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Does a given snbfield of characteristic zero imply any restriction 
to the endomorphism monoids of fields? 

PÉTER PRŐHLE 

Introduction 

E . NOETHER asked whether the Galois groups of normal extensions of the 
field of rationals can be prescribed. SAFAREVÍÖ showed that each solvable group 
occures as a Galois group. J. DE GROOT [9] proved that the automorphism groups 
of rings can be prescribed. More detail: For each group there exists a suitable ring 
the automorphism group of which is isomorphic to the given group. So J. de Groot 
asked whether the automorphism groups of fields can be prescribed, too. After a 
negative result due to Krull, and after a partial solution due to W. KUYK [13] the 
question was answered by E . FRIED—J. KOLLÁR [5]. As a corollary of a much 
stronger result it was shown that: To each group G there exists a field F of a given 
characteristic different from 2, where G is isomorphic to the automorphism group 
of F. Each field given by the construction in [5] is a transcendental extension of its 
own prime field. It came also to light that the procedure used in [5] is unfit for handling 
the extensions of algebraically closed fields. So has been raised the question for-
mulated in the title above. The answer to the analogous question is affirmative 
with respect to the class of graphs by L . BABAI—J. NESET^IL [2], to the class of 
bounded lattices by M. E. ADAMS—J. SICHLER [1], to the class of unary' algebras 
by J. KOLLÁR [11, 12] and to the class of integral domains of characteristic zero 
by E. FRIED [4]. This paper presents a solution in the case of fields of characteristic 
zero and in the case of non-unary algebras. 
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The results 

If the only endomorphism of a structure is the identity, then the structure 
is called rigid. A monoid is called right cancellative, if xz=yz implies x=y. 

Theorem 1. Each field of characteristic zero is embeddable into a rigid one. 

Theorem 2. Let F be a given field of characteristic zero. Then a monoid M 
is isomorphic to the endomorphism monoid of a field containing F as a subfield i f f 
M is right cancellative. 

A functor F: A—B which is injective on every Horn A (a ,a") is called faithful. 
If, in addition, F is also injective on the class of all objects of A we call it an 
embedding. F is full if every morphism d: F(a) — F(a") of B has the form d—F(c) 
for some morphism c: a—a" from A. A concrete category is a category A together 
with a fixed faithful functor U: A-* SET, where SET is the category of all sets 
and all mappings. A category of structures will always be considered as a concrete 
category whose faithful functor is the usual "underlying set" functor. 

Let Fields, Alg (t) and Rel(f) denote the category whose objects are the 
fields of characteristic zero, the algebras of the given similarity type t and the rela-
tional structures of type t, and whose morphisms are the 1-preserving ring homo-
morphisms, the usual homomorphisms and the weak homomorphisms. Let C be 
a concrete category, then I n j C denotes the subcategory of those morphisms of 
C, which are carried by injective mappings. For a£Ob(C), Ext (a, C) denotes 
the full subcategory of those objects of C, which have a as a subobject. 

Let A and B be concrete categories and let U: A—SET and V: B—SET 
be their corresponding "underlying set" functors. A full embedding F: A—B is 
called an extension if there is a monotransformation from U into VoF. F is a 
strong embedding if HoU=VoF for some faithful functor H: SET—SET, here 
H is called the carrier of F. It is easy to see that a functor H: SET-SET is faithful 
iff there is a monotransformation from the identity functor on SET into the functor 
H. Thus every strong embedding is also an extension. 

Theorem 3. Let F be a given field of characteristic zero. Then Inj Alg (t) 
has a strong embedding into Ext (F, Fields) and Inj Rel (t) has an extension into 
Ext (F, Fields), for each similarity type t. 

Theorem 4. Let A be an algebra of similarity type t, where t contains at least 
one at least binary operation. Then the following statements are equivalent: 

(a) A has no one-element subalgebra; 
(b) A is embeddable into a rigid algebra of similarity type t; 
(c) Alg (5) has a strong embedding into Ext (A, Alg (i)) and Rel (5) has an 

extension into Ext (A, Alg (/)), for each similarity type s. 
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Review of the technique 

For the basic notions and for the customary technique see the textbook of 
G . GRATZER [8], o f S . MACLANE [14] , o f A . PULTR—V. TRNKOVA [15] a n d o f B . L.VAN 

DER WAERDEN [19], and the paper of P . VOPENKA—A. PULTR—Z. HEDRLIN [18] . For 
the technique of rings and fields see E . FRIED [3, 4 ] , E . FRIED—J. KOLLAR [5], 

E . FRIED—J. SICHLER [6 , 7 ] a n d J . KOLLAR [10]. 

