The closure of invertible operators on a Hilbert space

SAICHI IZUMINO and YOSHINOBU KATO

1. Introduction. Let H be a separable infinite dimensional Hilbert space and let $B(H)$ be the Banach algebra of all bounded linear operators on H. Denote by \mathbf{G} the group of all invertible operators in $B(H)$, then what is the condition for an operator to be in the (norm) closure $\overline{\mathbf{G}}$ or the boundary bdy \mathbf{G} of \mathbf{G} ? Feldman and Kadison [3] considered this problem and characterized elements in the closure of invertible operators in a weakly closed subalgebra of $B(H)$. In the setting of Banach space operators, Kelly and Hogan [8] gave some sufficient conditions for an operator to lie in the boundary of invertible operators from a view point of conservative operators. Treese and Kelly [10], also in the same setting, showed a characterization of such operators under the restriction that they have closed ranges. Recall that the distance $\operatorname{dist}(A, S)$ of an operator A to a subset $S \subset B(H)$ is defined as inf $\{\|A-S\|: S \in S\}$. Now another approach to our problem is to estimate, by some familiar parameter, the distance for $\mathbf{S}=\mathbf{G}$ or some other set related to \mathbf{G}. In terms of essential minimum modulus, the first author [6] showed some distance formulae on \mathbf{G} and certain subsets of operators with index zero. Independently, Bouldin [2] also tried a similar approach to the problem and presented distance formulae on \mathbf{G} and on the set \mathbf{F} of all Fredholm operators.

In this paper we shall continue the study on the closure \mathbf{G} and the boundary bdy \mathbf{G} of \mathbf{G}. In Section 2 we clarify operators in bdy $\overline{\mathbf{G}}$ and show that the interior int $\overline{\mathbf{G}}$ of $\overline{\mathbf{G}}$ coincides with the set of Fredholm operators with index zero. In Section 3 we characterize closed range operators in $\overline{\mathbf{G}}$, which refines results in [1] and [10]. In Section 4, as an extension of [2] or [6], we determine the distance dist (A, S) when \mathbf{S} is the subset of Fredholm operators with an index or the boundary bdy \mathbf{G}.

Throughout this paper we assume that the Hilbert space H is separable infinite dimensional. The index ind A of an operator A is defined by $\operatorname{dim} \operatorname{ker} A$ - $\operatorname{dim} \operatorname{ker} A^{*}$, where $\operatorname{dim} \operatorname{ker} B$ is the dimension of the kernel of B and $\infty-\infty$ is understood to

[^0]be zero [9]. The minimum (resp. essential minimum) modulus $m(A)$ (resp. $m_{e}(A)$) of $A \in B(H)$ is defined as the number
$$
\inf \{\lambda: \lambda \in \sigma(|A|)\} \quad\left(\text { resp. inf }\left\{\lambda: \lambda \in \sigma_{e}(|A|)\right\}\right)
$$

Here $\sigma(|A|)$ (resp. $\sigma_{e}(|A|)$ is the spectrum (resp. essential spectrum) of $|A|:=\left(A^{*} A\right)^{1 / 2}$. Let \mathbf{I}_{n} be the set of all operators with index n. Now, as a preliminary we state a result due to Bouldin [2, Theorem 3] (which was essentially shown in [6, Theorem 4]).

Theorem 1.1. Let $A \in B(H)$.
(1) If $A \in \mathbf{I}_{\mathbf{0}}$ then $\operatorname{dist}(A, \mathbf{G})=0$.
(2) If $A \notin \mathbf{I}_{0}$ then $\operatorname{dist}(A, \mathbf{G})=\max \left\{m_{e}(A), m_{e}\left(A^{*}\right)\right\}$.

Concerning the index and the essential minimum modulus we want to state three more basic facts.

Lemma 1.2. Let $A, B \in B(H)$ and let $\|A-B\|<m_{e}(A)$. Then ind $A=$ ind B ([2, p. 513]).

