n an 1947, ann an Arland an tha an Arlanda. An Arlanda an tha Bha an the an tao an tha an tha an tao an

and a second s Second second

On tightness of random sequences

WINFRIED STUTE

Let $(\xi_n)_n$ be a sequence of random elements in a complete separable metric space (X, d), defined on some probability space $(\Omega, \mathscr{A}, \mathbf{P})$. In many situations, particularly in statistical large sample theory, it is required to show that the laws $\mathscr{L}(\xi_n)$, $n \ge 1$, converge weakly to some specified (Borel) measure μ . For this a general device is to guarantee that $\mathscr{L}(\xi_n)$, $n \ge 1$, has at least one cluster point and, in a second step, that there is at most one of such points. While uniqueness may be shown by applying general methods for identifying weak limits (cf. BIL-LINGSLEY [1]), the existence part usually takes account of Prohorov's theorem. Accordingly, it remains to prove that ξ_n , $n \ge 1$, is uniformly tight:

(1) for given $\rho > 0$ there exists some compact subset K_{ρ} of X such that $\mathbf{P}(\xi_n \notin K_{\rho}) \leq \rho$ for all $n \geq 1$.

Apart from stochastic arguments, to find such a K_{ϱ} , one has to characterize the (relatively) compact subsets of X. This might cause some difficulties due to the fact that such a description needs a far reaching investigation of the topology induced by d. In many cases, however, there exists a (closed) subspace X_0 of X such that

(2) the ξ_n 's, as $n \to \infty$, concentrate more and more on X_0 , so that a possible limit distribution is supported by X_0 .

(3) the relative topology induced on X_0 admits a simpler characterization of compactness.

An important example we have in mind is the space X=D[0, 1] of rightcontinuous functions on [0, 1] with left-hand limits, endowed with the Skorohod topology (cf. BILLINGSLEY [1]). The class of processes with paths in D contains appropriate versions of partial sum, empirical and quantile processes. In each case the limit process may be chosen so as to have continuous paths, i.e. we may take $X_0=C[0, 1]$, the space of continuous functions on [0, 1]. As a matter of fact the Skorohod topology on C coincides with the topology of uniform convergence.

1. J. A.

Received August 29, 1983.

Thus a characterization of compactness in X_0 is obtained from the classical Arzela— Ascoli Theorem. Identification of the limit of course relies on the convergence of the finite dimensional distributions.

In this paper a simple method for proving tightness is proposed which is based on appropriate X_0 -valued transformations $T_{\varepsilon}(\xi_n)$, $\varepsilon > 0$, of ξ_n , $n \ge 1$.

Proposition 1. Assume that, for each $\varepsilon > 0$, T_{ε} : $X \to X_0$ is a measurable transformation such that

(4) $T_{\varepsilon}(\xi_n), n \ge 1$, is tight in (X_0, d) for each $\varepsilon > 0$,

(5) $\limsup \operatorname{P}(d(T_{\varepsilon}(\xi_n), \xi_n) \ge \eta) = 0$ for all $\eta > 0$.

Then ξ_n , $n \ge 1$, is tight in (X, d), and each cluster point μ of $\mathscr{L}(\xi_n)$, $n \ge 1$, satisfies $\mu(X_0) = 1$.

Proof. Fix some $\eta > 0$. By (4) we have, given $\varepsilon > 0$,

$$\mathbf{P}(T_{\varepsilon}(\xi_n) \notin M^{\eta}) \leq \eta \quad \text{for all} \quad n \geq 1$$

for some finite $M = M(\eta, \varepsilon) \subset X_0$, where $M^{\eta} = \{x \in X : d(x, M) < \eta\}$ is the open η -neighborhood of M in X. For small enough $\varepsilon > 0$ (5) implies

$$\mathbf{P}(\xi_n \notin M^{2\eta}) \leq 2\eta \quad \text{for all} \quad n \geq n_0(\eta).$$

Since $\xi_1, ..., \xi_{n_0-1}$ are tight in (X, d), we may find some finite $M_0(\eta) \equiv M_0 \supset M$ in X such that

$$\mathbf{P}(\xi_n \notin M_0^{2\eta}) \leq 2\eta \quad \text{for all} \quad n \geq 1.$$

For K_q we may then take the closure of the set $\bigcap_{k\geq 1} M_0^{q^{2^{-k}}}$. To show that each cluster point μ is supported by X_0 , assume w.l.o.g. that $\mathscr{L}(\xi_n) \rightarrow \mu$ weakly. Since X_0 is closed, $X_0^{\eta} \downarrow X_0$ as $\eta \downarrow 0$. Hence it remains to prove $\mu(X_0^{\eta}) = 1$. As is well known, the set of η 's for which X_0^{η} has a μ -null boundary forms a dense set in $(0, \infty)$. Hence it suffices to consider only such η 's. In this case

$$\mu(X_0^{\eta}) = \lim_{n \to \infty} \mathbf{P}(\xi_n \in X_0^{\eta}).$$

That the right-hand side equals one now easily follows from (5) and the fact that $T_{\epsilon}(\xi_n) \in X_0$ for all $\epsilon > 0$.

