The approximate point spectrum of a pure quasinormal operator

L. R. WILLIAMS

In this paper all Hilbert spaces are over the complex scalars. If \mathcal{H} is a Hilbert space, let $\mathscr{L}(\mathscr{H})$ denote the algebra of all bounded linear operators on \mathscr{H} . (In this paper the term operator shall mean an element of $\mathscr{L}(\mathscr{H})$.) If T is an operator, let $\sigma(T)$ denote the spectrum of T, let $\sigma_{ap}(T)$ denote the approximate point spectrum of T, let \tilde{T} denote the image of T in the Calkin algebra $\mathscr{L}(\mathscr{H})/\mathscr{C}$ under the natural projection, where \mathscr{C} denotes the ideal of all compact operators in $\mathscr{L}(\mathscr{H})$, and let $\sigma_e(T)$ denote the essential spectrum of T, i.e., $\sigma_e(T) = \sigma(\tilde{T})$. C. R. PUTNAM proved in [12] that the planar Lebesgue measure of the spectrum of a pure hyponormal operator is positive. There exist, however, pure hyponormal operators which have essential spectra of measure zero. (The unilateral shift is an example.) Let T be a pure hyponormal operator. It follows from Putnam's inequality [12] that $\pi \| \tilde{T}^* \tilde{T} - \tilde{T} \tilde{T}^* \| \leq 1$ $\leq m_2(\sigma_e(T))$, where m_2 denotes planar Lebesgue measure. So if $m_2(\sigma_e(T))=0$, then the self-commutator $T^*T - TT^*$ is compact. The converse is not true, even in the subnormal case. (See Example 2.4.) Yet the following question which was posed by the present author in [15] remains open: If T is a pure subnormal operator that has a finite rank self-commutator, then is $m_2(\sigma_e(T))=0$? The results of this paper were motivated by the above question. In Section 1 we show that the above question is equivalent to a similar question about the approximate point spectrum and to a question posed by J. Conway about the measure of the spectrum of the minimal normal extension of a pure subnormal operator. In Section 2 we compute the approximate point spectrum of a pure quasinormal operator and then present a formula for the planar Lebesgue measure of it. In Section 3 we present a class of pure subnormal operators for which the answer to the above question is affirmative.

We present here some terminology and notation. Let T be an operator. Recall that T is hyponormal if $T^*T - TT^* \ge 0$, T is subnormal if T has a normal extension,

Received December 29, 1982 and in revised form June 28, 1984.

This research was supported by the National Science Foundation under Grant #PRM-8101588.

and T is quasinormal if T commutes with T^*T . It is known that each quasinormal operator is subnormal and each subnormal operator is hyponormal. Each operator T is unitarily equivalent to $T_1 \oplus T_2$, where T_1 is normal and T_2 is pure, i.e., if \mathcal{M} is a reducing subspace for T_2 and $T_2|\mathcal{M}$ is normal, then $\mathcal{M} = (0)$. The operator T_1 is the normal part of T and T_2 is the pure part of T. (Note that either of the operators T_1 or T_2 may be the zero operator on the zero Hilbert space.) Observe that if T is a hyponormal operator, then any eigenspace of T reduces T. Thus the point spectrum of a pure hyponormal operator is empty. We shall use this fact freely. Finally, let $\mathcal{K}(T)$ denote the kernel of T and $\mathcal{R}(T)$ the range of T.

1. Pure subnormal operators with finite rank self-commutators

We begin this section by observing that if T is a pure subnormal operator on a Hilbert space \mathcal{H} and N is its minimal normal extension on a Hilbert space \mathcal{H} , where $\mathcal{H} \subseteq \mathcal{H}$, then N is unitarily equivalent to the operator

(1)
$$\begin{bmatrix} T & X \\ 0 & S^* \end{bmatrix}$$

on $\mathscr{H} \oplus \mathscr{H}_1$ for some Hilbert space \mathscr{H}_1 . But since \mathscr{H} is the closed linear span of $\{(N^*)^n x: x \in \mathscr{H}, n \text{ a nonnegative integer}\}$ [6], we have dim $(\mathscr{H}) = \dim(\mathscr{H})$. OLIN has observed in [10] that N^* is the minimal normal extension of S if and only if T is pure (and it follows that N is the minimal normal extension of T if and only if S is pure). Thus, since T is pure, an argument similar to the one above shows that dim $(\mathscr{H}) = \dim(\mathscr{H}_1)$. Hence N is unitarily equivalent to the operator in (1) on $\mathscr{H} \oplus \mathscr{H}$.

We now state the following questions.

Questions. Suppose that T is a pure subnormal operator that has a finite rank self-commutator and suppose that N is its minimal normal extension.

- A. Then is $m_2(\sigma_e(T))=0?$
- B. Then is $m_2(\sigma(N))=0$?
 - C. Then is $m_2(\sigma_{ap}(T))=0$?

