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The closure of invertible operators on a Hilbert space 

SAICHI IZUMINO and YOSHINOBU KATO 

1. Introduction. Let H be a separable infinite dimensional Hilbert space and 
let B (H) be the Banach algebra of all bounded linear operators o n H. D e n o t e by 
G the group of all invertible operators in B(H), then what is the condi t ion for an 
operator to be in the (norm) closure G or the boundary bdy G o f G? FELDMAN and 
KADISON [3] considered this problem and characterized elements in the closure o f 
invertible operators in a weakly closed subalgebra of B(H). In the setting o f Banach 
space operators, KELLY and HOGAN [8] gave some sufficient condit ions for an opera-
tor to lie in the boundary o f invertible operators from a view point o f conservative 
operators. TREESE and KELLY [10], also in the same setting, showed a characteriza-
tion of such operators under the restriction that they have closed ranges. Recall 
that the distance dist(^4, S ) o f an operator A to a subset SaB(H) is defined 
as inf {|| v4—51|: S £ S } . N o w another approach to our problem is to estimate, 
by some familiar parameter, the distance for S = G or some other set related to G. 
In terms of essential minimum modulus, the first author [6] showed some distance 
formulae on G and certain subsets of operators with index zero. Independently, 
BOULDIN [2] also tried a similar approach to the problem and presented distance 
formulae on G and on the set F o f all Fredholm operators. 

In this paper we shall continue the study o n the closure G and the boundary 
bdy G of G. In Section 2 we clarify operators in bdy 5 and show that the interior 
int G of G coincides with the set of Fredholm operators with index zero. In Sec-
tion 3 we characterize closed range operators in G , which refines results in [1] and 
[10]. In Section 4, as an extension of [2] or [6], we determine the distance dist (A, S ) 
when S is the subset o f Fredholm operators with an index or the boundary bdy G. 

Throughout this paper we assume that the Hilbert space H is separable infinite 
dimensional. The index ind A o f an operator A is defined by dim ker A—dim ker A*, 
where dim ker B is the dimension of the kernel of B and °<>—® is unders tood to 
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be zero [9]. The minimum (resp. essential minimum) modulus m (A) (resp. me (A)) 
o f A£B(H) is defined as the number 

inf {?.: ; . € * ( M | ) } (resp. inf {A: A€a c (M|)} ) . 

Here o(\A\) (resp. <re(\A\)) is the spectrum (resp. essential spectrum) o f 
\A\:= (A*A)1'2. Let I„ be the set of all operators wi th index n. N o w , as a prel iminary 
we state a result d u e ' t o BOULDIN [2, Theorem 3] (which was essentially s h o w n in 
[6, Theorem 4]). 

T h e o r e m 1.1. Let A£B(H). 
(1) If A£l0 then dist (A, G ) = 0 . 
(2) If Ai^ then dist (,4, G ) = m a x {me(A), me(A*)}. 

Concerning the index and the essential minimum modulus we want to state 
three more basic facts. 

L e m m a 1.2. Let A,B£B(H) and let \\A-B\\i<me(A). Then i n d y i = i n d # 
([2, p. 513]). 

L e m m a 1.3. Let ind A = n. Then there is an isometry or coisometry W accord-
ing to n S O or n^O such that A=W\A\ and ind W=n ([9, Proof o f Theorem 1.3]). 

L e m m a 1.4. If i n d ^ ^ O , then me(A)szme(A*). Hence, if A£G or y l e G 
then me(A)=me(A*). 

2. Operators in G. Let F n = F D I n be the set o f all Fredholm operators wi th 
index n. Then, since G C F 0 C I 0 we have, by Theorem 1.1, 

( 2 . 1 ) G — F 0 = I , , . 

First, for the boundary o f this set we have: 

T h e o r e m 2.1. bdy G={A£B(H): me(A)=me(A*)=0}. 

