The closure of invertible operators on a Hilbert space

SAICHI IZUMINO and YOSHINOBU KATO

1. Introduction. Let H be a separable infinite dimensional Hilbert space and let B(H) be the Banach algebra of all bounded linear operators on H. Denote by G the group of all invertible operators in B(H), then what is the condition for an operator to be in the (norm) closure \overline{G} or the boundary bdy G of G? FELDMAN and KADISON [3] considered this problem and characterized elements in the closure of invertible operators in a weakly closed subalgebra of B(H). In the setting of Banach space operators, KELLY and HOGAN [8] gave some sufficient conditions for an operator to lie in the boundary of invertible operators from a view point of conservative operators. TREESE and KELLY [10], also in the same setting, showed a characterization of such operators under the restriction that they have closed ranges. Recall that the distance dist (A, S) of an operator A to a subset $S \subset B(H)$ is defined as inf $\{||A-S||: S \in S\}$. Now another approach to our problem is to estimate, by some familiar parameter, the distance for S=G or some other set related to G. In terms of essential minimum modulus, the first author [6] showed some distance formulae on G and certain subsets of operators with index zero. Independently, BOULDIN [2] also tried a similar approach to the problem and presented distance formulae on G and on the set F of all Fredholm operators.

In this paper we shall continue the study on the closure $\overline{\mathbf{G}}$ and the boundary bdy \mathbf{G} of \mathbf{G} . In Section 2 we clarify operators in bdy $\overline{\mathbf{G}}$ and show that the interior int $\overline{\mathbf{G}}$ of $\overline{\mathbf{G}}$ coincides with the set of Fredholm operators with index zero. In Section 3 we characterize closed range operators in $\overline{\mathbf{G}}$, which refines results in [1] and [10]. In Section 4, as an extension of [2] or [6], we determine the distance dist (A, \mathbf{S}) when \mathbf{S} is the subset of Fredholm operators with an index or the boundary bdy \mathbf{G} .

Throughout this paper we assume that the Hilbert space H is separable infinite dimensional. The index ind A of an operator A is defined by dim ker A-dim ker A^* , where dim ker B is the dimension of the kernel of B and $\infty - \infty$ is understood to

Received October 19, 1983.

322 S. Izumino and Y. Kato

be zero [9]. The minimum (resp. essential minimum) modulus m(A) (resp. $m_e(A)$) of $A \in B(H)$ is defined as the number

inf { λ : $\lambda \in \sigma(|A|)$ } (resp. inf { λ : $\lambda \in \sigma_e(|A|)$ }).

Here $\sigma(|A|)$ (resp. $\sigma_e(|A|)$) is the spectrum (resp. essential spectrum) of $|A| := (A^*A)^{1/2}$. Let I_n be the set of all operators with index *n*. Now, as a preliminary we state a result due to BOULDIN [2, Theorem 3] (which was essentially shown in [6, Theorem 4]).

Theorem 1.1. Let $A \in B(H)$.

(1) If $A \in I_0$ then dist (A, G) = 0.

(2) If $A \notin I_0$ then dist $(A, G) = \max \{m_e(A), m_e(A^*)\}$.

Concerning the index and the essential minimum modulus we want to state three more basic facts.

Lemma 1.2. Let $A, B \in B(H)$ and let $||A-B|| < m_e(A)$. Then ind A = ind B ([2, p. 513]).

Lemma 1.3. Let ind A=n. Then there is an isometry or coisometry W according to $n \le 0$ or $n \ge 0$ such that A=W|A| and ind W=n ([9, Proof of Theorem 1.3]).

Lemma 1.4. If ind $A \leq 0$, then $m_e(A) \geq m_e(A^*)$. Hence, if $A \in \mathbf{G}$ or $A \in \mathbf{\overline{G}}$ then $m_e(A) = m_e(A^*)$.