As mentioned earlier Question A was posed by the present author in [15] and Question B was posed by J. CONWAY in [6]. We shall show that the three questions are equivalent. In order to see that Questions A and B are equivalent, let T and N be as above and observe that N is unitarily equivalent to the operator in (1) on $\mathcal{H} \oplus \mathcal{H}$. The operator S is also a pure subnormal operator (and is called the *dual* of T). Since N is normal, a matrix calculation shows that $T^*T - TT^* = XX^*$ and $S^*S-SS^*=X^*X$. Since T has a finite rank self-commutator, S also has a finite rank self-commutator and X has finite rank. Hence $\sigma_e(N) = \sigma_e(T) \cup \sigma_e(S^*)$. Since N is normal, $\sigma(N) \setminus \sigma_e(N)$ is countable; thus $m_2(\sigma(N)) = m_2(\sigma_e(N))$. It follows that $m_2(\sigma(N)) = 0$ if and only if $m_2(\sigma_e(T)) = 0$ and $m_2(\sigma_e(S)) = 0$. Now suppose that the answer to Question A is affirmative. Then, since both T and S are pure subnormal operators having finite rank self-commutators, $m_2(\sigma_e(T)) = m_2(\sigma_e(S)) = 0$. Thus $m_2(\sigma(N)) = 0$. So the answer to Question B is affirmative also. On the other hand it is clear from the above discussions that if the answer to Question B is affirmative, then the answer to Question A is affirmative also. So Questions A and B are equivalent.

The following theorem and corollary will show that Question C is equivalent to Questions A and B. Recall that an operator T is semi-Fredholm if either $\mathscr{K}(T)$ or $\mathscr{K}(T^*)$ is finite dimensional and $\mathscr{R}(T)$ is closed and is Fredholm if both $\mathscr{K}(T)$ and $\mathscr{K}(T^*)$ are finite dimensional and $\mathscr{R}(T)$ is closed. Recall also that $\sigma_e(T) =$ $= \{\lambda \in \mathbb{C}: T - \lambda \text{ is not Fredholm}\}$ and $\sigma_{ap}(T) = \{\lambda \in \mathbb{C}: T - \lambda \text{ is not bounded below}\}.$ If T is a pure hyponormal operator, then, since the point spectrum of T is empty, $\sigma_{ap}(T) = \{\lambda \in \mathbb{C}: \mathscr{R}(T - \lambda) \text{ is not closed}\}$ and thus $\sigma_{ap}(T) \subseteq \sigma_e(T)$. If T is semi-Fredholm, let $i(T) = \dim(\mathscr{K}(T)) - \dim(\mathscr{K}(T^*))$ denote the index of T.

Theorem 1.1. Suppose that T is a hyponormal operator and that T^*T-TT^* has rank n, where n is a nonnegative integer. Then if λ is a complex number and $T-\lambda$ is semi-Fredholm, then $0 \ge i(T-\lambda) \ge -n$.

The following corollary follows from Theorem 1.1 and from the above characterizations of the essential spectrum and the approximate point spectrum of a pure hyponormal operator.

Corollary 1.2. If T is a pure hyponormal operator and $T^*T - TT^*$ has finite rank, then $\sigma_{ap}(T) = \sigma_e(T)$.

The following lemma is needed in the proof of Theorem 1.1. Its proof is an easy exercise.

Lemma 1.3. If \mathcal{H} is a Hilbert space, \mathcal{M} an arbitrary subspace of \mathcal{H} , \mathcal{N} a finite dimensional subspace of \mathcal{H} , and $\mathcal{H} = \mathcal{M} + \mathcal{N}$, then dim $(\mathcal{M}^{\perp}) \leq \dim(\mathcal{N})$.

Proof of Theorem 1.1. We first consider the case that T is a pure hyponormal operator on a Hilbert space \mathscr{H} . Let $P = \sqrt{T^*T - TT^*}$. Then for each complex number λ , $(T-\lambda)^*(T-\lambda) = (T-\lambda)(T-\lambda)^* + P^2$. By Theorem 2.2 of [8] we have $\mathscr{R}((T-\lambda)^*) \subseteq \mathscr{R}((T-\lambda)) + \mathscr{R}(P)$. Since $\mathscr{R}(P)$ is finite dimensional, $\mathscr{R}((T-\lambda))^- +$ $+\mathscr{R}(P)$ is closed and contains $\mathscr{R}((T-\lambda)^*)^-$. But $\mathscr{R}((T-\lambda)^*)^- = \mathscr{H}$ since $\mathscr{K}(T-\lambda) =$ = (0). Thus $\mathscr{H} = \mathscr{R}((T-\lambda))^- + \mathscr{R}(P)$. Lemma 1.3 implies that dim $(\mathscr{K}((T-\lambda)^*)) =$ $= \dim (\mathscr{R}((T-\lambda))^{\perp}) \leq \dim (\mathscr{R}(P)) = n$. Thus if $T-\lambda$ is semi-Fredholm, then $0 \geq i(T-\lambda) \geq -n$. The general case follows readily.

2. The approximate point spectrum of a pure quasinormal operator

If \mathscr{H} is a Hilbert space, let $\hat{\mathscr{H}} = \sum_{k=1}^{\infty} \oplus \mathscr{H}_k$, where for each positive integer k, $\mathscr{H}_k = \mathscr{H}$. If $T \in \mathscr{L}(\mathscr{H})$, define an operator \hat{T} in $\mathscr{L}(\hat{\mathscr{H}})$ by $\hat{T} = \sum_{k=1}^{\infty} \oplus T_k$, where for each positive integer k, $T_k = T$. Let $V_{\mathscr{H}}$ denote the unilateral shift on $\hat{\mathscr{H}}$, i.e., $V_{\mathscr{H}}(x_1, x_2, ...) = (0, x_1, x_2, ...)$ for each $(x_1, x_2, ...)$ in $\hat{\mathscr{H}}$. ARLEN BROWN proved in [3] that each pure quasinormal operator is unitarily equivalent to $V_{\mathscr{H}}\hat{P}$, for some Hilbert space \mathscr{H} and for some positive definite operator P in $\mathscr{L}(\mathscr{H})$, i.e., P is positive and $\mathscr{H}(P) = (0)$. The present author showed in [14] that

$$\sigma(V_{\mathcal{H}}\hat{P}) = \{\lambda \in \mathbb{C} \colon |\lambda| \leq \|P\|\},\$$
$$\sigma_e(V_{\mathcal{H}}\hat{P}) = \{\lambda \in \mathbb{C} \colon |\lambda| \in \sigma(P)\} \cup \{\lambda \in \mathbb{C} \colon |\lambda| \leq \|\tilde{P}\|\}$$

if \mathcal{H} is infinite dimensional, and

$$\sigma_e(V_{\mathscr{H}}\hat{P}) = \{\lambda \in \mathbb{C} \colon |\lambda| \in \sigma(P)\}$$

if \mathscr{H} is finite dimensional. Here we compute the approximate point spectrum of $V_{\mathscr{H}}\hat{P}$.

