. . . .

Compact weighted composition operators on $L^2(\lambda)$

R. K. SINGH and R. DAVID CHANDRA KUMAR

1. Introduction. Let $(X, \mathcal{S}, \lambda)$ be a sigma-finite measure space and let $T: X \to X$ be a non-singular measurable transformation such that the composition transformation C_T defined as $C_T f = f \circ T$ is bounded linear operator on $L^2(\lambda)$. If $\theta \in L^{\infty}(\lambda)$, then the multiplication operator M_{θ} defined as $M_{\theta}f = \theta \cdot f$ is a bounded linear operator on $L^2(\lambda)$. The product $C_T M_{\theta}$ is an operator on $L^2(\lambda)$ and we call it a weighted composition operator on $L^2(\lambda)$. This class of operators includes some of the well known operators such as multiplication operators, weighted shifts and composition operators [1].

In this note we are interested in studying compact weighted composition operators on $L^2(\lambda)$.

By B(H) we denote the C*-algebra of all bounded linear operators on a Hilbert space H. If C_T is a composition operator on $L^2(\lambda)$, then f_0 denotes the Radon— Nikodym derivative of the measure λT^{-1} with respect to the measure λ . For any complex valued function on X, $Z_{\theta} = \{x: \theta(x)=0\}$ and Z'_{θ} is the complement of Z_{θ} .

2. Some general results. It has been proved in [4] that if $C_T \in B(L^2(\lambda))$, then $C_T^* C_T = M_{f_0}$, where f_0 is the Radon—Nikodym derivative of the measure λT^{-1} with respect to the measure λ . Also it has been proved in [6] that $f_0 \circ T \neq 0$ (a.e.). By using these results we prove the following theorem.

Theorem 2.1. Let $C_T \in B(L^2(\lambda))$. Then C_T has dense range if and only if $C_T C_T^* = M_{f_a \circ T}$.

Proof. Suppose C_T has dense range and let $f \in L^2(\lambda)$. Then there exists a sequence $\{f_n\}$ in $L^2(\lambda)$ such that $\{C_T f_n\}$ converges to f. Now

 $C_T C_T^* f = \lim_n (C_T C_T^* C_T f_n) = \lim_n (C_T M_{f_0} f_n) = M_{f_0 \circ T} (\lim_n C_T f_n) = M_{f_0 \circ T} f_n$

Hence $C_T C_T^* = M_{f_0 \circ T}$.

Received September 9, 1983.

22°

Conversely, suppose $C_T C_T^* = M_{f_0 \circ T}$. Since $f_0 \circ T \neq 0$ (a.e.), $M_{f_0 \circ T}$ and hence $C_T C_T^*$ is an injection. This implies that ker $C_T^* = \ker C_T C_T^* = \{0\}$ and hence C_T has dense range.

Corollary 2.2. Let $C_T \in B(l^2)$. Then $C_T C_T^* = M_{f,\circ T}$ if and only if C_T is onto.

Proof. Since the range of C_T is always closed in l^2 , the result follows immediately.

Theorem 2.3. Let $C_T M_{\theta} \in B(L^2(\lambda))$. Then $(C_T M_{\theta})^* C_T M_{\theta} = M_{|\theta|^2 f_{\theta}}$.

Proof. If $C_T M_{\theta} \in B(L^2(\lambda))$, then

 $(C_T M_{\theta})^* C_T M_{\theta} = M_{\theta} C_T^* C_T M_{\theta} = M_{|\theta|^2 f_0}.$

Corollary 2.4. Let $\theta \in L^{\infty}(\lambda)$ be such that $Z_{\theta} \subset (\operatorname{ran} T)'$, the complement of the range of T. Then $(C_T M_{\theta})(C_T M_{\theta})^* = M_{(|\theta|^2 f_0) \circ T}$ if and only if $C_T M_{\theta}$ has dense range.

Proof. Suppose $(C_T M_{\theta})(C_T M_{\theta})^* = M_{(|\theta| \ge f_{\theta}) \circ T}$. Since $Z_{\theta} \subset (\operatorname{ran} T)', \ \theta \circ T \neq 0$ (a.e.) and hence $(|\theta|^2 f_0) \circ T \neq 0$ (a.e.). This implies that ker $(C_T M_{\theta})^* = \{0\}$ and hence $C_T M_{\theta}$ has dense range.