2. Operators in $\overline{\mathbf{G}}$. Let $\mathbf{F}_n = \mathbf{F} \cap \mathbf{I}_n$ be the set of all Fredholm operators with index *n*. Then, since $\mathbf{G} \subset \mathbf{F}_0 \subset \mathbf{I}_0$ we have, by Theorem 1.1,

$$\vec{\mathbf{G}} = \vec{\mathbf{F}}_0 = \vec{\mathbf{I}}_0.$$

First, for the boundary of this set we have:

Theorem 2.1. bdy $\overline{G} = \{A \in B(H): m_e(A) = m_e(A^*) = 0\}.$

Proof. Let $m_e(A) = m_e(A^*) = 0$. First we show $A \in \overline{\mathbf{G}}$. If $A \in \mathbf{I}_0$ then $A \in \overline{\mathbf{G}}$, say, by (2.1), and if $A \notin \mathbf{I}_0$ then by Theorem 1.1 (2) dist $(A, \mathbf{G}) = 0$, so that again we have $A \in \overline{\mathbf{G}}$. Now, to see $A \in bdy \overline{\mathbf{G}}$ let $\varepsilon > 0$ and suppose, without loss of generality, that ind $A \leq 0$. Then A = W |A| for an isometry W with ind $W \leq 0$, by Lemma 1.3. Since $m_e(A) = 0$, we see, from [4, Theorem 1.1], that dim $E([0, \varepsilon))$ is infinite, where $E(\cdot)$ is the spectral measure of |A|. For brevity, write $E_e = E([0, \varepsilon))$ and $E_e^{\perp} = 1 - E_e$ (E_e^{\perp} becomes the orthogonal projection onto the subspace $E([\varepsilon, \infty))H$). Define an operator $V \in B(H)$ as

$$Vx = x$$
 for $x \in E_{\epsilon}^{\perp} H$, and

 $Vx_n = x_{n+1}$ for an orthonormal basis $\{x_n\}$ of $E_e H$.

Furthermore, put

$$B_{\varepsilon} = \int \max \{\lambda - \varepsilon, 0\} dE(\lambda)$$

and $C_{\varepsilon} = WV(B_{\varepsilon} + \varepsilon)$. Then, we easily see that

$$VE_{\varepsilon}^{\perp} = E_{\varepsilon}^{\perp}, \quad E_{\varepsilon}^{\perp}B_{\varepsilon} = B_{\varepsilon}, \quad |||A| - B_{\varepsilon}|| \leq \varepsilon \text{ and } m_{\varepsilon}(C_{\varepsilon}) \geq \varepsilon.$$

Since ind $W \leq 0$ (and ind $V(B_{\varepsilon}+\varepsilon) = -1$, W, $V(B_{\varepsilon}+\varepsilon)$ are Fredholm operators), we see ind $C_{\varepsilon} \leq -1$, so that by Theorem 1.1 we have dist $(C_{\varepsilon}, \mathbf{G}) \geq m_{\varepsilon}(C_{\varepsilon}) > 0$ or $C_{\varepsilon} \notin \mathbf{G}$. But

$$\begin{split} \|C_{\varepsilon} - A\| &= \left\| W \big(V(B_{\varepsilon} + \varepsilon) - |A| \big) \right\| = \|VB_{\varepsilon} - |A| - \varepsilon V\| \leq \\ &\leq \|VB_{\varepsilon} - |A|\| + \varepsilon = \|VE_{\varepsilon}^{\perp}B_{\varepsilon} - |A|\| + \varepsilon = \|B_{\varepsilon} - |A|\| + \varepsilon \leq 2\varepsilon. \end{split}$$

Hence, since ε is arbitrary we see that A is on the boundary bdy $\overline{\mathbf{G}}$. To see the converse, that is, if $A \in \text{bdy } \overline{\mathbf{G}}$ then $m_e(A) = m_e(A^*) = 0$, suppose otherwise, say, $m_e(A) > 0$. Then by Lemma 1.4 $m_e(A^*) = m_e(A) > 0$, so that A is Fredholm. Besides, since $A \in \text{bdy } \overline{\mathbf{G}} \subset \text{bdy } \mathbf{G}$, we can find an operator $D \in \mathbf{G}$ such that $||A - D|| < m_e(A)$. Hence ind A = ind D = 0 (say, by Lemma 1.2), so that $A \in \mathbf{F}_0$. But, since \mathbf{F}_0 is an open subset of $\overline{\mathbf{G}}$ we see that A is an interior point of $\overline{\mathbf{G}}$, which is a contradiction.