To prove Theorem 1 we want to mark the elements of the given field by special 
extensions. Namely, two elements can be transposed by an automorphism only if 
they have isomorphic marks. If we want to mark a subset A of an integral domain 
I, then it is enough to use the following process of extension due to E . FRIED [3] : 

First take the algebraic closure of I. Then take the polynomial ring in one variable 
over this algebraic closure. Finally add the reciprocial of the polynomials of the 
form (y—a) where a runs over the given subset A. It can be shown that each auto-
morphism fixes the variable y, and the set A is permuted only. Of course, this state-
ment holds only for some carefully chosen sets A, see [3]. In the case of fields we 
must take the whole quotient field of the polynomial ring. But we may try to add 
the square roots of the polynomials in question (the square roots of the polynomi-
als of the form (y—a). It is easy to see that this modification is insufficient: the 
variable y can be moved by the endomorphisms. On the other hand there are a lot of 
flip-flops: namely the conjugates of the roots can be permuted. To prevent the mo-
tion of the variable y we take an odd prime p and we make the element y />-high by 
adding its /?-th roots. So we get a bigger field. If the unit element is the only /?-high 
element of the original smaller field, then this extension really denotes the set A; 
But it is easy to show that if the smaller field contains an algebraically closed field— 
this is the general case — then this extension doesn't mark the set A. Therefore we 
add not only the square roots of the polynomials (y—a), but also the square 
roots of 0—1), (y-a1 1) . 

If we want to embed an uncountable algebraically closed field into a rigid 
field (see Theorem 1), then this rigid field must have a greater cardinality than the 
original algebraically closed field. We also see that the construction above doesn't 
change the cardinality of the fields, even if we iterate that process for other odd 
primes. For the simple reason that we may enlarge the cardinalities the final form 
of the extension we will use in the proofs is just the special extension F(E,Y,p, q)l F, 
the definition of which can be found in the first part of the main lemma. 

2 
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The investigation of the special extension 

; , M a i n lemma (first part). Let F be a field of characteristic zero, Y be a set 
disjoint to E, E be a subset of FX Y, and p and q be two different primes. We use the 
following notations for y€Y: 0 y=y, 

• A(y)= {a: (a,y)ZE} and B(y) = { l , a , a u : <a,;>>€£}. 
Then the following property uniquely determines a field denoted by F(E, Y, p, q): 
F(E, Y, p, q) is the extension of F generated by the set 

R = y , i(b,y): i€a>, beB(y), y£Y}, 
where: 

(a) Y is an algebraically independent system over F, 
• : <b) (i+iyY = tf» . for i€(o and y£Y, 
. (c) (t{b,y)f = y-b, for b£B(y) and yiY. 

We shall use the following occasional symbolic nomenclature: 
F(E, Y, p, q) special extension 
F(E, Y, p, q)\F the skin of the extension 
Y the variables of the skin 
(F, E, Y) the bipartite graph of the skin 
R the roots of the skin. 

Let F(E, Y,p, q) and F"{E", Y",p, q) be two special extensions. A mapping 
f:"FUY-*F".\JY" is said to be a pre-morphism i f f is injective, / |F is an embedding 
of F into F", and / is a homomorphism. of the bipartite graph (F, E, Y) into 
(F", E", Y"). A mapping / : F(JR-F"UR" is said to be a pre-homomorphism 
if f\FUY is a pre-morphism, f(,y)=i(f(y)) and f{t(b, y))=t(f(b),f(y)) for 
i£a>, b£B(y) and^€F. A field homomorphism of F(E, Y,p, q) into F"(E", Y",p, q) 
sending the subfield F into the subfield F " and the set R into R" is called a special 
homomorphism. If the two special extensions in question are the same, then we 
can use the expression "endo" instead of "homo". 

Main lemma (second part). Let us take two special extensions: F(E, Y,p, q) 
and F"(E", Y",p,q), where each of the sets A(y) and A"(y") is an algebraically 
independent system over the prime field, for y(L Y and y"£Y" respectively. Then 

(a) For each special homomorphism h of F(E, Y,p, q) into F"(E", Y",p, q) 
the restriction of h to FU Y is a pre-morphism, and the restriction of h to FU R is a 
pre-homomorphism. 

(b) Each pre-morphism has a unique extension which is a special homomorphism. 
(c) The category whose objects are the special extensions and whose morphisms 

are the special homomorphisms is naturally equivalent to the category whose objects 
are the special extensions and whose morphisms are the pre-morphisms. 
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A b e l ' s t heo rem. A polynomial (xf—b) of prime degree k over a field L is 
reducible i f , and only i f , b is a Wh-power in L. 

A simple proof can be found in the texbook of L. R£DEI [16]. 

L e m m a 1. Let L be a field of characteristic zero. Take the simple algebraic 
extension L(t), where ( x f — f ) is an irreducible polynomial in the polynomial ring 
L[x\, and n is a prime. Let m be an integer greater than 1. Then the nfh-power of an 
element of L(t) belongs to the subfield L i f f the element is of the form c • 1*, where 
c£L, and n\km. If in addition (m, «)= 1 then an element of L has an m,h-
root in L(t) i f f it has one in L. 