P r o o f . Let me(A)=me(A*)=0. First w e show A<£G. If A£I0 then A£G, 
say, by (2-1), and if A$l0 then by Theorem 1.1 (2) dist (A, G)=0, so that again 
we have A£&. N o w , to see A£bdy G let e > 0 and suppose, without loss o f 
generality, that i n d - ^ s O . Then A=W\A\ for an isometry W with ind WsO, 
by Lemma 1.3. Since me(A)=0, we see, f rom [4, Theorem 1.1], that dim £ ( [ 0 , E)) 
is infinite, where E( • ) is the spectral measure o f \A\. For brevity, write Ec—E([0, e)) 
and E^ = l—Ee (E^ becomes the orthogonal projection onto the subspace 
E([e, ° ° ) ) # ) . Def ine an operator V£B(H) as 

Vx = x for x^E^H, and 

Vxn — x „ + 1 for an orthonormal basis {xn} o f EtH. 
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Furthermore, put 
Be = J max (A—e, 0} dE(X) 

and Cs=WV(Be+e). Then, we easily see that 

VEt = Et, Bt = Bc, \\A\-B.\t>* and me(Cc) S e. 

Since ind W^O (and ind V(Be+e)=~l, W, V(Bc+e) are Fredholm operators), 
we see i n d C £ ^ —1, so that by Theorem 1.1 we have dist (C c , G ) ^ w e ( C c ) > 0 or 
C E $ G , But 

lCt-A\=p<y{Bt+e)-\A\)\\ = \VB,-\A\-zV\* 

=§ \A\|| +£ = \\VEi-Be-\A\ 1 + e = \\BE-\A\ 1 + £ ^ 2e. 

Hence, since s is arbitrary we see that A is on the boundary bdy G. T o see the 
converse, that is, if y 4 £ b d y G then ine(A) =me (A*)=0, suppose otherwise, say, 
me(A)>0. Then by Lemma 1.4 me(A*)=me(A)=*0, so that A is Fredholm. Besides, 
since ;4£bdy G c b d y G, w e can find an operator £>£G such that \\A—D\\<me(A). 
Hence ind A=ind D—0 (say, by Lemma 1.2), so that A£F0. But, since F„ is 
an open subset o f G w e see that A is an interior point o f G, which is a contradiction. 

R e m a r k . D e n o t e by F, (resp. F r) the set o f all left (resp. right) semi-Fredholm 
operators or the set {A: me(A)>0} (resp. {A : me(A*)>0}). Then, from the proof 
of Theorem 2.3 (or a similar argument) we see 

(2.2) G f l F, = F 0 ( = G D F r ) . 

If we denote by G, (resp. G r) the set o f all left (resp. right) invertible operators, 
then as (2.2) w e can also see 

G f l G , = G ( = G D G r ) . 

C o r o l l a r y 2.2. (1) i n t G = F 0 , and hence F 0 is a regularly open subset in B(H). 
(2) b d y G = b d y F 0 . 
(3) b d y G = b d y G U ( F 0 \ G ) . 

P r o o f . (1) Since F 0 c i n t G is clear, we may only show the opposite inclusion. 
Let A£intG. Then by the theorem me(A)>0 or me(A*)>0. Hence, in either 
case we have (say, by (2.2)) A ^ F 0 . 

(2) Clear by the theorem and (2.1). 
(3) N o t e that bdy G D b d y G , and that A^bdy G \ b d y G if and only if 

^ F 0 \ G . 

3. Closed range operators in G. In this section we show some necessary and 
sufficient condit ions for an operator to lie in G or bdy G under the restriction that 
the operator has closed range. For simplicity, we denote by y4g(CR) if A£B(H) 
has closed range. It is well-known [1], [5] that if J 4 6 ( C R ) then there exists the 
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unique (Moore—Penrose) generalized inverse o f A satisfying the fol-
lowing four identities; 

AA*A = A, A1AA* = A\ (A A*)* = AA f and (A rA)* = A fA. 

T h e products AAX and A^A are the orthogonal projections onto the ranges 
AIf(=ker1 A*, the orthogonal complement o f ker A*) and A*/f(=ker± A), 
respectively. The next fact [7, Proposition 2.3] is useful for our discussion. 

L e m m a 3.1. Let {A„} be a sequence of operators with closed range, and sup-
pose that it converges to J4€(CR ) uniformly, that is, An-~A. Then the following 
conditions are equivalent. 

(1) sup M i l l n 
(2) AnAl-AA\ 

(3) AlAn - A fA. 

The equivalence (2) and (3) or (3') of the fo l lowing result was essentially s h o w n 
by BEUTLER [J, Theorem 1]. 

T h e o r e m 3.2. Let / l ( j (CR). Then the following conditions are equivalent. 
(1) A£G. 
( 2 ) A £ I 0 . 

(3) A=BP for an operator B£ G and an orthogonal projection P. 
(3') A = PB for an operator B£G and an orthogonal projection P. 