Lemma 1.3. Let ind $A=n$. Then there is an isometry or coisometry W according to $n \leqq 0$ or $n \geqq 0$ such that $A=W|A|$ and ind $W=n$ ([9, Proof of Theorem 1.3]).

Lemma 1.4. If ind $A \leqq 0$, then $m_{e}(A) \geqq m_{e}\left(A^{*}\right)$. Hence, if $A \in \mathbf{G}$ or $A \in \overline{\mathbf{G}}$ then $m_{e}(A)=m_{e}\left(A^{*}\right)$.
2. Operators in $\overline{\mathbf{G}}$. Let $\mathbf{F}_{n}=\mathbf{F} \cap \mathbf{I}_{n}$ be the set of all Fredholm operators with index n. Then, since $G \subset F_{0} \subset \mathbf{I}_{0}$ we have, by Theorem 1.1,

$$
\begin{equation*}
\overline{\mathbf{G}}=\overline{\mathbf{F}}_{0}=\overline{\mathbf{I}}_{0} \tag{2.1}
\end{equation*}
$$

First, for the boundary of this set we have:
Theorem 2.1. bdy $\overline{\mathbf{G}}=\left\{A \in B(H): m_{e}(A)=m_{e}\left(A^{*}\right)=0\right\}$.
Proof. Let $m_{e}(A)=m_{e}\left(A^{*}\right)=0$. First we show $A \in \overline{\mathbf{G}}$. If $A \in \mathbf{I}_{0}$ then $A \in \overline{\mathbf{G}}$, say, by (2.1), and if $A \notin \mathbf{I}_{0}$ then by Theorem 1.1 (2) dist $(A, \mathbf{G})=0$, so that again we have $A \in \overline{\mathbf{G}}$. Now, to see $A \in \mathrm{bdy} \overline{\mathbf{G}}$ let $\varepsilon>0$ and suppose, without loss of generality, that ind $A \leqq 0$. Then $A=W|A|$ for an isometry W with ind $W \leqq 0$, by Lemma 1.3. Since $m_{e}(A)=0$, we see, from [4, Theorem 1.1], that $\operatorname{dim} E([0, \varepsilon))$ is infinite, where $E(\cdot)$ is the spectral measure of $|A|$. For brevity, write $E_{\varepsilon}=E([0, \varepsilon))$ and $E_{\varepsilon}^{\perp}=1-E_{\varepsilon} \quad\left(E_{c}^{\perp}\right.$ becomes the orthogonal projection onto the subspace $E([\varepsilon, \infty)) H$). Define an operator $V \in B(H)$ as

$$
\begin{gathered}
V x=x \text { for } x \in E_{z}^{\perp} H, \text { and } \\
V x_{n}=x_{n+1} \quad \text { for an orthonormal basis }\left\{x_{n}\right\} \text { of } E_{\varepsilon} H .
\end{gathered}
$$

Furthermore, put

$$
B_{\varepsilon}=\int \max \{\lambda-\varepsilon, 0\} d E(\lambda)
$$

and $C_{z}=W V\left(B_{\varepsilon}+\varepsilon\right)$. Then, we easily see that

$$
V E_{\varepsilon}^{\perp}=E_{\varepsilon}^{\perp}, \quad E_{\varepsilon}^{\perp} B_{\varepsilon}=B_{\varepsilon}, \quad\left\||A|-B_{\varepsilon}\right\| \leqq \varepsilon \quad \text { and } \quad m_{e}\left(C_{\varepsilon}\right) \geqq \varepsilon .
$$

