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On generalized resolvents of nondensely defined symmetric 
contractions 

BJÖRN TEXTORIUS 

1. In 1977 M . G . KREIN and I. E. OVCARENKO [6] described all generalized 
selfadjoint contraction resolvents of a nondensely defined symmetric contraction 
T in Hilbert space using its minimal or maximal selfadjoint contraction extension 
as the fixed extension. 

In this note recent results of H. Langer and the author on the extension of dual 
pairs of contractions together with well-known results of B. SZ.-NAGY and A. KORA-
NYI [10] are used to give a description of the generalized selfadjoint contraction 
resolvents of T when an arbitrary selfadjoint contraction extension of T is taken as 
fixed. The results have immediate application to the extension problem for non-
negative closed linear relations in Hilbert space. 

2. Assume T is a symmetric contraction in a Hilbert space f>, with nondense 
domain 1) (T) . Then results of GR. ARSENE and A. GHEONDEA [1] (cf. also [3]) on 
dual pairs of contractions, applied to the pair {T, T}, imply the existence of a 
bijection G—TC between all canonical (i.e. remaining in Sj) contraction extensions 
TC o f T such that T £ Z ) T and the set of all contractions This bijection is 
given by the matrix representation 

in T = ( A D A F ) 
K ' 0 KR*DA — R*AR+DR GDR) 

with respect to the decomposition § = ®(7 ' )®I>(r ) J - , with some contractions 
^ [ £ ( 7 7 1 , A = A * , R E ^ I T ) - 1 , ^ ] . Here [ § l 5 § 2 ] denotes the set o f all bounded 
linear operators from all of into § 2 and we put [ § i ] : = [ § i , §1]. If B is a con-
traction from into § 2 we put D G : = ( I - B * B ) 1 1 2 and 9t(C) denotes 
the range of the linear operator C. 

The extension TG is selfadjoint if and only if G is selfadjoint. In this case (1) 
gives an explicit representation of the extremal canonical selfadjoint contraction 
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(c.s.c.) extensions o f T. Indeed, since —I^G^I the minimal (maximal) c .s .c . -
extension T„ (TM resp.) is obtained from (1) by taking G=—I ( G = I resp.). In 
particular, T M — = 2 D 2 r P^^x (by PA we denote the orthogonal projector o f 
§ onto a subspace ft o f § ) . The completely undetermined case (i.e. (TM — T^)x?±0 
for all x 6 D ( r ) - L \ { 0 } , see [5]) thus holds if and only if Dr is a bijection 

Let be a Hilbert space, T£[ib] an arbitrary selfadjoint contraction (s.c.) 
extension o f T, and P the orthogonal projector o f £> onto D e n o t e by Q(— 1, 1) 
the set E x t ( ( — — l ] U [ l , °°)) in the extended complex plane. The operator 
function 

z - R:(T) := P(zT-I)-%, z€fl(-1, 1), 
with values in § is called a generalized s.c.-resolvent o f T. If T is canonical ( £ > = § ) 
then the generalized s.c.-resolvent is called a canonical s.c.-resolvent (c.s.c.-resolvent) 
o f T. If n o ambiguity arises we use the notation R, for R, (T) in the sequel. 

The c.s.c.-extension T0 of T which corresponds to G=0 in (1) will play a special 
role. We set kz:=(zT0—7)-1. The operator funct ion 

r - X0(z) := — zDrP^(T)± (zT0 — 7 ) _ 1 / >
S ( T ) ± Dr, z g f i ( - 1 , 1), 

with values in [2>r] was introduced in [9] and shown to be contractive for | z | - = l . 

W e will show in Proposit ion 3 that there is a c lose connect ion between X0 and the 

two Q-functions and QM o f T introduced in [5] by the relations 

QM : = ( C ^ ( 7 ; - Z / ) - I C ^ + / ) | S ( R ) X , 

Quiz) := (C1,2(TM — z / ) - 1 C1'2—/)|r(T)a., z € E x t [ - l , 1], 

where C:=TM-T)l(=2D2rPD(T)±). 