P r o o f . (1)=>(2) Let {A„} be a sequence in G, and let A„—A. Put C„ = A„A f  

and C=AA f. Then C „ , C € ( C R ) and C „ - C . Furthermore, since k e r 1 C„=AH 
we have C fnC„ = AA t=C=C tC (cf. C=C f). Hence, by Lemma 3.1 we have 
C„Cl—CC f = AA f. Hence, for a sufficiently large «, we have 

\ c n d - c l c n \ 

This implies dim ker C* = dim ker C„ or indC„ = 0. Hence i n d / 4 ^ 0 , i.e., 
ind A — 0. 

(2)=>(3) If A<iI0, then A = U\A\ with a unitary U. Since P:=A fA is an 
orthogonal projection such that \A\P=\A\, and since B\=U{\A\ + (\ —A*A)}£G, 
we see that A=BP is the desired decomposit ion. 

(3)=>(1) N o t e that indBP=ind 5 + i n d P=0 for B and P in (3). 
(3)*>(3') N o t e that A £ I 0 <=• 

In [10] TREESE and KELLY characterized closed range operators in bdy G (in 
the setting o f Banach space operators). F r o m Theorem 3.2 we n o w deduce a simi-
lar characterization o f such operators, which is to be compared wi th [10, T h e o -
rem], 
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C o r o l l a r y 3.3. Let y l^(CR). Then the following conditions are equivalent. 
(1) /4<EbdyG. 
(2) A€I0\G. 
(3) A=BP for an operator B£G and an orthogonal projection P^l. 
(3 ' ) A — PB for an operator B£ G and an orthogonal projection P^i. 
(4) and there exists a sequence {£„} in G such that BnA*A — A. 

P r o o f . F r o m the theorem we easily see that (1), (2), (3) and (3') are mutually 
equivalent. If (3) is assumed, then B„=B(P+l/n) ( n = l , 2 , . . . ) are invertible and 
BnA fA-<~ AA fA=A, that is, (4) is obtained. If we assume (4), then since B„A*A£In 

we easily see A£J0~G, which implies A^bdy G, i.e., the condition (1). 

R e m a r k . In proving the above corollary by a technique in [10], we would 
have to add to (4) the uniform boundedness o f Related to this, we observe 
that the sequence {{B„A?Af} o f generalized inverses is uniformly bounded; since 
B„A*A—A and (B„A fA) f(BnAU)=A fA, w e have, by Lemma 3.1, sup \\(BnAUy\\ < n 

C O . 

4. Distance formulae related to F„, bdy G and bdy G. Recall that F 0 = I 0 = G , 
and hence that 

dist (A, F 0 ) = max {me(A), me(A*)} for A$I0 

by Theorem 1.1. A s an extension o f those facts we have: 

T h e o r e m 4.1. Let A£B(H). 
(1) If AO„, then dist (A, F„) —0. 
(2) If A$I„, then dist (A, F „ ) = m a x {me(A), me(A*)}. 

P r o o f . (1) If AZI„ then A = W\A\ w i th an isometry (or coisometry) f ¥ £ l a . 
Let 2 > 0 and B=W(\A\+z). Then J?€Fn and \\A-B\\<e. Hence, dist (A, F „ ) < e , 
which implies the assertion (1). 

(2) Let S be a unilateral simple shift o n H, and let B=S"A or B=ASH~n)  

according to n^O or n^O. Then we see i n d i M O because of ind S= — 1, and 

(4.1) m.(B) = me(A), me(B*) = me(A*). 
Furthermore, we see 

F„ = (S* l n )G)~ o r F „ = ( G S ( _ n ) ) _ 

according to H ^ O or n^O. Hence, if n ^ O , then 

dist (A, F„ )=d i s t (A, S*<">G) = dist (B, SaS*^G) = dist (B, G) 

(cf. ( S " S * ( n ) G ) _ = 5 ) . Hence, by Theorem 1.1 and (4.1) we have the desired identity 
in (2). For n ^ O , similarly w e can obtain the identity. 



326 S. Izumino and Y. Kato 

Concerning the distance from an operator to the boundary bdy G or bdy 5 , 
w e have: 

T h e o r e m 4.2. Let A£B(H). Then 

J- ^ r m a x { m e ( 4 m e ( ^ ) } if AiG, 

(2) dist (A, bdy G) = max {me(A), me(A*)}. 