Theorem 2.1. If P is a positive definite operator on a nonzero Hilbert space \mathcal{H} , then $\sigma_{ap}(V_{\mathscr{R}}\hat{P}) = \{\lambda \in \mathbb{C} : |\lambda| \in \sigma(P)\}.$

Proof. Let $\Gamma = \{\lambda \in \mathbb{C} : |\lambda| \in \sigma(P)\}$ and let E be the spectral measure of P. Suppose that $\lambda \in \mathbb{C} \setminus \Gamma$. If $|\lambda| > \|P\| = \|V_{\mathscr{H}}\hat{P}\|$, then $\lambda \notin \sigma_{\operatorname{ap}}(V_{\mathscr{H}}\hat{P})$. So assume that $|\lambda| < \|P\|$. There exists a positive number ε such that $(|\lambda| - \varepsilon, |\lambda| + \varepsilon) \cap \sigma(P) = \emptyset$. Let $\mathscr{M} = \mathscr{R}(E([|\lambda| + \varepsilon, \|P\|]))$, let $R = P|\mathscr{M}$, and let $Q = P|\mathscr{M}^{\perp}$. Then $V_{\mathscr{H}}\hat{P}$ is unitarily equivalent to $V_{\mathscr{M}}\hat{R} \oplus V_{\mathscr{M}^{\perp}}\hat{Q}$. Since $\|V_{\mathscr{M}^{\perp}}\hat{Q}\| = \|Q\| \le |\lambda| - \varepsilon, \lambda \notin \sigma(V_{\mathscr{M}^{\perp}}\hat{Q})$. Also since $\sigma(R) \subseteq [|\lambda| + \varepsilon, \|P\|]$, we have $\|\hat{R}x\| \ge (|\lambda| + \varepsilon) \|x\|$ for each x in $\hat{\mathscr{M}}$. Thus $\|(V_{\mathscr{M}}\hat{R} - \lambda)x\| \ge \|V_{\mathscr{M}}\hat{R}x\| - \|\lambda x\| = \|\hat{R}x\| - \|\lambda x\| \ge \varepsilon \|x\|$ for each x in $\hat{\mathscr{M}}$. It follows that $\lambda \notin \sigma_{\operatorname{ap}}(V_{\mathscr{M}}\hat{R})$, and, therefore, $\lambda \notin \sigma_{\operatorname{ap}}(V_{\mathscr{H}}\hat{P})$. We have shown that $\sigma_{\operatorname{ap}}(V_{\mathscr{H}}\hat{P}) \subseteq \Gamma$.

Now suppose that $\mu \in \Gamma$. For each positive integer *n*, let $\mathcal{M}_n = \mathcal{R}(E([|\mu| - 1/n, |\mu| + 1/n]))$, let $R_n = P|_{\mathcal{M}_n}$, and let $Q_n = P|_{\mathcal{M}_n^{\perp}}$. Note that $V_{\mathcal{H}}\hat{P}$ is unitarily equivalent to $V_{\mathcal{M}_n}\hat{R}_n \oplus V_{\mathcal{M}_n^{\perp}}\hat{Q}_n$ and that $\sigma(V_{\mathcal{M}_n}\hat{R}_n) = \{\lambda \in \mathbb{C} : |\lambda| \le ||R_n||\}$. Since for any operator T, $\partial \sigma(T) \subseteq \sigma_{ap}(T)$, we have $\{\lambda \in \mathbb{C} : |\lambda| = ||R_n||\} \subseteq \sigma_{ap}(V_{\mathcal{M}}\hat{R}_n) \subseteq \sigma_{ap}(V_{\mathcal{H}}\hat{P})$. But $|\mu| \le \le ||R_n|| \le ||\mu| + 1/n, n = 1, 2, ...;$ thus $||R_n|| \to |\mu|$. Hence, since $\sigma_{ap}(V_{\mathcal{H}}\hat{P})$ is closed, $\{\lambda \in \mathbb{C} : |\lambda| = |\mu|\} \subseteq \sigma_{ap}(V_{\mathcal{H}}\hat{P})$. This argument shows that $\Gamma \subseteq \sigma_{ap}(V_{\mathcal{H}}\hat{P})$, and the proof is complete.

We next discuss the relation between quasinormal operators and some other important classes of operators. In the following let \mathscr{H} be a separable, infinite dimensional Hilbert space, let P be a positive definite operator on \mathscr{H} , and let (BQT) denote the class of biquasitriangular operators in $\mathscr{L}(\mathscr{H})$. The present author showed in [15] that a hyponormal operator T belongs to (BQT) if and only if $\sigma_{ap}(T) = \sigma(T)$. This fact shall be used freely in the following discussions. The following corollary is easy to verify.

Corollary 2.2. The operator $V_{\mathcal{H}}\hat{P}\in(BQT)$ if and only if $\sigma(P)=[0, ||P||]$.