3. Let (5 be a Hilbert space. Denote by ¿V((5) the set o f all funct ions G ho lo -
morphic in Q(— 1 , 1 ) wi th values in [©] such that 

1) -/== G(x) s§ I if - 1 < x < 1 , 

(is-O-^Gid-Git)), s*t 
2) the kernel K(s, t) := { j = / ( - l ^ j , i < l ) 

is positive definite. 
Denote by ^ ( ( 5 ) the subset o f Jf ( (&) consist ing o f those elements o f */T(©) 

which are independent o f z. 

P r o p o s i t i o n 1. Assume G is holomorphic in Q(— 1, 1) with values in [©]. 
Then G£JV(($>) if and only if 

1 0 \\G(z)\\^l if |z | < 1, 

i(z-0-HG(z)-G(0*), z ^ l 
2') the kernel K(z, Q z = l C € Q ( - I, 0 ) 

is positive definite. 
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P r o o f . We must only prove that 1') and 2') fo l low from 1) and 2). Def ine 
F(s):=s(l-sG(s))-\ - ! < i < l . Since F(0)=0, F'(0)=I and since for - 1 < 

— 1 1, S^t 

( s - t r i ( F ( s ) - F ( t ) ) = (I-sG(s))-*(I+st(s-t)- l{G(s)-G(t))(I-tG(t))-\ 

a well known result o f B. SZ.-NAGY and A . KORANYI [10, Satz C*] yields the existence 
o f a selfadjoint contraction G in some Hilbert space (§z>© such that F(s)— 
= J P 6 ( / — J G ) - 1 ! ® , — 1 < J - < 1 . Hence, by analytic continuation 

RZ(G) := P^zG-Fr1^ = (zG(z)-l)~\ ztQ(-1, 1). 

It is n o w straightforward to see (cf. [8], [9]) that ^ ( ( S ) - 1 ^ © ] for z £ i 2 ( - l , 1) 
and that G(z)—z~1(Rz(G)~1+I) (the right-hand side being extended by con-
tinuity to z = 0 ) is a contraction for | z | < l . Thus 1') holds. Property 2') fo l lows 
from the relation 

( z - z ) - i ( G ( z ) - G ( z ) * ) = 

- \z\~2Ri(G)~1Pls(zG—I)~1(I—P^)(zG—I)~1PaR!:(G)~1 S O , I m z ^ O . 

R e m a r k . In [5] the class 1 , 1 ] o f [(5]-valued operator functions k in 
Ext [ — 1 , 1 ] with the fo l lowing properties was introduced: 

(i) k is ho lomorphic in E x t [ — 1 , 1], 
(ii) ( I m z r U m f c ^ O if Im z ^ O , 

(iii) 0 S J t ( x ) S / if x > l or J C < - 1 . 
Proposit ion 1 implies that there is a close connection between ^ [ — 1, 1] and 
> • ( © ) . Namely, fcgttj-l, 1] if and only if G : z - 2 f c ( z - x ) - / belongs to Jf(<&). 

P r o p o s i t i o n 2. Assume G<iJf(3lr). Then (/-X0(z)G(z))~1^r] for 
z i Q ( - l , 1). 

P r o o f . For | z | < l , Z 0 ( z ) G ( z ) is a contraction; in particular, for z = 0 it is 
the zero operator. Thus for |z| < 1 the assertion fol lows from the max imum modulus 
theorem. 

Nex t assume that z£C+ U C _ , where C+ ( C _ ) denotes the open upper (lower) 
half-plane of the complex plane. The operator /— X0(z)G(z)Pa has the matrix 
representation 

, f / - X 0 ( z ) G ( z ) 0 ) 
f-X0(z)G(z)P3r = [ Q 7 j 

with respect to the decomposit ion . The assertion is hence equivalent 
to 1 $a(X0(z)G(z)Ps ). Recall that if Blf B„ are bounded operators o n then 

so 

- 1 $ < 7 ( z Z ) r P B ( r ) x ( z r o - / ) - 1 P s ( T ) x Z ) r G ( z ) P 0 r ) 
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if and only if 
-1 sfa (zP1i{T)±DrG(z)PSrDrPvm±(zT0-I)-1). 

N o t e that 
/ + zPT>mxDrG(z)PSrDrPviT)±(zT0-I)~1 = 

= z(T0+DrG(z)DrPJ>mx-z- iI)(zT0-iy i. 