Remark. Denote by F_l (resp. F_r) the set of all left (resp. right) semi-Fredholm operators or the set $\{A: m_e(A) > 0\}$ (resp. $\{A: m_e(A^*) > 0\}$). Then, from the proof of Theorem 2.3 (or a similar argument) we see

(2.2)
$$\overline{\mathbf{G}} \cap \mathbf{F}_{l} = \mathbf{F}_{0} \quad (=\overline{\mathbf{G}} \cap \mathbf{F}_{l}).$$

If we denote by G_t (resp. G_r) the set of all left (resp. right) invertible operators, then as (2.2) we can also see

$$\overline{\mathbf{G}} \cap \mathbf{G}_l = \mathbf{G} \quad (= \overline{\mathbf{G}} \cap \mathbf{G}_l).$$

Corollary 2.2. (1) int $\overline{\mathbf{G}} = \mathbf{F}_0$, and hence \mathbf{F}_0 is a regularly open subset in B(H). (2) bdy $\overline{\mathbf{G}}$ = bdy \mathbf{F}_0 .

(3) $\operatorname{bdy} \mathbf{G} = \operatorname{bdy} \overline{\mathbf{G}} \cup (\mathbf{F}_0 \setminus \mathbf{G}).$

Proof. (1) Since $F_0 \subset \operatorname{int} \overline{G}$ is clear, we may only show the opposite inclusion. Let $A \in \operatorname{int} \overline{G}$. Then by the theorem $m_e(A) > 0$ or $m_e(A^*) > 0$. Hence, in either case we have (say, by (2.2)) $A \in F_0$.

(2) Clear by the theorem and (2.1).

(3) Note that bdy $G \supset$ bdy \overline{G} , and that $A \in$ bdy $G \setminus$ bdy \overline{G} if and only if $A \in F_0 \setminus G$.

3. Closed range operators in \overline{G} . In this section we show some necessary and sufficient conditions for an operator to lie in \overline{G} or bdy G under the restriction that the operator has closed range. For simplicity, we denote by $A \in (CR)$ if $A \in B(H)$ has closed range. It is well-known [1], [5] that if $A \in (CR)$ then there exists the

21*

unique (Moore—Penrose) generalized inverse $A^{\dagger} \in B(H)$ of A satisfying the following four identities;

$$AA^{\dagger}A = A$$
, $A^{\dagger}AA^{\dagger} = A^{\dagger}$, $(AA^{\dagger})^* = AA^{\dagger}$ and $(A^{\dagger}A)^* = A^{\dagger}A$.

The products AA^{\dagger} and $A^{\dagger}A$ are the orthogonal projections onto the ranges $AH(=\ker^{\perp}A^{*})$, the orthogonal complement of ker A^{*}) and $A^{*}H(=\ker^{\perp}A)$, respectively. The next fact [7, Proposition 2.3] is useful for our discussion.

Lemma 3.1. Let $\{A_n\}$ be a sequence of operators with closed range, and suppose that it converges to $A \in (CR)$ uniformly, that is, $A_n \rightarrow A$. Then the following conditions are equivalent.

- (1) $\sup \|A_n^{\dagger}\| < \infty$.
- (2) $A_{\mu}A_{\mu}^{\dagger} \rightarrow AA^{\dagger}$.
- (3) $A_n^{\dagger}A_n \rightarrow A^{\dagger}A$.

The equivalence (2) and (3) or (3') of the following result was essentially shown by BEUTLER [1, Theorem 1].

