Acta Sci. Math., 49 (1985), 353—355

On uniqueness and the Lifting Theorem

ARTHUR E. FRAZHO

It is the purpose of this note to present a simple proof of Theorem 1.1 in [1].
This théorem gives a necessary and sufficient condition for the existence of a unique
intertwining dilation in the Lifting Theorem.

We follow the notation in [4]. If C is a contraction, then D, is the positive
square root of /—C*C. The closure of the range of D, is D.. '

A factorization C,C, is regular [4] if

®C1®Dcz == {DC1C2h®DC’h: heg}_.

Throughout T on $, T’ on " and A: $—~  are contractions such that
T’A=AT. The minimal isometric dilations of T on & and 7’ on K’ are denoted by
U and U’, respectively. It is always assumed that U is in its matrix form with respect
to the decomposition K=HPD;HDr DD D..., ie.,

.
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and analogously for U’. An operator B mapping & into & is a contractive inter-
twining dilation (CID) of 4 if ‘B is a contraction, and

@) U'B=BU and APg= PgB.

(The orthogonal projection onto $ is denoted by Pg.) The famous Lifting Theorem
of Sz.-NAGY and FOIAg [3], [4] states that there exists a CID for 4. The following
shows when there is only one CID for A.
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Theorem 1 ([1]). The contraction A has a unique CID if and only if AT or
T’A is a regular factorization.

Proof. Let B be a CID for A. Matrix multiplication with (1) shows that B
must be in the form:
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z, Y,
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where Z;: $—~Dy. and -Y;: Dy~ are contractions for:all i=1. Note the
first row in B follows from the second equation in (2).- Since ||Bh|i2=||h||%> for all
h-in .9, Equation (3) implies. |Z;h||=(|D, h|. Thus, Z;=X;D, for i=1 where
X; is a contraction from D, into D,.. Fmally, using U’Bh=BUh for hin $ with
(3) gives: :

h A
@ a3 = oran ., m][D‘T"] XD (=)

- Assume :AT is a regular factorization.. This implies that the X’s and Y,’s in
(3) are uniquely determined by (4). Hence, B is unique. Now assurne T4 is a regular
factorization. By Proposition VIL.3.2 in [4] (or Lemma 3.1 in [2]) the. factorization
A*T’* is regular. Therefore, A* admits a unique CID. Lemma 2:1 in {1] shows:that
A has a unique CID if and only if 4* has a unique CID. Hence, A4 has a unique CID.

The other half of the proof follows from the one-step dilations for A in [2].
For completeness it is given. Assume 7’4 and AT are not regular factorizations.
By [2], there exist two diﬁ’eren.tE contractions -

; P A I S
&) =lz oyl ™ A=y
where. T, 4,=A,T, and -T{ A;=A;T,. Here

© A Tl:[DT o] and T‘ [DT o]

Applying the Lifting Theorem to (5) and (6) shows that A does not have a unique
CID. The proof is now complete.
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