The converse of this theorem follows from Theorem 2.1.

Theorem 2.5. Let C_T , $M_{\theta} \in B(L^2(\lambda))$. Then

(i) $C_T M_{\theta} = M_{\theta \circ T} C_T$,

(ii) $M_{\theta}C_{T}=0$ if and only if $\theta=0$ (a.e.),

- (iii) $C_T M_{\theta} = 0$ if and only if $\theta \circ T = 0$ (a.e.), and
- (iv) $C_T M_{\theta} = M_{\theta} C_T$ if and only if $\theta = \theta \circ T$ (a.e.).

Proof. (i) Let $f \in L^2(\lambda)$. Then $C_T M_\theta f = (\theta \circ T)(f \circ T) = M_{\theta \circ T} C_T f$. Hence $C_T M_\theta = M_{\theta \circ T} C_T$.

(ii) Suppose $M_{\theta}C_T = 0$. Then $M_{\theta}C_T f = 0$ for every f in $L^2(\lambda)$. Since $(X, \mathcal{S}, \lambda)$ is a sigma-finite measure space, there exists an $f \in L^2(\lambda)$ such that $f \neq 0$ (a.e.). Hence $\theta \cdot (f \circ T) = 0$ (a.e.) implies that $\theta = 0$ (a.e.).

The converse is obvious.

(iii) Since $C_T M_{\theta} = M_{\theta \circ T} C_T$, the proof follows from (ii).

(iv) The sufficiency of this result is obvious. To prove the necessary part, suppose $C_T M_{\theta} = M_{\theta} C_T$. Then $M_{\theta \circ T} C_T = M_{\theta} C_T$ and hence $M_{\theta \circ T-\theta} C_T = 0$. Thus the result follows from (ii).

The following examples illustrate that there are C_T and M_{θ} in $B(l^2)$, such that C_T commutes with M_{θ} . Here l^2 denotes the Hilbert space of square summable sequences of complex numbers.

Example 2.6. Let X=N, the set of natural numbers and λ be the counting measure on it. Define $T: X \to X$ by T(n)=1, if n=1, 2 and T(3n+m)=n+2, if m=0, 1, 2 and $n \in N$. Then $C_T \in B(l^2)$. Define $\theta: X \to C$ by $\theta(n)=2$, if n=1, 2 and $\theta(n)=3$, if n>2. Then $M_{\theta} \in B(l^2)$ and C_T commutes with M_{θ} .

Example 2.7. If $\theta \in L^{\infty}(\lambda)$ is a constant, then M_{θ} commutes with every $C_T \in B(L^2(\lambda))$.

Example 2.8. Let $C_T \in B(L^2(\lambda))$ be such that T(E) = E for some $E \in \mathscr{S}$ and $0 < \lambda(E) < \infty$. Define $\theta = X_E$, the characteristic function of E. Then C_T commutes with M_{θ} .

3. Compact weighted composition operators. Let $(X, \mathcal{S}, \lambda)$ be a sigma-finite measure space. An element $E \in \mathcal{S}$ is said to be an atom if for every non-null measurable subset F of E, either $\lambda(F)=0$ or $\lambda(F)=\lambda(E)$. A measure space $(X, \mathcal{S}, \lambda)$ is said to be atomic if every element of \mathcal{S} contains an atom. A measure space $(X, \mathcal{S}, \lambda)$ is said to be non-atomic if it does not contain any atom. It has been proved in [4], that no composition operator on L^2 of a non-atomic measure space is compact. It is interesting to note that the weighted composition operator on $L^2(\lambda)$ is compact if and only if it is the zero operator. This is evident from the following theorem.

Theorem 3.1. The weighted composition operator $C_T M_{\theta}$ on L^2 of a non-atomic measure space is compact if and only if $\theta=0$ (a.e.) on Z'_{f_0} .