N o w the assertion fol lows from the fact that T0+DrG(z)DrP^^i is maximal 
dissipative for z £ C + and therefore C _ is contained in its resolvent set. 

Assume C f i J i ® , - ) . According to (1), the corresponding c.s.c.-extension o f 
T is T ô = T0+DrÔDr 

PqçIntroduce the corresponding Q-function Qc o f T 
with values in [D(r)-1-] by Q c ( z ) : = D r P v m ± ( T e - z i r i P * i T ) ± D r , z € E x t [ - l , l ] 

(cf. [7]). N o t e that Qc has the matrix representation 

0 O J 

with respect to the decomposit ion D ( r ) x = 0 r © k e r (Dr), and that if G1, G 2 € 
then 

QGAZ) = Ô C i ( z ) ( / + ( G 1 - G 2 ) Ô G i ( Z ) ) - . 

Obviously (see (2)) 

QM = ( 2 ^ , ( z ) + / ) | E ( T ) ± , QM(z) = (2Q,(z)~/)\vm±. 

P r o p o s i t i o n 3. Assume z £ E x t [ — 1 , 1]. Then 

( / - X 0 ( z - i ) G ) - ^ „ ( z - i ) = - < 2 c ( z ) | 2 r . 
In particular, 

- ( / - ^ r 0 ( z - i ) ) - l ( / + ^ 0 ( z - i ) ) = QM(z)\Sr. 

R e m a r k . In the completely undetermined case, k e r D r = { 0 } , so QG(z)\0 = 
— Qe(z). This can always be assumed without loss of generality. 

P r o o f . By Proposit ion 2, ( / — A r
0 ( z _ 1 ) G ) _ 1 € [ ^ r ] - A direct calculation gives 

I 0 0 j iz~ l)GP0r)-*X0(z->)P0r = 

— — T > R P X > M ± ( T 0 + D R < J D R P S > M X — Z L ) ~ 1 P I , M X D R P 9 R — | E E Q Z ) L F F R O ) ' 

where the matrix representations are taken wi th respect to the décomposi t ion 
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Being Л-functions, z—— X0(z_1) and QG are increasing on (— — 1)U(1 , 
T h e first funct ion is bounded below (by —I) and above (by I). Therefore, the strong 
limit as t / — 1 ( * \ 1 ) exists which is a contraction. A l so the strong limits of Qg 

exist under additional condit ions on G. We next calculate the limits. 

P r o p o s i t i o n 4. a) s— l im Q<*(t)=s—^i™ 

b) i - l m i i ^ 0 ( / - 1 ) = - / , J—Jim Х 0 ( / - 1 ) —/; 

c) Assume the completely undetermined case holds. Then 

s- lim Qe(t) = ( / + G ) - 1 if -l<Jcr((5), 
t — 1 

s - l i m g e ( 0 =-<J-6)~x if 4<r(G)-Î M. L 

P r o o f . Assertion a) is obvious. Assertion b) can be derived from Proposition 3 
and [5, Theorem 2.1], or by the argument below. In order to prove c), assume e.g. 
— 1 It is easy to see that 

Qe(0 = - D r ( r * ( A + ( l - A ) ( / + ( t + l ) ( A - t / y i ) r + tI-£>rG£>ry iDr = 
(3 ) = ( / + G - ( t + l ) D r 1 r * ( A - t I ) ~ i r D f l - ( t + l ) D r 2 ) - \ / < - 1 . 

Denote by £ the resolution of the identity of the selfadjoint contraction A € [£) (Г)]. Put 

t:=- 1 - е , e > 0 , and / ( т ; E ) :=E 2 (T+1 + e)~ 2 , - 1 S T S i . Then for each /1<Е$(Г)Х, 

\\(t + \)(A -11)'1 rh\\- = } f { x - , e)(dETrh, Th); 
- L 

so J i m J K t + l X A - t / ^ r h l l ^ H E ^ ^ h l l 2 . But £ _ 1 Г Л = 0 , since £L X is the ortho-
gonal projector of D (T) onto ker ( A + / ) = k e r (A+/)1/2 с ker ( I - A2)u-=T>(T)Q ®A 

and Г Ъ ( Т ) х с 3 1 л . Thus, (3) implies that ( Q e ( 0 ) _ 1 decreases to its strong limit 
I+G»0 as t / — 1. The assertion follows. 