Let (Ni)⁻ denote the norm-closure of the class of nilpotent operators in $\mathscr{L}(\mathscr{H})$. (See [11] for a discussion of the classes (BQT) and (Ni)⁻.) Apostol, Foraş, and VOICULESCU gave the following characterization of (Ni)⁻ in [1]: (Ni)⁻ = = { $T \in (BQT)$: both $\sigma(T)$ and $\sigma_e(T)$ are connected and $0 \in \sigma_e(T)$ }. Hence we have the following corollary.

Corollary 2.3. The operator $V_{\mathcal{H}} \hat{P} \in (BQT)$ if and only if $V_{\mathcal{H}} \hat{P} \in (Ni)^{-}$.

Let (EN) denote the class of essentially normal operators, i.e., $T \in (EN)$ if and only if $T^*T - TT^*$ is compact, and let $(N+K) = \{N+K \in \mathscr{L}(\mathscr{H}): N \text{ is normal}$ and K is compact}. It is known that $(N+K) = (BQT) \cap (EN)$ [4], [11]. Suppose that $V_{\mathscr{H}} \hat{P} \in (EN)$. Then P is compact and Corollary 2.2 implies that $V_{\mathscr{H}} \hat{P} \notin (BQT)$. Hence there are no pure quasinormal operators in the class (N+K).

In [11] C. PEARCY observed that each operator in $\mathscr{L}(\mathscr{H})$ has a nontrivial invariant subspace if and only if each operator in $(Ni)^-$ does. He then wrote $(Ni)^-$ as the disjoint union of four subsets and he conjectured that if there exists an operator in $\mathscr{L}(\mathscr{H})$ that does not have a nontrivial invariant subspace, then that operator belongs to the "mysterious" fourth subset which consists of those operators in $(Ni)^-$ that are neither essentially normal nor quasinilpotent. The above shows that pure quasinormal operators in (BQT) are examples of operators in this fourth subset of $(Ni)^-$. But, of course, pure quasinormal operators do have nontrivial invariant (and hyperinvariant) subspaces.

Even though there are no pure quasinormal operators in (N+K), there are general nonnormal quasinormal operators in this class. For example, let N be a normal operator such that $\sigma(N) = \sigma_e(N) = \overline{\mathbf{D}}$, where **D** denotes the open unit disk, and let V denote the unilateral shift (of multiplicity one). Then $N \oplus V$ is clearly quasinormal and essentially normal, and, since $\sigma_{ap}(N \oplus V) = \sigma(N \oplus V) = \overline{\mathbf{D}}$, $N \oplus V \in (BQT)$. Thus $N \oplus V \in (N+K)$.

The following example shows that there are also pure subnormal operators in (N+K).

Example 2.4. Let S denote the Bergman shift, i.e., the Bergman operator for **D**, and let N be its minimal normal extension. (See [6] for a discussion of Bergman operators.) The operator N is unitarily equivalent to the operator

$$\begin{bmatrix} S & X \\ 0 & T^* \end{bmatrix}$$

4., **.** . . [.]

L. R. Williams

on $\mathscr{H} \oplus \mathscr{H}$, where \mathscr{H} is the Hilbert space on which S acts. We shall show that the dual T of S belongs to (N+K). The operator T is a pure subnormal operator. It is known that $\sigma(N) = \sigma_e(N) = \sigma(S) = \overline{\mathbf{D}}$ and $\sigma_e(S) = \partial \mathbf{D}$ [6], and it is easy to verify that $\sigma(T) \subseteq \overline{\mathbf{D}}$. Since S is a weighted unilateral shift, S has a compact selfcommutator. Thus X is compact and $T \in (EN)$ because $S^*S - SS^* = XX^*$ and $T^*T - TT^* = X^*X$. Observe that N is a compact perturbation of $S \oplus T^*$. Suppose that $\lambda \in \mathbf{D}$. Then $N - \lambda$ is not semi-Fredholm; thus $T^* - \lambda$ is not semi-Fredholm since $S - \lambda$ is Fredholm. Hence $\overline{\lambda} \in \sigma_{ap}(T)$ since the point spectrum of T is empty. It follows that $\sigma_{ap}(T) = \sigma(T) = \overline{\mathbf{D}}$; thus $T \in (BQT)$. Consequentially, $T \in (N+K)$.

CLANCEY and MORRELL gave an example of a pure hyponormal operator T that is not subnormal and that has a rank one self-commutator such that $\sigma_e(T) = \sigma(T) = \overline{\mathbf{D}}$ [5]. By Corollary 1.2 $\sigma_{ap}(T) = \overline{\mathbf{D}}$. Thus $T \in (BQT) \cap (EN) = (N+K)$. On the other hand if T is a pure quasinormal operator that has a finite rank self-commutator, then $T \notin (N+K)$. These facts motivate the following question.

Question 2.5. Does (N+K) or, equivalently, does (BQT) contain any pure subnormal operators that have finite rank self-commutators?

Now let \mathscr{H} be a nonzero Hilbert space of arbitrary dimension, let P be a positive definite operator in $\mathscr{L}(\mathscr{H})$, and let m_1 denote Lebesgue measure on the real line. It is easy to verify that

$$m_2(\sigma(V_{\mathcal{H}}\hat{P})) = \int_{[0,a]} 2\pi r \, d\, m_1(r) \text{ and } m_2(\sigma_e(V_{\mathcal{H}}\hat{P})) = \int_{[0,b]} 2\pi r \, dm_1(r),$$

where a = ||P|| and $b = ||\tilde{P}||$ if \mathscr{H} is infinite dimensional and b = 0 otherwise. (To get the second equation we used the fact that $\{c \in \sigma(P): c > ||\tilde{P}||\}$ is countable.) We shall now develop a similar formula for $m_2(\sigma_{ap}(V_{\mathscr{H}}\hat{P}))$. We shall need the following notation and lemma.