Since ind $W \leqq 0$ (and ind $V\left(B_{\varepsilon}+\varepsilon\right)=-1, W, V\left(B_{\varepsilon}+\varepsilon\right)$ are Fredholm operators), we see ind $\dot{C}_{\varepsilon} \leqq-1$, so that by Theorem 1.1 we have $\operatorname{dist}\left(C_{\varepsilon}, \mathbf{G}\right) \geqq m_{e}\left(C_{\varepsilon}\right)>0$ or $\boldsymbol{C}_{\mathbf{\varepsilon}} \ddagger \overline{\mathbf{G}}$. But

$$
\begin{aligned}
& \quad\left\|C_{\varepsilon}-A\right\|=\left\|W\left(V\left(B_{\varepsilon}+\varepsilon\right)-|A|\right)\right\|=\left\|V B_{\varepsilon}-|A|-\varepsilon V\right\| \leqq \\
& \leqq\left\|V B_{\varepsilon}-|A|\right\|+\varepsilon=\left\|V E_{\varepsilon}^{\perp} B_{\varepsilon}-|A|\right\|+\varepsilon=\left\|B_{\varepsilon}-|A|\right\|+\varepsilon \leqq 2 \varepsilon .
\end{aligned}
$$

Hence, since ε is arbitrary we see that A is on the boundary bdy $\overline{\mathbf{G}}$. To see the converse, that is, if $A \in$ bdy $\overline{\mathbf{G}}$ then $m_{e}(A)=m_{e}\left(A^{*}\right)=0$, suppose otherwise, say, $m_{e}(A)>0$. Then by Lemma $1.4 m_{e}\left(A^{*}\right)=m_{e}(A)>0$, so that A is Fredholm. Besides, since $A \in b d y \mathbf{G} \subset$ bdy \mathbf{G}, we can find an operator $D \in \mathbf{G}$ such that $\|A-D\|<m_{c}(A)$. Hence ind $A=$ ind $D=0$ (say, by Lemma 1.2), so that $A \in \mathbf{F}_{0}$. But, since \mathbf{F}_{0} is an open subset of $\overline{\mathbf{G}}$ we see that A is an interior point of $\overline{\mathbf{G}}$, which is a contradiction.

Remark. Denote by \mathbf{F}_{l} (resp. \mathbf{F}_{r}) the set of all left (resp. right) semi-Fredholm operators or the set $\left\{A: m_{e}(A)>0\right\}$ (resp. $\left\{A: m_{e}\left(A^{*}\right)>0\right\}$). Then, from the proof of Theorem 2.3 (or a similar argument) we see

$$
\begin{equation*}
\overline{\mathbf{G}} \cap \mathbf{F}_{l}=\mathbf{F}_{0} \quad\left(=\overline{\mathbf{G}} \cap \mathbf{F}_{r}\right) . \tag{2.2}
\end{equation*}
$$

If we denote by \mathbf{G}_{l} (resp. \mathbf{G}_{r}) the set of all left (resp. right) invertible operators, then as (2.2) we can also see

$$
\overline{\mathbf{G}} \cap \mathbf{G}_{l}=\mathbf{G} \quad\left(=\overline{\mathbf{G}} \cap \mathbf{G}_{\mathbf{r}}\right) .
$$

Corollary 2.2. (1) int $\overline{\mathbf{G}}=\mathbf{F}_{0}$, and hence \mathbf{F}_{0} is a regularly open subset in $B(H)$.
(2) bdy $\bar{G}=$ bdy \mathbf{F}_{0}.
(3) bdy $\mathbf{G}=$ bdy $\overline{\mathbf{G}} \cup\left(\mathbf{F}_{0} \backslash \mathbf{G}\right)$.

Proof. (1) Since $\mathbf{F}_{0} \subset$ int $\overline{\mathbf{G}}$ is clear, we may only show the opposite inclusion. Let $A \in \operatorname{int} \overline{\mathbf{G}}$. Then by the theorem $m_{e}(A)>0$ or $m_{e}\left(A^{*}\right)>0$. Hence, in either case we have (say, by (2.2)) $A \in \mathbf{F}_{0}$.
(2) Clear by the theorem and (2.1).
(3) Note that bdy $\mathbf{G} \supset$ bdy $\overline{\mathbf{G}}$, and that $A \in \operatorname{bdy} \mathbf{G} \backslash$ bdy $\overline{\mathbf{G}}$ if and only if $A \in \mathrm{~F}_{0} \backslash \mathbf{G}$.
3. Closed range operators in $\overline{\mathbf{G}}$. In this section we show some necessary and sufficient conditions for an operator to lie in $\overline{\mathbf{G}}$ or bdy \mathbf{G} under the restriction that the operator has closed range. For simplicity, we denote by $A \in(C R)$ if $A \in B(H)$ has closed range. It is well-known []], [5] that if $A \in(C R)$ then there exists the
unique (Moore-Penrose) generalized inverse $A^{\dagger} \in B(H)$ of A satisfying the following four identities;