P r o o f . (1) If yl<£G, then clearly 

dist (A, bdy G) = dist (A, G) = m a x {me(A), me(A*)}. 

If A£G, then we consider the two cases A£l0 and First, if A£l0, then 
'.A-V\A\ for a unitary U. Let B=U(\A\-m(A)). Then m(B)=0 and 5<Ebdy G. 

Hence dist (yi, bdy G)S\\A—B\\=m(A). T o see that only the equality sign holds, 
suppose 
(4.2) dist (A, bdy G) < m (A), 

and hence also m(A)>0. Then A£G, or ^ 6 G , r i G = G , and by (4.2) there exists 
an operator C e b d y G such that \\A—C\\ <m(A). Hence, since \\A~1\\ =m(A)~1 

(cf. [2, Theorem 1]), we have 

\\l-A^C\\ = \\A-i(A-C)\\ S M-1M-CI < 1, 

so that we easily see C £ G . This is a contradiction. Next , if A$IQ then by T h e o -
rem 1.1 we see that me(A)=me(A*)=dist (A, G ) = 0 . Hence, since m(A)Sme(A)=0 
and since v 4 € G \ I 0 c i b d y G w e again obtain the desired identity wi th the c o m m o n 
value zero. It is easy to see m(A)=m(A*) for A£G and hence for AtG. 

(2) If then clearly 

dist (A, bdy G) = dist (A, G) = m a x {me(A), me(A*)}. 

If A t G , then as (1) we consider the two cases A t I o and A $ I 0 . If then 
A=U\A\ for a unitary U. Put B=U(\A\-me(A))- Then tfebdyG, because 
me(B)=me(B*)=0 (and by Theorem 2.1). Hence, dist (^4, bdy G ) = i M - B | | = 
=me(A). T o show that the equality sign holds, suppose dist (A, bdy G)<me(A), 
and hence also me(A)>0. Then ^ 4 € F , f l 5 = F 0 (say, by (2.2)). Besides, there exists 
an operator C £ b d y G such that \A—C||<me(.d). Hence w e see ffl((C)Sme(4)-
-\\A-C\\ > 0 , so that C6F ,nS=F 0 . But this is a contradiction by Corol lary 2 .2 
(1). If Ailv, then by Theorem 1.1 w e have me(A)=me(A*)=dist (A, G)=0. Th i s 
implies Atbdy 5 and the identity in (2) ho lds again. 



Closure of in vertible operators 327 

References 

[1] F. J. BEUTLER, The operator theory of the pseudo-inverse, J. Math. Anal. Appl., 10 (1964), 
457—470,471—493. 

12] R. BOULDIN, The essential minimum modulus, Indiana Univ. Math. J., 30 (1981), 513—517. 
[3] J. FELDMAN and R. V. KADISON, The closure of the regular operators in a ring of operators, 

Proc. Anier. Math. Soc., 5 (1954), 909—916. 
14] P. A . FILLMORE, J. G . STAMPFH and J. P. WILLIAMS, On the essential numerical range, the 

essential spectrum, and a problem of Halmos, Acta Sci. Math., 33 (1972), 179—192. 
[5] C. W. GROETSCH, Generalized Inverses of Linear Operators; Representation and Application. 

Dekker (New York, 1977). 
[6] S. IZUMINO, Inequalities on operators with index zero, Math. Japon., 23 (1979), 565—572. 
[7] S. IZUMINO, Convergence of generalized inverses and spline projectors, J. Approx. Theory, 

38 (1983), 269—278. 
[8] E. P. KELLY, JR. and D. A. HOGAN, Bounded conservative, linear operators and the maximal 

group. II, Proc. Atner. Math. Soc., 38 (1973), 298—302. 
[9] D. D. ROGERS, Approximation by unitary and essentially unitary operators, Acta Sci. Math., 

39 (1977), 141—151. 
[10] G. W. TREESE and E. P. KELLY, JR., Generalized Fredholm operators and the boundary of 

the maximal group of invertible operators, Proc. Atner. Math. Soc., 67 (1977), 123—128. 

(S.I.) 
FACULTY OF EDUCATION 
TOYAMA UNIVERSITY 
3190 GOFUKU, TOYAMA-SHI 930, JAPAN 

(Y.K.) 
TONDABAYASHI SENIOR HIGH SCHOOL 
TONDABAYASHI-SHI 584 
OSAKA, JAPAN 