Let \mathscr{B} denote the family of Borel subsets of $[0, +\infty)$. If $E \in \mathscr{B}$, let $\Lambda(E) = = \{\lambda \in \mathbb{C} : |\lambda| \in E\}$, and let $\mathscr{D} = \{\Lambda(E) : E \in \mathscr{B}\}$. It is clear that \mathscr{D} is a σ -algebra consisting of Borel subsets of \mathbb{C} and that $\Lambda : \mathscr{B} \to \mathscr{D}$ is a one-to-one mapping of \mathscr{B} onto \mathscr{D} that preserves all of the Boolean operations.

Lemma 2.6. Suppose that $E \in \mathscr{B}$. Then $m_2(\Lambda(E)) = \int_E 2\pi r \, dm_1(r)$.

Proof. For in \mathscr{B} , let $\mu(\Lambda(E)) = \int_{E} 2\pi r \, dm_1(r)$. It is clear that μ is a measure on \mathscr{D} and that if E = (a, b], then $\mu(\Lambda(E)) = m_2(\Lambda(E))$. An application of the theorem of Caratheodory shows that $\mu(\Lambda(E)) = m_2(\Lambda(E))$ for all E in \mathscr{B} .

Theorem 2.1 and Lemma 2.6 imply the following theorems.

Theorem 2.7.
$$m_2(\sigma_{ap}(V_{\mathcal{H}}\hat{P})) = \int_{\sigma(P)} 2\pi r \, dm_1(r).$$

Theorem 2.8. $m_2(\sigma_{ap}(V_{Jp}\hat{P}))=0$ if and only if $m_1(\sigma(P))=0$.

For comparison, we state the following theorem.

Theorem 2.9. $m_2(\sigma_e(V_{\mathcal{H}}\hat{P}))=0$ if and only if P is compact.

The spectrum of a pure quasinormal operator is connected and its essential spectrum has at most countably many connected components. In the following example, we present a pure quasinormal operator whose approximate point spectrum has uncountably many connected components each of which is a circle. We then use Theorem 2.7 to compute the measure of its approximate point spectrum.

Example 2.9. Let C denote the Cantor set and let $g: [0, 1] \rightarrow [0, 1]$ be the Cantor ternary function (cf. [13]). Recall that g is defined as follows: Let $r = \sum_{n=1}^{\infty} a_n/3^n$ be the ternary expansion of a number in [0, 1]. Let $N = +\infty$ if $a_n \neq 1$ for each positive integer n, and otherwise let N be the smallest positive integer such that $a_N = 1$. Let $b_n = a_n/2$ for n < N and let $b_N = 1$. Then $g(r) = \sum_{n=1}^{N} b_n/2^n$. Recall also that g is a continuous, monotonic increasing function of [0, 1] onto itself that is constant on the intervals in the complement in [0, 1] of C. Let t > 0. Define a function $f: [0, 1] \rightarrow [0, 1+t]$ by f(r) = g(r) + tr. The function f is a monotone homeomorphism of [0, 1] onto [0, 1+t]. Let F = f(C), let P be a positive definite operator on a Hilbert space \mathscr{H} such that $\sigma(P) = F$, and let $T = V_{\mathscr{H}} \hat{P}$. Since F is uncountable and totally disconnected, it follows from Theorem 2.1 that $\sigma_{ap}(T)$ has uncountably many connected components.

We now compute $m_2(\sigma_{ap}(T))$ by evaluating $\int_F 2\pi r \, dm_1(r)$. (It is easy to see that $m_2(\sigma_e(T)) = m_2(\sigma(T)) = \pi ||P||^2 = \pi (1+t)^2$.) Let S_n^k , $k=1, 2, ..., 2^{n-1}$, be the disjoint subintervals of $[0, 1] \setminus C$ that have measure equal to $1/3^n$, and let $T_n^k =$ $=f(S_n^k)$, $k=1, 2, ..., 2^{n-1}$, n=1, 2, ... Let $S=[0, 1] \setminus C$ and $T=[0, 1+t] \setminus F$. Then $\bigcup_{n,k} S_n^k = S$ and $\bigcup_{n,k} T_n^k = T$. We will first evaluate $\int_T 2\pi r \, dm_1(r)$. Fix n and k. Now S_n^k and T_n^k are open intervals and $g=(2k-1)/2^n$ on S_n^k . Thus f is differentiable on S_n^k and, therefore, by the change of variable theorem,

$$\int_{T_n^k} 2\pi r \, dm_1(r) = \int_{S_n^k} 2\pi f(r) f'(r) \, dm_1(r) = 2\pi t (2k-1)/6^n + t^2 \int_{S_n^k} 2\pi r \, dm_1(r).$$

Thus

$$\int_{T} 2\pi r \, dm_1(r) = \sum_{n=1}^{\infty} \sum_{k=1}^{2^{n-1}} \left(2\pi t \, (2k-1)/6^n + t^2 \int_{S_n^k} 2\pi r \, dm_1(r) \right) =$$
$$= 2\pi t \left(\sum_{n=1}^{\infty} (1/6^n) \sum_{k=1}^{2^{n-1}} (2k-1) \right) + t^2 \int_{S} 2\pi r \, dm_1(r).$$

L. R. Williams

Using the facts that

$$\sum_{k=1}^{2^{n-1}} (2k-1) = (2^{n-1})^2 \text{ and } \int_{S} 2\pi r \, dm_1(r) = \int_{[0,1]} 2\pi r \, dm_1(r) = \pi$$
(since $m_1(C) = 0$),

we get $\int_{r} 2\pi r dm_1(r) = \pi t + \pi t^2$. Hence

$$\int_{F} 2\pi r \, dm_1(r) = \int_{[0,1+r]} 2\pi r \, dm_1(r) - \int_{T} 2\pi r \, dm_1(r) = \pi (1+t);$$

thus $m_2(\sigma_{ap}(T)) = \pi(1+t)$.