$$
A A^{\dagger} A=A, \quad A^{\dagger} A A^{\dagger}=A^{\dagger}, \quad\left(A A^{\dagger}\right)^{*}=A A^{\dagger} \quad \text { and } \quad\left(A^{\dagger} A\right)^{*}=A^{\dagger} A
$$

The products $A A^{\dagger}$ and $A^{\dagger} A$ are the orthogonal projections onto the ranges $A H\left(=\operatorname{ker}^{\perp} A^{*}\right.$, the orthogonal complement of $\left.\operatorname{ker} A^{*}\right)$ and $A^{*} H\left(=\operatorname{ker}^{\perp} A\right)$, respectively. The next fact [7, Proposition 2.3] is useful for our discussion.

Lemma 3.1. Let $\left\{A_{n}\right\}$ be a sequence of operators with closed range, and suppose that it converges to $A \in(\mathrm{CR})$ uniformly, that is, $A_{n} \rightarrow A$. Then the following conditions are equivalent.
(1) $\sup _{n}\left\|A_{n}^{\dagger}\right\|<\infty$.
(2) $A_{n} A_{n}^{\dagger} \rightarrow A A^{\dagger}$.
(3) $A_{n}^{\dagger} A_{n} \rightarrow A^{\dagger} A$.

The equivalence (2) and (3) or (3') of the following result was essentially shown by Beutler [1, Theorem 1].

Theorem 3.2. Let $A \in(C R)$. Then the following conditions are equivalent.
(1) $A \in \overline{\mathbf{G}}$.
(2) $A \in \mathbf{I}_{0}$.
(3) $A=B P$ for an operator $B \in \mathbf{G}$ and an orthogonal projection P.
(3') $A=P B$ for an operator $B \in \mathbf{G}$ and an orthogonal projection P.
Proof. (1) \Rightarrow (2) Let $\left\{A_{n}\right\}$ be a sequence in G, and let $A_{n} \rightarrow A$. Put $C_{n}=A_{n} A^{\dagger}$ and $C=A A^{\dagger}$. Then $C_{n}, C \in(\mathrm{CR})$ and $C_{n} \rightarrow C$. Furthermore, since $\operatorname{ker}^{\perp} C_{n}=A H$ we have $C_{n}^{\dagger} C_{n}=A A^{\dagger}=C=C^{\dagger} C \quad$ (cf. $C=C^{\dagger}$). Hence, by Lemma 3.1 we have $C_{n} C_{n}^{\dagger} \rightarrow C C^{\dagger}=A A^{\dagger}$. Hence, for a sufficiently large n, we have

$$
\left\|C_{n} C_{n}^{\dagger}-C_{n}^{\dagger} C_{n}\right\|<1
$$

This implies $\operatorname{dim} \operatorname{ker} C_{n}^{*}=\operatorname{dim} \operatorname{ker} C_{n}$ or ind $C_{n}=0$. Hence ind $A^{\dagger}=0$, i.e., ind $A=0$.
(2) \Rightarrow (3) If $A \in \mathbf{I}_{0}$, then $A=U|A|$ with a unitary U. Since $P:=A^{\dagger} A$ is an orthogonal projection such that $|A| P=|A|$, and since $B:=U\left\{|A|+\left(1-A^{\dagger} A\right)\right\} \in \mathbf{G}$, we see that $A=B P$ is the desired decomposition.
(3) \Rightarrow (1) Note that ind $B P=$ ind $B+$ ind $P=0$ for B and P in (3).
$(3) \Leftrightarrow\left(3^{\prime}\right)$ Note that $A \in \mathbf{I}_{0} \Leftrightarrow A^{*} \in \mathbf{I}_{0}$.
In [10] Treese and Kelly characterized closed range operators in bdy \mathbf{G} (in the setting of Banach space operators). From Theorem 3.2 we now deduce a similar characterization of such operators, which is to be compared with [10, Theorem].