Theorem 3.2. Let $A \in (CR)$. Then the following conditions are equivalent.

(1) $A \in \overline{\mathbf{G}}$.

- (2) $A \in I_0$.
- (3) A = BP for an operator $B \in G$ and an orthogonal projection P.

(3') A = PB for an operator $B \in G$ and an orthogonal projection P.

Proof. (1)=>(2) Let $\{A_n\}$ be a sequence in G, and let $A_n \rightarrow A$. Put $C_n = A_n A^{\dagger}$ and $C = AA^{\dagger}$. Then $C_n, C \in (CR)$ and $C_n \rightarrow C$. Furthermore, since ker^{\perp} $C_n = AH$ we have $C_n^{\dagger}C_n = AA^{\dagger} = C = C^{\dagger}C$ (cf. $C = C^{\dagger}$). Hence, by Lemma 3.1 we have $C_n C_n^{\dagger} \rightarrow CC^{\dagger} = AA^{\dagger}$. Hence, for a sufficiently large *n*, we have

 $\|C_n C_n^{\dagger} - C_n^{\dagger} C_n\| < 1.$

This implies dim ker C_n^* = dim ker C_n or ind C_n = 0. Hence ind A^{\dagger} = 0, i.e., ind A = 0.

(2) \Rightarrow (3) If $A \in I_0$, then A = U|A| with a unitary U. Since $P := A^{\dagger}A$ is an orthogonal projection such that |A|P = |A|, and since $B := U\{|A| + (1 - A^{\dagger}A)\} \in \mathbf{G}$, we see that A = BP is the desired decomposition.

 $(3) \Rightarrow (1)$ Note that ind BP = ind B + ind P = 0 for B and P in (3).

(3) \Leftrightarrow (3') Note that $A \in I_0 \Leftrightarrow A^* \in I_0$.

In [10] TREESE and KELLY characterized closed range operators in bdy G (in the setting of Banach space operators). From Theorem 3.2 we now deduce a similar characterization of such operators, which is to be compared with [10, Theorem].

Corollary 3.3. Let $A \in (CR)$. Then the following conditions are equivalent.

(1) $A \in bdy G$.

(2) $A \in \mathbf{I}_0 \setminus \mathbf{G}$.

(3) A=BP for an operator $B \in G$ and an orthogonal projection $P \neq 1$.

(3') A = PB for an operator $B \in G$ and an orthogonal projection $P \neq 1$.

(4) $A \notin G$ and there exists a sequence $\{B_n\}$ in G such that $B_n A^{\dagger} A \rightarrow A$.

Proof. From the theorem we easily see that (1), (2), (3) and (3') are mutually equivalent. If (3) is assumed, then $B_n = B(P+1/n)$ (n=1, 2, ...) are invertible and $B_n A^{\dagger} A \rightarrow A A^{\dagger} A = A$, that is, (4) is obtained. If we assume (4), then since $B_n A^{\dagger} A \in \mathbf{I}_0$ we easily see $A \in \mathbf{I}_0 = \mathbf{\overline{G}}$, which implies $A \in$ bdy \mathbf{G} , i.e., the condition (1).

Remark. In proving the above corollary by a technique in [10], we would have to add to (4) the uniform boundedness of $\{B_n^{-1}\}$. Related to this, we observe that the sequence $\{(B_n A^{\dagger} A)^{\dagger}\}$ of generalized inverses is uniformly bounded; since $B_n A^{\dagger} A \rightarrow A$ and $(B_n A^{\dagger} A)^{\dagger} (B_n A^{\dagger} A) = A^{\dagger} A$, we have, by Lemma 3.1, $\sup_n ||(B_n A^{\dagger} A)^{\dagger}|| < \infty$.