3. Quasinormals plus commuting normals

In this section we present a class of pure subnormal operators that contains the class of pure quasinormal operators and show that for this class of operators the answer to the equivalent questions posed in Section 1 is affirmative.

Let S be a subnormal operator on a Hilbert space \mathcal{H} . HALMOS has shown that S has a normal extension of the form

(1)
$$\begin{bmatrix} S & X \\ 0 & R^* \end{bmatrix}$$

on $\mathcal{H} \oplus \mathcal{H}$ (cf. [2], [9]). In fact, as mentioned earlier, if S is pure, then the minimal normal extension of S is unitarily equivalent to an operator of the form (1) on $\mathcal{H} \oplus \mathcal{H}$. If S is pure and is unitarily equivalent to its dual R, then we say that S is a *self-dual* subnormal operator. (See [7] for a discussion of the dual of a pure subnormal operator.) If S is self-dual, then the minimal normal extension of S is unitarily equivalent to the operator

(2) $\begin{bmatrix} S & Z \\ 0 & S^* \end{bmatrix}$

on $\mathscr{H} \oplus \mathscr{H}$. As we mentioned earlier, OLIN has observed in [10] that the operator in (1) is the minimal normal extension of S if and only if R is pure. Also note that any matrix of form (1) is normal if and only if $S^*S - SS^* = XX^*$, $R^*R - RR^* =$ $= X^*X$, and $S^*X = XR$.

Theorem 3.1. Suppose that S is a subnormal operator on a Hilbert space \mathcal{H} that has a normal extension of the form (1) and suppose that N is a normal operator in $\mathcal{L}(\mathcal{H})$ that commutes with S, R, and X. Then T=S+N is also subnormal. Moreover, T is pure if and only if S is pure.

316

Proof. An application of Fuglede's theorem shows that both N and N* commute with S, R, X, S*, R*, and X*. Let $Q=R+N^*$. Then $T^*T-TT^*=S^*S -SS^*=XX^*$, $Q^*Q-QQ^*=R^*R-RR^*=X^*X$, and $T^*X=XQ$. Therefore, the operator

$$\begin{bmatrix} T & X \\ 0 & Q^* \end{bmatrix}$$

on $\mathcal{H} \oplus \mathcal{H}$ is a normal extension of T, i.e., T is subnormal.

Now suppose that $S = S_1 \oplus S_2$ on $\mathscr{H} = \mathscr{H}_1 \oplus \mathscr{H}_2$, where S_1 is a normal operator on the Hilbert space \mathscr{H}_1 and S_2 is a pure operator on the Hilbert space \mathscr{H}_2 . Then $N = [N_{ij}]$, relative to the decomposition $\mathscr{H} = \mathscr{H}_1 \oplus \mathscr{H}_2$. Since NS = SN and $N^*S = SN^*$, a matrix calculation shows that $N_{21}S_1 = S_2N_{21}$ and $N^*_{12}S_1 = S_2N_{12}^*$. Theorem 1.2 of [15] shows that $N_{12} = N_{21} = 0$. Thus $N = N_{11} \oplus N_{22}$ and $T = (S_1 + N_{11}) \oplus \oplus (S_2 + N_{22})$, where $S_1 + N_{11}$ is normal since S_1 and N_{11} are commuting normal operators. This argument shows that if T is pure, then S is also pure. Since S = T - N, a similar argument shows that if S is pure, then T is also pure.

Corollary 3.2. Suppose that S is a subnormal operator on a Hilbert space \mathcal{H} that has a normal extension of the form (2) and suppose that N is a normal operator in $\mathcal{L}(\mathcal{H})$ that commutes with S and Z. Then T=S+N is also subnormal.

We remark that if S is a subnormal operator with a normal extension of form (2) and if U is a unitary operator that commutes with S (for example, if $U=\alpha 1_{x}$, where α is a complex number such that $|\alpha|=1$), then the operator in (2) is unitarily equivalent to the operator

$$\begin{bmatrix} S & ZU \\ 0 & S^* \end{bmatrix}$$

on $\mathscr{H} \oplus \mathscr{H}$. Thus even a normal extension of the form (2) is not unique.

The following theorem is well-known. (Recall that if S is a quasinormal operator, then $S^*S - SS^* \ge 0$.)

Theorem 3.3. If S is a quasinormal operator, then the matrix in (2) is a normal extension of S if $Z = \sqrt{S^*S - SS^*}$. In particular, if S is a pure quasinormal operator, then S is self-dual.

Proof. It is clear that $S^*S-SS^*=Z^2$. To show that $S^*Z=ZS$, observe that $Z^2S=(S^*S-SS^*)S=0$. Hence ZS=0 since Z is self-adjoint, and thus $S^*Z=(ZS)^*=0$. Therefore, the operator in (2) is normal.

Corollary 3.4. If S is a quasinormal operator on a Hilbert space \mathcal{H} and N is a normal operator in $\mathcal{L}(\mathcal{H})$ that commutes with S, then T=S+N is subnormal.