4 . We first prove the fol lowing theorem on the characterization of the gen-
eralized s.c.-resolvents of T. 

T h e o r e m 1. Let T be a symmetric nondensely defined contraction in the Hilbert 
space §i. Then the formula 

(4) R, =k2- zL DrG(z)(l—X0 (z) G (z) )" 1 Z)r P s ( т ) л A . , z € Q ( - 1 , 1 ) 

yields a bijective correspondence between all generalized s.c.-resolvents of T and 
all functions G£jV(!3r). The generalized s.c.-resolvent is canonical if and only if 
GiJV0{®r). 

P r o o f . Let T be a s.c.-extension o f T in D e n o t e its resolvent by Rz, 
z £ i 2 ( — 1 , 1). Then [9, Theorem 1] implies the existence o f a uniquely determined 
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holomorphic contraction valued operator function G: z-+G(z)£[!3r], |z|<= I, 
such that 

(5) R: = Jk:(l+zDrG(z)DrP^T)±k:)-\ \z\ < 1. 

If, in particular, the extension T is canonical, then G is a constant contraction. 
It is straightforward to see (cf. [8], [9] and the proof o f Proposit ion 1) that G 

has an analytic continuation to i2(— 1, 1), which we also denote by G, and that 
Then (cf. the proof o f Proposition 2) 

(l + zDrG(z)DrPz(T)±Rz)-^[Z>], z € i 2 ( - l , 1), 

so by analytic continuation the relation (5) holds in the same region. But (4) and (5) 
are equivalent ([9]). 

Assume, conversely, G£Jf(@r) and put for z€i2(—1, 1) 

S ( z ) (zTQ-I + zDrG(z)DrPzm±)~\ F(z) := - z S ( z ) . 

Let the kernel K be given by 

'(*), z = I 

By Proposition 1 and the formula 

(6) K(z, 0 = S(0*(I+z'az-0-1Dr(G(z)-G(t:r)DrP^T)±)S(z)> z ^ 

this kernel is positive definite. In order to construct a s.c.-extension of T w e apply 
a standard technique. Consider the linear set Hi o f all finite formal s u m s 
f—2zzf-. ( / : € § > z € i 2 ( — 1 , 1)) and define in £ an inner product ( • , • ) by 

(2 z-.f-.> 2h%d = 2{K(z, Of;, gc), 

which is nonnegative by (6). fi can be canonically embedded into a Hilbert space 
i> and we identify £ and its image in Since ( e Q f , e0f)=(K(0,0)/,/) = ( / , / ) w e 
can also identify § with a subset of § by the correspondence /—£<>/. Nex t w e define 
an operator T on ¿ 0 : = { ? = 2 / o = 0 } by 

T(e.f) := z - 1 ( e . / — e 0 / ) , z ^ 0. 

It fol lows from the relation 

( E : f - S 0 f s : f — s 0 f ) = ( ( | z | = ( z - z ) - 1 S(z)*Dr (G(z) - G(z)*)DrPv(T)±S(z) + 

+ ( S ( z ) * + / ) ( S ( z ) + / ) ) / , / ) - 0, z - 0 

that the domain £„ o f f is dense in In order to see that T is symmetric wi th defect 
numbers ( 0 , 0 ) , let z, C € i 2 ( - 1 , 1), zC^O. Then for 

(TEJ, E;g)-(s:f fHg) = ( ( ( z 0 - 1 ( ^ ( z ) - c 5 ( c r ) - r i 5 ( z ) + z - i s ( c r ) / , g) = 0, 
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so T is symmetric. The denseness of 9i(zf—I) follows from the relation 

(zT-I)(teig-zEzg) = (z-0%g-

The closure of T, which we again denote by T, is thus selfadjoint in £>. Observe that 
( z f - ! ) - % / = - z j , z€ Q ( — 1, 1), and that for | z j> 1 

\\{T-zl)-HJf = \z\-*(F'{z-*)fJ). 