4. Distance formulae related to \mathbf{F}_n , bdy **G** and bdy $\overline{\mathbf{G}}$. Recall that $\overline{\mathbf{F}}_0 = \overline{\mathbf{I}}_0 = \overline{\mathbf{G}}$, and hence that

dist
$$(A, \mathbf{F}_0) = \max \{m_e(A), m_e(A^*)\}$$
 for $A \notin \mathbf{I}_0$

by Theorem 1.1. As an extension of those facts we have:

Theorem 4.1. Let $A \in B(H)$.

(1) If $A \in I_n$, then dist $(A, F_n) = 0$.

(2) If $A \notin I_n$, then dist $(A, F_n) = \max \{m_e(A), m_e(A^*)\}$.

Proof. (1) If $A \in I_n$ then A = W|A| with an isometry (or coisometry) $W \in I_n$. Let $\varepsilon > 0$ and $B = W(|A| + \varepsilon)$. Then $B \in F_n$ and $||A - B|| < \varepsilon$. Hence, dist $(A, F_n) < \varepsilon$, which implies the assertion (1).

(2) Let S be a unilateral simple shift on H, and let $B=S^nA$ or $B=AS^{*(-n)}$ according to $n\geq 0$ or $n\leq 0$. Then we see ind $B\neq 0$ because of ind S=-1, and

(4.1)
$$m_e(B) = m_e(A), \quad m_e(B^*) = m_e(A^*).$$

Furthermore, we see

$$\overline{\mathbf{F}}_n = (S^{*(n)}\mathbf{G})^-$$
 or $\overline{\mathbf{F}}_n = (\mathbf{G}S^{(-n)})^-$

according to $n \ge 0$ or $n \le 0$. Hence, if $n \ge 0$, then

dist
$$(A, \mathbf{F}_n)$$
 = dist $(A, S^{*(n)}\mathbf{G})$ = dist $(B, S^n S^{*(n)}\mathbf{G})$ = dist (B, \mathbf{G})

(cf. $(S^n S^{*(n)} G)^- = \overline{G}$). Hence, by Theorem 1.1 and (4.1) we have the desired identity in (2). For $n \le 0$, similarly we can obtain the identity.

Concerning the distance from an operator to the boundary bdy \mathbf{G} or bdy $\mathbf{\overline{G}}$, we have:

Theorem 4.2. Let $A \in B(H)$. Then

(1) dist (A, bdyG) =
$$\begin{cases} \max\{m_e(A), m_e(A^*)\} & \text{if } A \notin \overline{G}, \\ m(A)(=m(A^*)) & \text{if } A \in \overline{G}. \end{cases}$$

(2) dist
$$(A, \operatorname{bdy} \overline{G}) = \max \{m_e(A), m_e(A^*)\}.$$

Proof. (1) If $A \notin \overline{\mathbf{G}}$, then clearly

dist (A, bdy G) = dist (A, G) = max {
$$m_e(A), m_e(A^*)$$
}.

If $A \in \overline{G}$, then we consider the two cases $A \in I_0$ and $A \notin I_0$. First, if $A \in I_0$, then A = U|A| for a unitary U. Let B = U(|A| - m(A)). Then m(B) = 0 and $B \in bdy G$. Hence dist $(A, bdy G) \leq ||A - B|| = m(A)$. To see that only the equality sign holds, suppose

$$(4.2) \qquad \qquad \operatorname{dist}(A, \operatorname{bdy} G) < m(A),$$

and hence also m(A) > 0. Then $A \in G_i$ or $A \in G_i \cap \overline{G} = G$, and by (4.2) there exists an operator $C \in bdy \mathbf{G}$ such that ||A - C|| < m(A). Hence, since $||A^{-1}|| = m(A)^{-1}$ (cf. [2, Theorem 1]), we have

$$||1-A^{-1}C|| = ||A^{-1}(A-C)|| \le ||A^{-1}|| ||A-C|| < 1,$$

so that we easily see $C \in G$. This is a contradiction. Next, if $A \notin I_0$ then by Theorem 1.1 we see that $m_e(A) = m_e(A^*) = \text{dist}(A, G) = 0$. Hence, since $m(A) \le m_e(A) = 0$ and since $A \in \overline{G} \setminus I_0 \subset \text{bdy } G$ we again obtain the desired identity with the common value zero. It is easy to see $m(A) = m(A^*)$ for $A \in \overline{G}$ and hence for $A \in \overline{G}$.