Let us show the usefulness of our approach by giving a straightforward proof of the following important result (cf. BILLINGSLEY [1], Theorem 15.5).

Proposition 2. Let ξ_n , $n \ge 1$, be a random sequence in D[0, 1] such that (6) for each $\varrho > 0$ there exists some finite a > 0 such that

$$\mathbf{P}(|\xi_n(0)| \ge a) \le \varrho \quad \text{for all} \quad n \ge 1.$$

(7) for all $\eta, \varrho > 0$ there exists some $0 < \delta < 1$ such that for all $n \ge n_0(\eta, \varrho)$

$$\mathbf{P}\left(\sup_{|t-s|\leq\delta}|\xi_n(t)-\xi_n(s)|\geq\eta\right)\leq\varrho$$

Then ξ_n , $n \ge 1$, is tight in (D[0, 1], d), and each cluster point μ satisfies $\mu(C[0, 1]) = 1$.

Proof. For $f \in D[0, 1]$, put f(t)=f(1) for t>1 and f(t)=f(0) for t<0. Let K be a smooth nonnegative kernel function on the real line, integrating to one and vanishing outside some bounded interval. Put

$$Tf(t) \equiv \tilde{f}(t) = \int f(x)K(t-x) \, dx = \int f(t-y)K(y) \, dy, \quad 0 \leq t \leq 1.$$

Obviously, $\tilde{f} \in C[0, 1]$. If $\sup_{|t-s| \leq \delta} |f(t) - f(s)| < \eta$, we have for $|t-s| \leq \delta$:

$$|\tilde{f}(t)-\tilde{f}(s)| \leq \int |f(t-y)-f(s-y)|K(y)\,dy < \eta \int K(y)\,dy = \eta,$$

i.e. $\sup_{\substack{|t-s| \leq \delta \\ |f(0)| < a \text{ and } \sup_{\substack{|t-s| \leq \delta \\ |t-s| \leq \delta}} |f(t) - f(s)| < \eta, \text{ we obtain}} |f(t) - f(s)| < \eta.$ Furthermore, if

$$||f|| \equiv \sup_{0 \le s \le 1} |f(s)| < a + \eta/\delta \equiv b < \infty$$

and thus $|\tilde{f}(0)| \leq ||f|| < b$. It follows from (6) and (7) and the Arzela-Ascoli Theorem that $T(\zeta_n)$, $n \geq 1$, is tight in C[0, 1].

Now, we may let K depend on ε in such a way that the degree of smoothing decreases as $\varepsilon \rightarrow 0$. To be specific, let

$$K(x) = K_{\varepsilon}(x) = \varepsilon^{-1} K_0(x/\varepsilon),$$

where K_0 is a preassigned probability kernel vanishing outside some finite interval, say [-1, 1]. Define

$$T_{\varepsilon}(f)(t) = \varepsilon^{-1} \int f(x) K_0((t-x)/\varepsilon) dx.$$

We already know that $T_{\varepsilon}(\xi_n)$, $n \ge 1$, is tight in C[0, 1] for each $\varepsilon > 0$. Furthermore,

$$\tilde{f}(t)-f(t) = \int_{\text{supp}(K)} [f(t-y)-f(t)]K(y)\,dy,$$

whence

$$\sup_{\substack{0 \le t \le 1}} |\tilde{f}(t) - f(t)| \le \sup_{\substack{0 \le t \le 1\\ y \in \text{supp}(K)}} |f(t-y) - f(t)|.$$

For $K = K_{\epsilon}$, we have $\operatorname{supp}(K) \subset [-\epsilon, \epsilon]$ and thus $\sup_{\substack{0 \le t \le 1 \\ |t-s| \le \epsilon}} |\tilde{f}(t) - f(t)| < \eta$ whenever $\sup_{\substack{|t-s| \le \epsilon \\ \text{for } \epsilon \le \delta}} |f(t) - f(s)| < \eta$. Observe that $d(\tilde{f}, f) \le \sup_{\substack{0 \le t \le 1 \\ 0 \le t \le 1}} |\tilde{f}(t) - f(t)|$ and conclude that

$$\mathbf{P}(d(T_{\varepsilon}(\xi_{n}),\xi_{n}) \geq \eta) \leq \varrho, \quad n \geq n_{0}(\eta,\varrho).$$

This shows (5) and completes the proof of the proposition.

ATTENTI GALLESS Medicales de Se

References

. .

. . ..

[1] P. BILLINGSLEY, Convergence of probability measures, Wiley (New York, 1968).

.

MATHEMATISCHES INSTITUT DER JUSTUS-LIEBIG-UNIVERSITÄT ARNDTSTRASSE 2 6300 GIESSEN, FRG

.

a service de la service de

en de la politica de la composición de Composición de la comp

and an ann an tha an the state of the stat

and a statistic description of the second second

an Bharlon an an ann an Albarlon an Albarlon an Albarlon an Arabarlon an Arabarlon an Arabarlon an Arabarlon an Ar