Proof. By Fuglede's theorem N also commutes with S^* and, therefore, with $Z = \sqrt{S^*S - SS^*}$. Hence T is subnormal by Corollary 3.2.

Let \mathscr{K} be a Hilbert space, and let $\mathscr{G} = \{S + N \in \mathscr{L}(\mathscr{K}): S \text{ is a pure quasinormal}, N \text{ is normal, and } NS = SN\}$. The set \mathscr{G} is a subset of the set of all pure subnormal operators in $\mathscr{L}(\mathscr{K})$ and contains the pure quasinormals. We show that the operators in \mathscr{G} have a fairly simple structure.

Theorem 3.5. If $T \in \mathscr{G}$, then there exist a Hilbert space \mathscr{H} and commuting operators P and N in $\mathscr{L}(\mathscr{H})$, where P is positive definite and N is normal, such that T is unitarily equivalent to the operator $V_{\mathscr{H}}\hat{P} + \hat{N}$ on \mathscr{H} .

Proof. We have $T=S+N_1$, where S is a pure quasinormal operator, N_1 is normal, and $N_1S=SN_1$. There exist a Hilbert space \mathscr{H} and a positive definite operator P in $\mathscr{L}(\mathscr{H})$ such that S is unitarily equivalent to $V_{\mathscr{H}}\hat{P}$. So T is unitarily equivalent to $V_{\mathscr{H}}\hat{P}$. Since N_0 commutes with $V_{\mathscr{H}}\hat{P}$, a matrix calculation shows that $N_{1,j+1}P=0$ and $N_{i+1,j+1}P=PN_{ij}$, $i,j=1,2,\ldots$. An induction argument shows that $N_{ij}=0$ for i < j. Since Fuglede's theorem implies that N_0^* commutes with $V_{\mathscr{H}}\hat{P}$, we have by a similar argument that $N_{ij}=0$ for i > j. Thus $[N_{ij}]$ is diagonal, N_{ii} is normal, and $N_{i+1,i+1}P=PN_{ii}$, $i=1,2,\ldots$. Using the Putnam—Fuglede's theorem, we can see that $PN_{i+1,i+1}=N_{ii}P$ also. Hence P^2 , and thus P, commutes with N_{ii} . It follows that $(N_{i+1,i+1}-N_{ii})P=0$; thus $N_{i+1,i+1}=N_{ii}$, $i=1,2,\ldots$. Therefore, $N_0=\hat{N}_{11}$, and the proof is complete.

It follows from Theorem 3.5 that if S is a pure quasinormal and N is a nonzero normal operator that commutes with S, then S+N is not quasinormal. Thus \mathscr{S} contains operators that are not quasinormal.

We can say more about the structure of those operators in \mathscr{S} that have compact self-commutators. Let V denote the unilateral shift of multiplicity one.

Theorem 3.6. Suppose that $T \in \mathscr{S}$ and $T^*T - TT^*$ is compact. Then there exist an index set A, a set of positive numbers $\{c_a\}_{a \in A}$, and a set of complex numbers $\{\lambda_a\}_{a \in A}$ such that T is unitarily equivalent to $\sum_{a \in A} \bigoplus (\lambda_a + c_a V)$. If the rank of $T^*T - TT^*$ is n, then $A = \{1, 2, ..., n\}$; otherwise $A = \{1, 2, ...\}$.

Proof. By Theorem 3.5 T is unitarily equivalent to $V_{\mathcal{X}}\hat{P}+\hat{N}$, where P is positive definite in $\mathscr{L}(\mathscr{H})$, N is normal in $\mathscr{L}(\mathscr{H})$, and PN=NP. Since T^*T-TT^* is compact, P is compact. Suppose that c is an eigenvalue of P. Then $\mathscr{K}(P-c)$ is finite dimensional and reduces N. Hence $\mathscr{K}(P-c)$ has an orthonormal basis consisting of eigenvectors of N. It follows that \mathscr{H} has an orthonormal basis $\{e_{\alpha}\}_{\alpha \in A}$ consisting of vectors that are eigenvectors of both P and N. For $\alpha \in A$, let c_{α} and λ_{α} be the eigenvalues of P and N, respectively, associated with e_{α} , and let \mathcal{M}_{α} be the one-dimensional subspace of \mathcal{H} spanned by e_{α} . Then $\mathcal{H} = \sum_{\alpha \in A} \oplus \mathcal{M}_{\alpha}$ and $\hat{\mathcal{H}}$ is Hilbert space isomorphic to $\sum_{\alpha \in A} \oplus \hat{\mathcal{M}}_{\alpha}$. Hence $V_{\mathcal{H}}\hat{P}$ is unitarily equivalent to $\sum_{\alpha \in A} \oplus c_{\alpha} V_{\mathcal{M}_{\alpha}}$ and $\hat{\mathcal{N}}$ is unitarily equivalent to $\sum_{\alpha \in A} \oplus c_{\alpha} I_{\mathcal{M}_{\alpha}}$ and $\hat{\mathcal{N}}$ is unitarily equivalent to $\sum_{\alpha \in A} \oplus \lambda_{\alpha} 1_{\hat{\mathcal{M}}_{\alpha}}$; thus T is unitarily equivalent to $\sum_{\alpha \in A} \oplus (\lambda_{\alpha} + c_{\alpha} V_{\mathcal{M}_{\alpha}})$. The proof is complete since for each α in A, $V_{\mathcal{M}_{\alpha}}$ is unitarily equivalent to V.

Corollary 3.7. If $T \in \mathscr{G}$ and $T^*T - TT^*$ has finite rank, then $m_2(\sigma_{ap}(T)) = = m_2(\sigma_e(T)) = 0$.