Corollary 3.3. Let $A \in(C R)$. Then the following conditions are equivalent.
(1) $A \in$ bdy G.
(2) $A \in I_{0} \backslash G$.
(3) $A=B P$ for an operator $B \in \mathbf{G}$ and an orthogonal projection $P \neq 1$.
(3) $A=P B$ for an operator $B \in G$ and an orthogonal projection $P \neq 1$.
(4) $A \nsubseteq \mathbf{G}$ and there exists a sequence $\left\{B_{n}\right\}$ in \mathbf{G} such that $B_{n} A^{\dagger} A \rightarrow A$.

Proof. From the theorem we easily see that (1), (2), (3) and (3') are mutually equivalent. If (3) is assumed, then $B_{n}=B(P+1 / n)(n=1,2, \ldots)$ are invertible and $B_{n} A^{\dagger} A \rightarrow A A^{\dagger} A=A$, that is, (4) is obtained. If we assume (4), then since $B_{n} A^{\dagger} A \in \mathbf{I}_{0}$ we easily see $A \in \overline{\mathbf{I}}_{0}=\overline{\mathbf{G}}$, which implies $A \in$ bdy \mathbf{G}, i.e., the condition (1).

Remark. In proving the above corollary by a technique in [10], we would have to add to (4) the uniform boundedness of $\left\{B_{n}^{-1}\right\}$. Related to this, we observe that the sequence $\left\{\left(B_{n} A^{\dagger} A\right)^{\dagger}\right\}$ of generalized inverses is uniformly bounded; since $B_{n} A^{\dagger} A \rightarrow A$ and $\left(B_{n} A^{\dagger} A\right)^{\dagger}\left(B_{n} A^{\dagger} A\right)=A^{\dagger} A$, we have, by Lemma 3.1, $\sup _{n}\left\|\left(B_{n} A^{\dagger} A\right)^{\dagger}\right\|<$ $<\infty$.
4. Distance formulae related to \mathbf{F}_{n}, bdy \mathbf{G} and bdy $\overline{\mathbf{G}}$. Recall that $\overline{\mathbf{F}}_{0}=\overline{\mathbf{I}}_{0}=\overline{\mathbf{G}}$, and hence that

$$
\operatorname{dist}\left(A, \mathbf{F}_{0}\right)=\max \left\{m_{e}(A), m_{e}\left(A^{*}\right)\right\} \text { for } A \notin \mathbf{I}_{0}
$$

by Theorem 1.1. As an extension of those facts we have:
Theorem 4.1. Let $A \in B(H)$.
(1) If $A \in \mathbf{I}_{n}$, then $\operatorname{dist}\left(A, \mathbf{F}_{n}\right)=0$.
(2) If $A \notin \mathbf{I}_{n}$, then $\operatorname{dist}\left(A, \mathbf{F}_{n}\right)=\max \left\{m_{e}(A), m_{e}\left(A^{*}\right)\right\}$.

Proof. (1) If $A \in \mathbf{I}_{n}$ then $A=W|A|$ with an isometry (or coisometry) $W \in \mathbf{I}_{n}$. Let $\varepsilon>0$ and $B=W(|A|+\varepsilon)$. Then $B \in \mathbf{F}_{n}$ and $\|A-B\|<\varepsilon$. Hence, $\operatorname{dist}\left(A, \mathbf{F}_{n}\right)<\varepsilon$, which implies the assertion (1).
(2) Let S be a unilateral simple shift on H, and let $B=S^{n} A$ or $B=A S^{*(-n)}$ according to $n \geqq 0$ or $n \leqq 0$. Then we see ind $B \neq 0$ because of ind $S=-1$, and

$$
\begin{equation*}
m_{e}(B)=m_{e}(A), \quad m_{e}\left(B^{*}\right)=m_{e}\left(A^{*}\right) \tag{4.1}
\end{equation*}
$$