A minor modification of the proof of [10, Satz C] then leads to the conclusion 
| | f | | S i . Furthermore, 

( ( z f - s Q g ) = - ( e j : £0g) = ~(K(z, 0) / , g) - (S(z)f, g), 

hence P(zT-I)~%=S(z). 
It remains to show that f is an extension of T — it is then minimal since 

c.l.s. { ( z f - / ) - 1 ^ : z£Q(— 1, 1)} = c.l.s. {s.f: z£Q(- 1, 1), /£§} = § 

— and that Tis canonical if G is constant. 
In order to show the first assertion, assume /£35(7"), z^O. Then (note the 

relation z-1(S(z)+l)=S(z)(TQ+DrG(z)DrPDm±)) 

(Te:f-z0Tf, ecg) = {z~\K{z, 0-K(0, Q)f-K(0, QTf, g) = 

= ( ( z - J (S (z ) + / ) + £(z - l)-'Dr(G(z) -G(Q*)DrPTiT)±S(z) + T)f, S(Qg) = 

= ((S(z) + I)Tf, S(0g)+((z~iylDr{G{z)-G(0*)DrPWT)± S(z)f, CS(Og) - 0, 

Z - 0 , 

that is, for each g € § , (fezf, g)-(Tf, g), z - 0 . But then 

(ff-Tf, g) = { f f - f z j , g) + {fs:f—Tf, g) 0, z - 0, 

for each g£i>. Thus ff=Tf. 
The second assertion follows easily. Indeed, if G£Jo(^r)> then K(z, ()= 

=S(Q*S(z) and 

(/,/) = 2 (K(z, 0 / z , / c ) = (2S(z)/z, 2 s m ) . 

But an element j'=2szfz belongs to £>©$> if and only if 2 S(z)fz = 0. This 
concludes the proof of the theorem. 

The c.s.c.-extension T0 and its resolvent play a special role in Theorem 1. How-
ever, it can be replaced by any canonical or even noncanonical s.c.-extension of 
T. In order to see this, fix a s.c.-extension f in § corresponding to the function 

according to Theorem 1 and denote its generalized resolvent by P . : 

A z : = P ^ z f - I ) - \ , z € i 2 ( - l , l ) . 
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Introduce a function Q with values i n [ D ( r ) J - ] by 

Q(z) := DrPx(T)±Ps(f-zr)- lPv(T)±Dr, z<EExt[- I, 1]. 
N o t e that Q = Qe if 

T h e o r e m 2. Let The a symmetric nondensely defined contraction in the Hilbert 
space 9). Then the formula 

(7) R: = R:-zLDr(G.(z)-G(z))(/HQ(z- i)\0r)(G(z)-G(z)))- lDrPv(T)±R:, 

Z € G ( - L , 1) 

yields a bijective correspondence between ail generalized s.c.-resolvents of T and 
all functions GÇjV(S>r). The generalized s.c.-resolvent is canonical if and only if 

P r o o f . Since (4) is equivalent to the relation 

R._ = R:(f+zDrG[z)DrPMT)x R:)~1, 

from which we obtain by specialization 

(8) Rz = Az(l+zDrG(z)DrPi>{T)xk:)-\ 

it is straightforward to prove (cf. [9, Theorem 2]) that the formula 

(9) Rz - R:-zR:Dr{G(z)-G(z))(l-X0(z)G(z))-*(l-X^z)G(z))DrP*mxR:, 

Z € G ( - L , 1); 

yields a bijective correspondence between all generalized s.c.-resolvents o f T and 
all functions G£. /F( i0 r ) , and that the generalized s.c.-resolvent is canonical i f and 
only if G ( £ > , - ) . It remains to show that relation (9), which still conta ins the 
special extension T 0 , appearing in the funct ion X0, can be rewritten in the 
form (7). 