(2) If $A \notin \overline{\mathbf{G}}$, then clearly

dist
$$(A, \operatorname{bdy} \overline{\mathbf{G}}) = \operatorname{dist} (A, \overline{\mathbf{G}}) = \max \{m_e(A), m_e(A^*)\}.$$

If $A \in \overline{\mathbf{G}}$, then as (1) we consider the two cases $A \in \mathbf{I}_0$ and $A \notin \mathbf{I}_0$. If $A \in \mathbf{I}_0$, then A = U|A| for a unitary U. Put $B = U(|A| - m_e(A))$. Then $B \in bdy \overline{\mathbf{G}}$, because $m_e(B) = m_e(B^*) = 0$ (and by Theorem 2.1). Hence, dist $(A, bdy \overline{\mathbf{G}}) \leq ||A - B|| = m_e(A)$. To show that the equality sign holds, suppose dist $(A, bdy \overline{\mathbf{G}}) < m_e(A)$, and hence also $m_e(A) > 0$. Then $A \in \mathbf{F}_l \cap \overline{\mathbf{G}} = \mathbf{F}_0$ (say, by (2.2)). Besides, there exists an operator $C \in bdy \overline{\mathbf{G}}$ such that $||A - C|| < m_e(A)$. Hence we see $m_e(C) \ge m_e(A) - -||A - C|| > 0$, so that $C \in \mathbf{F}_l \cap \overline{\mathbf{G}} = \mathbf{F}_0$. But this is a contradiction by Corollary 2.2 (1). If $A \notin \mathbf{I}_0$, then by Theorem 1.1 we have $m_e(A) = m_e(A^*) = \text{dist}(A, \mathbf{G}) = 0$. This implies $A \in bdy \overline{\mathbf{G}}$ and the identity in (2) holds again.

References

- F. J. BEUTLER, The operator theory of the pseudo-inverse, J. Math. Anal. Appl., 10 (1964), 457-470, 471-493.
- [2] R. BOULDIN, The essential minimum modulus, Indiana Univ. Math. J., 30 (1981), 513-517.
- [3] J. FELDMAN and R. V. KADISON, The closure of the regular operators in a ring of operators, Proc. Amer. Math. Soc., 5 (1954), 909--916.
- [4] P. A. FILLMORE, J. G. STAMPFLI and J. P. WILLIAMS, On the essential numerical range, the essential spectrum, and a problem of Halmos, *Acta Sci. Math.*, 33 (1972), 179-192.
- [5] C. W. GROETSCH, Generalized Inverses of Linear Operators; Representation and Application, Dekker (New York, 1977).
- [6] S. IZUMINO, Inequalities on operators with index zero, Math. Japon., 23 (1979), 565-572.
- [7] S. IZUMINO, Convergence of generalized inverses and spline projectors, J. Approx. Theory, 38 (1983), 269-278.
- [8] E. P. KELLY, JR. and D. A. HOGAN, Bounded conservative, linear operators and the maximal group. II, Proc. Amer. Math. Soc., 38 (1973), 298-302.
- [9] D. D. ROGERS, Approximation by unitary and essentially unitary operators, Acta Sci. Math., 39 (1977), 141-151.
- [10] G. W. TREESE and E. P. KELLY, JR., Generalized Fredholm operators and the boundary of the maximal group of invertible operators, Proc. Amer. Math. Soc., 67 (1977), 123-128.

(S.I.) Faculty of Education Toyama University 3190 Gopuku, toyama-shi 930, Japan

(Y.K.) TONDABAYASHI SENIOR HIGH SCHOOL TONDABAYASHI-SHI 584 OSAKA, JAPAN