Proof. By Theorem 3.6 T is unitarily equivalent to $\sum_{k=1}^{n} \bigoplus (\lambda_k + c_k V)$. The proof is complete since $m_2(\sigma_{ap}(V)) = m_2(\sigma_e(V)) = 0$.

Corollary 3.7 shows that the answer to the three equivalent questions posed in Section 1 is affirmative for the class of operators \mathscr{S} . In regard to Question 2.5, note that Corollary 3.7 also implies that if $T \in \mathscr{S}$ and T has a finite rank self-commutator, then $T \notin (N+K)$, since $\sigma_{ap}(T) \neq \sigma(T)$. Recall that if T is a pure quasinormal operator, then $T^*T - TT^*$ is compact if and only if $m_2(\sigma_e(T)) = 0$ (see Theorem 2.9), and if $T^*T - TT^*$ is compact, then $m_2(\sigma_{ap}(T)) = 0$ (see Theorem 2.8). The next example shows that this is not the case for the class of operators \mathscr{S} .

Example 3.8. Let $\{e_k\}_{k=1}^{\infty}$ be an orthonormal basis for a Hilbert space \mathscr{H} , let $\{\lambda_k\}_{k=1}^{\infty}$ be an enumeration of all the "rational" complex numbers in **D**, let $\{c_k\}_{k=1}^{\infty}$ be a sequence of positive numbers such that $\sum_{k=1}^{\infty} c_k^2 < 1/2$, let $G_k = \{\lambda \in \mathbf{D} : |\lambda - \lambda_k| < c_k\}$, $k=1, 2, \ldots$, and let $G = \bigcup_{k=1}^{\infty} G_k$. Note that G is an open subset of **C** and that $m_2(G) \leq \sum_{k=1}^{\infty} \pi c_k^2 < \pi/2$. Since $\overline{G} = \overline{\mathbf{D}}$, $m_2(\partial G) > \pi/2$. Define a positive definite operator P and a normal operator N in $\mathscr{L}(\mathscr{H})$ by $Pe_k = c_k e_k$ and $Ne_k = \lambda_k e_k$. Let $T = V_{\mathscr{H}} \widehat{P} + \widehat{N}$. Observe that $T \in \mathscr{S}$ and that $T^*T - TT^*$ is compact (since P is compact). Observe also that T is unitarily equivalent to $\sum_{k=1}^{\infty} \oplus (\lambda_k + c_k V)$ and that $\partial G_k = = \sigma_{ap}(\lambda_k + c_k V) \subseteq \sigma_{ap}(T)$. Thus $(\bigcup_{k=1}^{\infty} \partial G_k)^- \subseteq \sigma_{ap}(T)$. It follows that $m_2(\sigma_{ap}(T)) > 0$ since $\partial G \subseteq (\bigcup_{k=1}^{\infty} \partial G_k)^-$. We also have $m_2(\sigma_e(T)) > 0$ since $\sigma_{ap}(T) \subseteq \sigma_e(T)$.

Bibliography

- C. APOSTOL, C. FOIAŞ, and D. VOICULESCU, On the norm-closure of nilpotents. II, Rev. Roumaine Math. Pures Appl., 19 (1974), 549-557.
- [2] S. K. BERBERIAN, Some questions about slightly abnormal operators, Lecture Notes from a University of Michigan Seminar, 1962.
- [3] A. BROWN, On a class of operators, Proc. Amer. Math. Soc., 4 (1953), 723-728.
- [4] L. BROWN, R. G. DOUGLAS and P. FILLMORE, Unitary equivalence modulo the compact operators and extensions of C*-algebras, in: Proc. Conf. Operator Theory, Lecture Notes in Math., vol. 345, Springer (Berlin, 1973); pp. 58—128.
- [5] K. CLANCEY and B. B. MORRELL, The essential spectrum of some Toeplitz operators, Proc. Amer. Math. Soc., 44 (1974), 129–134.
- [6] J. CONWAY, Subnormal operators, Research Notes in Mathematics Series, #51, Pitman (Boston, 1981).
- [7] J. CONWAY, The dual of a subnormal operator, J. Operator Theory, 5 (1981), 195-211.
- [8] P. A. FILLMORE and J. P. WILLIAMS, On operator ranges, Adv. in Math., 7 (1971), 254-281.
- [9] P. R. HALMOS, Normal dilations and extensions of operators, Summa Bras. Math., 2 (1950), 125-134.
- [10] R. F. OLIN, Functional relationships between a subnormal operator and its minimal normal extension, *Pacific J. Math.*, 63 (1976), 221-229.
- [11] C. PEARCY, Some recent developments in operator theory, CBMS Regional Conference Series in Mathematics, vol. 36, Amer. Math. Soc. (Providence, R. I., 1978).
- [12] C. R. PUTNAM, An inequality for the area of hyponormal spectra, Math. Z., 116 (1970), 323-330.
- [13] H. L. ROYDEN, Real Analysis, 2nd ed., Macmillan (New York, 1968).
- [14] L. R. WILLIAMS, Equality of essential spectra of quasisimilar quasinormal operators, J. Operator Theory, 3 (1980), 57-69.
- [15] L. R. WILLIAMS, Quasisimilarity and hyponormal operators, J. Operator Theory, 5 (1981), 127-139.

THE UNIVERSITY OF TEXAS AT SAN ANTONIO COLLEGE OF SCIENCES AND ENGINEERING DIVISION OF MATHEMATICS SAN ANTONIO, TEXAS 78285---0664, U.S.A.