Indeed, (8) and the definition of the function Q imply 

Qiz-1) = DrPvm±(T0+DrG(z)DrPT)(T)±-z-1 I ^ P ^ i D r P ^ z€B(- 1, 1), 

and, according to Proposition 2, (/-X0(z)G(z))~1e[^r], z£G(-1, 1). Hence , the 
proof of Proposition 3 carries over to yield the relation 

(/-X0(z)G(z))-1X0(z)=-Û(z-1)lt>r, z € f i ( - 1, 1), 

and the statement fo l lows from the identity 

(/-X0(z)G(z))-1(/-X0(z)G(z)) = 

= (/-(/-X0(z)G(z))-1X0(z)(G(z)-G(z)))- i, z££2(— 1, 1). 
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R e m a r k 1. It is easy to see that (9) implies the relation 

P f f = Ptf+Dr(G(0)- G(0))DrPUT)xf, / € § . 
In particular, 

PTf= Tllf+DR(G(0) + L)DRPB(T)J-/, / € § 
(cf. [5, (5.7)]). 

R e m a r k 2. Recently E. R. CEKANOVSKII [2] stated a m o n g other things the 
fo l lowing theorem: The symmetric nondensely defined contraction T has a canonical 
non selfadjoint contraction extension f such that ( that is, T is a canonical 
non selfadjoint extension of the dual pair { J , T } o f contractions) if and 
only if T has more than one c.s.c.-extension. This is a consequence of (1) 
and Theorem 2. Indeed, T has a unique c.s.c.-extension if and only if. Dr—0, which 
is true if and only if {T, T} has a unique canonical contraction extension. More-
over, [9, Theorem 1] and Theorem 2 imply that if T has a unique c.s.c.-extension 
T', then the on ly generalized resolvent o f the dual pair {T, T) is the s.c.-resolvent 
(zT'~/)-1. These statements carry over via the Cayley transformation to dual 
pairs o f dissipative linear relations. 

N o w it is easy to recover the results of M. G . Kreln and I. E. Ovcarenko from 
Theorem 2. T o this end, assume that ( j £ J f 0 { 3 r ) and that the completely undet-
ermined case holds. If z^ Ext [—1,1 ] , the representation formula (7) can be written 
in the form 

(10) 
- (F-zI)-*DR(G(z->)- < ? ) ( / + Q G ( Z ) ( G ( Z - > ) - (FY-IDRP^X(F - z l ) ~ \ 

Assume e.g. G=-I, and put k(z):=(l/2)(G(z-1)+I), z £ E x t [ - l , 1]. Then k 
belongs to [ — 1 , 1 ] according to the remark after Proposit ion 1. W e thus obtain 
the formula [5^ (5.1)] 

P ( T - z I ) - \ = 

= (J„ - z / ) - 1 - ( ? > - z / ) " 1 C V * k { z ) { I + { Q № - D k ^ C ^ i T , - z / ) " 1 

by specialization from (7). 
Formula (10) can further be rewritten to yield a representation similar to the one 

in [7]. For each z € Q(-1,1) we define a linear relation T ( z ) by T(z) :=(G(z~1)-(S)-1. 
It has the fo l lowing properties: 

1) If z € C + , then T(z) is a maximal dissipative closed linear relation in 
2) T(z ) is a holomorphic function (in the sense of [7]) such that T(z)=T(z)*. 

Thus [7, Proposit ion 1.2] implies the existence o f a decomposit ion = ( ® r ) 0 ® 
independent o f z such that ( 0 r ) o and are reducing subspaces o f T(z ) for all 
z € i 2 ( — 1 , 1), the operator part T(z)0 o f T(z) is a maximal dissipative operator in 
( $ r ) o if Im z > 0 , and the infinite part T ( z ) „ o f T(z) is T(z)„ :={{0,g}: g ^ r ) - } -

22 
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Put r z := (T—zl)~1Dr. Then (10) can be written in the form 

P(f-zI)-% = ( f ^ z I ) - i - r z n z ) - l { l + Q G ( z ) n z ) - l ) - i r % = 

= CT-zl)-\-rz(QG{z) + T{z))-ir* 

(see [7, (1.8)]), where for ; t=- l or —1 

. - { I + G \ ^ T ( x ) - 1 = G ( x - i ) - G ^ I - G . 

In particular, <7= - / gives 0 s r ( x ) ~ 1 s 2 / (cf. [7, Theorem 4.3] and [4]). 
- The results can be applied in a straightforward way to. solve the extension 
problem for a nonnegative closed linear relation S in § (cf. [6]) by using the trans-
formation T : = — / + 2 ( 5 + / ) - 1 . W e leave the details to the reader. 
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