Furthermore, we see

$$
\overline{\mathbf{F}}_{n}=\left(S^{*(n)} \mathbf{G}\right)^{-} \quad \text { or } \quad \overline{\mathbf{F}}_{n}=\left(\mathbf{G} S^{(-n)}\right)^{-}
$$

according to $n \geqq 0$ or $n \leqq 0$. Hence, if. $n \geqq 0$, then

$$
\operatorname{dist}\left(A, \mathbf{F}_{n}\right)=\operatorname{dist}\left(A, S^{*(n)} \mathbf{G}\right)=\operatorname{dist}\left(B, S^{n} S^{*(n)} \mathbf{G}\right)=\operatorname{dist}(B, \mathbf{G})
$$

(cf. $\left.\left(S^{n} S^{*(n)} \mathbf{G}\right)^{-}=\mathbf{G}\right)$. Hence, by Theorem 1.1 and (4.1) we have the desired identity in (2). For $n \leqq 0$, similarly we can obtain the identity.

Concerning the distance from an operator to the boundary bdy \mathbf{G} or bdy \mathbf{G}, we have:

Theorem 4.2. Let $A \in B(H)$. Then
(1) $\operatorname{dist}(A, \operatorname{bdy} \mathbf{G})= \begin{cases}\max \left\{m_{e}(A), m_{e}\left(A^{*}\right)\right\} & \text { if } \cdot A \notin \overline{\mathbf{G}}, \\ m(A)\left(=m\left(A^{*}\right)\right) & \text { if } A \in \overline{\mathbf{G}} .\end{cases}$
(2) $\quad \operatorname{dist}(A, \operatorname{bdy} \overline{\mathrm{G}})=\max \left\{m_{e}(A), m_{e}\left(A^{*}\right)\right\}$.

Proof. (1) If $A \notin \overline{\mathbf{G}}$, then clearly

$$
\operatorname{dist}(A, \operatorname{bdy} \mathbf{G})=\operatorname{dist}(A, \mathbf{G})=\max \left\{m_{e}(A), m_{e}\left(A^{*}\right)\right\} .
$$

If $A \in \overline{\mathbf{G}}$, then we consider the two cases $A \in \mathbf{I}_{0}$ and $A \notin \mathbf{I}_{0}$. First, if $A \in \mathbf{I}_{0}$, then $A=U|A|$ for a unitary U. Let $B=U(|A|-m(A))$. Then $m(B)=0$ and $B \in$ bdy \mathbf{G}. Hence $\operatorname{dist}(A$, bdy $\mathbf{G}) \leqq\|A-B\|=m(A)$. To see that only the equality sign holds, suppose

$$
\begin{equation*}
\operatorname{dist}(A, \operatorname{bdy} \mathbf{G})<m(A), \tag{4.2}
\end{equation*}
$$

and hence also $m(A)>0$. Then $A \in \mathbf{G}_{l}$ or $A \in \mathbf{G}_{l} \cap \overline{\mathbf{G}}=\mathbf{G}$, and by (4.2) there exists an operator $C \in$ bdy \mathbf{G} such that $\|A-C\|<m(A)$. Hence, since $\left\|A^{-1}\right\|=m(A)^{-1}$ (cf. [2, Theorem 1]), we have

$$
\left\|1-A^{-1} C\right\|=\left\|A^{-1}(A-C)\right\| \leqq\left\|A^{-1}\right\|\|A-C\|<1,
$$

