
2.8). The next example shows that this is not the case for the class o f operators y . 

E x a m p l e 3.8. Let {ek}^=1 be an orthonormal basis for a Hilbert space j f , 
let {Aj^Li be an enumeration of all the "rational" complex numbers in D , let {c t}"= 1 

be a sequence o f positive numbers such that 2 ct 1 /2, let Gk = {X£ D : |A—Afc| < ck}, 
k = 1 

k = l , 2, . . . , and let G= [J Gk. N o t e that G is an open subset of C and that 
k = J 

CO 
w 2 ( G ) S ^ 7rc®<7t/2. Since G = D , m2(dG)>n/2. Def ine a positive definite operator 

k — L 
P and a normal operator N in by Pek=ckek and Nek=Xkek. Let T=V^P+ 

Observe that T^Sf and that T*T-TT* is compact (since P is compact) . 
oo 

Observe also that T is unitarily equivalent to 2®(^k+ckV) and that dGk= 
k=1 

= ^ k + ckV)Qaup(T). Thus ( U dGk)-Qaap(T). It fo l lows that m2(aap(T))>0 
k = l 

since dGQ(\J dGk)~. We also have m2(ae(T))>0 since aap(T)Qae(T). 
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