Proof. Suppose $C_T M_{\theta}$ is compact. Then $C_T^* C_T M_{\theta}$ and hence $M_{\theta f_{\theta}}$ is compact. By a theorem of [5], $\theta f_0 = 0$ (a.e.). If $\theta \neq 0$ (a.e.) on Z'_{f_0} , then $f_0 = 0$ (a.e.). This implies that $C_T = 0$. But no non-singular measurable transformation induces the zero operator. Hence $\theta = 0$ (a.e.) on Z'_{f_0} . The converse is obvious.

Corollary 3.2. The weighted composition operator $C_T M_{\theta}$ on $L^2(\lambda)$ is compact if and only if it is the zero operator.

Proof. Suppose $C_T M_{\theta}$ is compact. Then $(C_T M_{\theta})^* C_T M_{\theta}$ and hence $M_{|\theta|^2 f_0}$ is the zero operator. Hence $C_T M_{\theta}$ is the zero operator.

Corollary 3.3. No composition operator on $L^2(\lambda)$ is compact.

Let $\theta \in L^{\infty}(\lambda)$. We denote

 $X^{\delta}_{\theta} = \{x \in X \colon \theta(x) > \delta\} \text{ and } M^{\theta}_{\delta} = \{f \in L^{2}(\lambda) \colon f(x) = 0 \text{ on } X - X^{\theta}_{\delta}\}.$

It has been proved in [5] that the multiplication operator M_{θ} on $L^{2}(\lambda)$ is compact if and only if M_{δ}^{θ} is finite dimensional. We shall characterize compact weighted composition operators on L^{2} of an atomic measure space. Since $(X, \mathcal{S}, \lambda)$ is a sigma finite measure space, without loss of generality we write X as a countable union of atoms and we denote the *i*th atom by *i*.

Theorem 3.4. Let $C_T M_{\theta} \in B(L^2(\lambda))$. Then $C_T M_{\theta}$ is compact if and only if either $\{f_0(i)\}$ or $\{\theta(i)\}$ converges to zero.

Proof. Suppose $C_T M_{\theta}$ is compact. Then $M_{\theta f_0}$ is compact and hence $M_{\delta}^{\theta f_0}$ is finite dimensional. This shows that $X_{\delta}^{\theta f_0}$ contains finite number of atoms. It follows from this that the sequence $\{\theta f_0(i)\}$ converges to zero. Since θ and f_0 are essentially bounded functions, either $\{f_0(i)\}$ or $\{\theta(i)\}$ converges to zero. This completes the necessary part of the theorem.

Conversely, suppose either $\{f_0(i)\}$ or $\{\theta(i)\}$ converges to zero. Then either C_T or M_{θ} is compact. Hence $C_T M_{\theta}$ is compact.

It follows from this theorem that there are plenty of compact weighted composition operators on L^2 of an atomic measure space as is shown in the following example.

Example 3.5. Let X=N and $\lambda(n)=a^n$, 0 < a < 1. Then l_a^2 denotes the weighted sequence space. Define $T: X \to X$ by T(n)=n+1, if *n* is odd and T(n)=n-1, if *n* is even. Then $C_T \in B(l_a^2)$ and $f_0(n)=a^{n-1}(1+a)$. Hence C_T is compact. If M_{θ} is any multiplication operator on l_a^2 , then $C_T M_{\theta}$ is always compact.

The following theorem characterizes compact weighted composition operators on l^2 , the Hilbert space of square summable sequences of complex numbers on N, the set of natural numbers.

Theorem 3.6. Let $C_T M_{\theta} \in B(l^2)$. Then $C_T M_{\theta}$ is compact if and only if $\{\theta(n)\}$ converges to zero.

Proof. Suppose $C_T M_{\theta}$ is compact. Then $M_{\delta}^{\theta f_0}$ is finite dimensional and hence $N_{\delta}^{\theta f_0}$ contains finite number of elements of N. If N_{δ}^{θ} contains infinite number of elements of N, then $N_{\delta}^{f_0}$ must contain only finite number of elements of N. This shows that $f_0=0$ for all but finitely many elements of N and hence the range of T contains finitely many elements of N. By taking T(N)=E, we have $\lambda T^{-1}(E) \not\equiv \not\equiv M\lambda(E)$ for any finite M>0. Hence by Theorem 1 of [3], C_T is not bounded. This proves that N_{δ}^{θ} contains finitely many elements of N. Hence $\{\theta(n)\}$ converges to zero.