so that we easily see $C \in \mathbf{G}$. This is a contradiction. Next, if $A \nsubseteq \mathbf{I}_{0}$ then by Theorem 1.1 we see that $m_{e}(A)=m_{e}\left(A^{*}\right)=\operatorname{dist}(\mathbf{A}, \mathbf{G})=0$. Hence, since $m(A) \leqq m_{e}(A)=0$ and since $A \in \mathbf{G} \backslash \mathbf{I}_{0} \subset$ bdy \mathbf{G} we again obtain the desired identity with the common value zero. It is easy to see $m(A)=m\left(A^{*}\right)$ for $A \in \mathbf{G}$ and hence for $A \in \mathbf{G}$.
(2) If $A \notin \overline{\mathbf{G}}$, then clearly

$$
\operatorname{dist}(A, \operatorname{bdy} \overline{\mathbf{G}})=\operatorname{dist}(A, \overline{\mathbf{G}})=\max \left\{m_{e}(A), m_{e}\left(A^{*}\right)\right\} .
$$

If $A \in \mathbf{G}$, then as (1) we consider the two cases $A \in \mathbf{I}_{0}$ and $A \notin \mathbf{I}_{0}$. If $A \in \mathbf{I}_{0}$, then $A=U|A|$ for a unitary U. Put $B=U\left(|A|-m_{e}(A)\right)$. Then $B \in$ bdy $\overline{\mathbf{G}}$, because $m_{e}(B)=m_{e}\left(B^{*}\right)=0 \quad$ (and by Theorem 2.1). Hence, dist $(A$, bdy $\overline{\mathbf{G}}) \leqq\|A-B\|=$ $=m_{e}(A)$. To show that the equality sign holds, suppose $\operatorname{dist}(A, \operatorname{bdy} \overline{\mathbf{G}})<m_{e}(A)$, and hence also $m_{e}(A)>0$. Then $A \in \mathbf{F}_{l} \cap \overline{\mathbf{G}}=\mathbf{F}_{0}$ (say, by (2.2)). Besides, there exists an operator $C \in$ bdy \bar{G} such that $\|A-C\|<m_{e}(A)$. Hence we see $m_{e}(C) \geqq m_{e}(A)-$ $-\|A-C\|>0$, so that $C \in \mathbf{F}_{l} \cap \mathbf{G}=\mathbf{F}_{0}$. But this is a contradiction by Corollary 2.2 (1). If $A \notin \mathbf{I}_{0}$, then by Theorem 1.1 we have $m_{e}(A)=m_{e}\left(A^{*}\right)=\operatorname{dist}(A, \mathbf{G})=0$. This implies $A \in$ bdy \mathbf{G} and the identity in (2) holds again.

References

[1] F. J. Beutler, The operator theory of the pseudo-inverse, J. Math. Anal. Appl., 10 (1964), 457-470, 471-493.
[2] R. Bouldin, The essential minimum modulus, Indiana Univ. Math. J., 30 (1981), 513-517.
[3] J. Feldman and R. V. Kadison, The closure of the regular operators in a ring of operators, Proc. Amer. Math. Soc., 5 (1954), 909--916.
[4] P. A. Fillmore, J. G. Stampfli and J. P. Williams, On the essential numerical range, the essential spectrum, and a problem of Halmos, Acta Sci. Math., 33 (1972), 179-192.
[5] C. W. Groetsch, Generalized Inverses of Linear Operators; Representation and Application, Dekker (New York, 1977).
[6] S. Izumino, Inequalities on operators with index zero, Math. Japon., 23 (1979), 565-572.
[7] S. Izumino, Convergence of generalized inverses and spline projectors, J. Approx. Theory, 38 (1983), 269-278.
[8] E. P. Kelly, Jr. and D. A. Hogan, Bounded conservative, linear operators and the maximal group. II, Proc. Amer. Math. Soc., 38 (1973), 298-302.
[9] D. D. Rogers, Approximation by unitary and essentially unitary operators, Acta Sci. Math., 39 (1977), 141-151.
[10] G. W. Treese and E. P. Kelly, Jr., Generalized Fredholm operators and the boundary of the maximal group of invertible operators, Proc. Amer. Math. Soc., 67 (1977), 123-128.

[^0]: Received October 19, 1983.