Conversely, if $\{\theta(n)\}$ converges to zero, then M_{θ} is compact and hence $C_T M_{\theta}$ is compact.

Corollary 3.7. No composition operator on l² is compact.

Proof. The proof follows from Theorem 3.6, when $\theta(x) = 1$.

Theorem 3.6 implies that the necessary condition for a weighted composition operator $C_T M_{\theta}$ on l^2 to be compact is that θ is not bounded away from zero. But this condition is not sufficient as is shown in the following example.

Example 3.8. Let X=N and let $C_T \in B(l^2)$. Define $\theta: X \to \mathbb{C}$ by $\theta(1)=0$ and $\theta(n)=1$, if n>2. Hence θ is not bounded away from zero, but $C_T M_{\theta}$ is not compact.

Definition. A subalgebra \mathscr{A} of B(H) is said to be transitive if \mathscr{A} is weakly closed, contains the identity operator and Lat $\mathscr{A} = \{0, H\}$, where Lat $\mathscr{A} = \bigoplus_{A \in \mathscr{A}} A$. It has been proved in [2] that if \mathscr{A} is a transitive algebra of B(H) containing a compact operator, then $\mathscr{A} = B(H)$.

Let $\{w_n\}$ be a bounded sequence of non-zero complex numbers and let $\{e_n\}$ be an orthonormal basis of H. The operator W on H defined by the requirements $We_0=0$ and $We_n=w_ne_{n-1}$ (n=1, 2, ...) is called a weighted unilateral (backward) shift with the weight sequence $\{w_n\}$.

Corollary 3.9. The weighted shift W on l^2 is compact if and only if the sequence of weights $\{w_n\}$ converges to zero.

Corollary 3.10. If \mathscr{A} is a transitive algebra of $B(l^2)$ containing a weighted composition operator $C_T M_{\theta}$ such that $\theta(n) \rightarrow 0$ as $n \rightarrow \infty$, then $\mathscr{A} = B(l^2)$.

The following result of YADAV and CHATTARJEE [7] follows immediately from Theorem 3.6.

Corollary 3.11. If \mathscr{A} is a transitive algebra of $B(l^2)$ containing a weighted shift with weights $\{w_n\}$ such that

$$\delta(n) = \sum_{k=0}^{\infty} w_{k+2} \dots w_{k+n} / w_2 w_3 \dots w_n$$

tends to zero as $n \rightarrow \infty$ (for $n \ge 2$), then $\mathscr{A} = B(l^2)$.

Proof. Since the sequence $\{\delta(n)\}$ converges to zero, the corresponding sequence of weights $\{w_n\}$ converges to zero. Hence the weighted shift is compact. Thus the result follows (cf. [2]).

References

- E. A. NORDGREN, Composition operators on Hilbert space, in: Proc. of Long Beach Conference, Lecture Notes in Math. 693, Springer-Verlag (Berlin-Heidelberg-New York, 1978), pp. 37-63.
- [2] H. RADJAVI and P. ROSENTHAL, Invariant subspaces, Springer-Verlag (Berlin—Heidelberg—New York, 1973).

344 R. K. Singh and R. David Chandra Kumar: Compact weighted composition operators

- [3] R. K. SINGH, Composition operator induced by rational function, Proc. Amer. Math. Soc., 59 (1976), 329-333.
- [4] R. K. SINGH, Compact and quasi-normal composition operators, Proc. Amer. Math. Soc., 49 (1974), 82-85.
- [5] R. K. SINGH and ASHOK KUMAR, Compact composition operators, J. Austral. Math. Soc., 28 (1979), 309-314.
- [6] R. K. SINGH and T. VELUCHAMY, Non-atomic measure spaces and composition operators, preprint.
- [7] B. S. YADAV and S. CHATTARJEE, On a partial solution of the transitive algebra problem, Acta Sci. Math., 42 (1980), 211-215.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF JAMMU NEW CAMPUS JAMMU — 180001, INDIA

.

•

٠, ۱