P r o o f . Let K be the smallest algebraic extension of L containing all the nth-
roots of unity. The degree of the extension KjL is less than n. So the irreducibility 
of (x"—i") over L implies that f is never an w,h-power in K. Consequently by 
Abel's theorem (x"—/1) is irreducible over K. So any element b of K(t) can be 
uniquely written in the form b0+b1t+b2,t2+ +&„_x • f ~ \ where all the coeffi-
cients belong to K. Obviously L(t)QK(t), and an element b of K(t) belongs to 
L(t) iff each of the coefficients of b belongs to L. Let u be a primitive nth-root of 
unity. The mapping t*-+u-t induces a relative automorphism of the extension 
K(t)/K, where the image of b is: b0+b1-u-t+bi-vt-t2+ +bB-1-tf-1-f-\ 

If l f £ L , then this image of b must be v-b, where v is a suitable mtb-root 
of unity. The uniqueness of the coefficients of v-b gives the following equations: 
bt(iJ-v)=0 for O s i If b^O, then there is an index k for which bk9$ 0. Con-
sequently M*—v=0, and b~0 for i?±k. So b=bk-tk, where b£L(t) implies 
bk£L. Further n\km, since (m,n)=1 yields k=0. 

L e m m a 2. Let Kbe a transcendental extension of L such that Kis an algebraic 
extension of finite degree with respect to the simple transcendental extension L(y). 
Let s be a prime. An element is called s-high in a field, if the element has an sJ-th root 
in the field for each j€co. Then each s-high element of K belongs to L. 

P r o o f . Let x£K\L. Then y is algebraic over L(x), so K is an algebraic exten-
sion of finite degree with respect to L(x). Suppose, that x is i-high. Let ¡x be an 
s*-th root of x. Consider the infinite chain L(x)sLG*)—LG*)—••• —L(i*)—••• 
of fields. As the degree of K/L(x) is finite, there exists an index n such that L(Jtx)= 
=L(„+ 1x). So the transcendental element „x has an j^-root in L(jpc), but that is 
impossible. So any i-high element must belong to L. 

L e m m a 3. Let F be a field of characteristic zero. Let p and q be two different 
primes. Suppose that Kis an extension of F generated by the set {¡z, tc: i£a), v£V}, 
where: ' 

(a) qZ is transcendental over F, 

2» 
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(b) G+izy= tz , i£o>, 
(c) the elements Tc—(tB)q are polynomials from the polynomial ring F[<>z], such 

that they are mutually prime, and none of them is a constant, nor is divisible by ¿z, nor 
has multiple factor. 

Denote the subfield F({fz, tv: v£W}) ofKby F(j, W), for WQV and 
j= 1,2,..., n, •••, co. Then the field K has the following properties: 

(1) The polynomial (xp—,z) is irreducible over F(i+1, W\ for WQV and i€<o. 
(2) The polynomial (x?-TB) is irreducible over F(j, W), for WQV, v£V\W 

and l^ysco. 
(3) If the (fh-power of an element of F(j, W) belongs to the subfield F(k, 0), 

where W^V and k^j^to, then the element can be written in the form 

c(/Gz)/g( lZ)) n ( O S 

where c£F, f and g are mutually prime polynomials over F and both of them have 
leading coefficients 1, z'Sfc, W' is a suitable finite subset of W, and 0 < n w « 7 for 

(4) K is a transcendental extension of F. 
(5) Each s-high element of K belongs to F whenever s is a prime different from 

p and q. 
(9) Each p'high element of K is of the form c • (¡z)m, where c is a p-high element 

of F, i£(o and m is an integer. 

PROOF. Proposition 1 of E. FRIED [3] and Propositions 16, 23 and 24 of 
E. FRIED—J. KOLLAR[5] essentially cover the case q=2 of the above lemma. 

First step: we prove the properties (2) and (3) in the case of finite W and j=k=1. 
We prove by induction on the size of the set W. 

F(l , 0) is the quotient field of the polynomial ring F[„z], therefore the property 
(3) is true in the case of W=Q and j—k=1. If the property (3) is true for W and 
j=k—l, then i„€F( 1, W) would imply an equality of the form 

g%z) •Tv = c' .f%z) • ]J if r VP-
weir 

However, this contradicts one of the conditions on the polynomials Tw. Hence, 
i„$F(l, W) yields the property (2), by Abel's theorem, for the case of the same 
W and j= 1. Now suppose, that both of the properties (2) and (3) are true for a 
finite W and j=k= 1. Let v£V\W, ¿€F(1, J f U M ) and 6"€F( 1,0). As (x?-TB) 
is irreducible over F(l , W) by the assumption, 6 = c •(/„)" by the Lemma 1. Here 
c£F(l , W) and c '€F(l , 0), so the form of c is known by the assumption. Con-
sequently, b has the desired form, too. So we get the property (3) for the index set 
W\J{v) and j=k=l. 
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Second step: we prove the property (1) in the case of finite W and /=0, by 
induction on the size of the set W. 

By Abel's theorem it is enough to show that qZ has no /),b-root in F( l , W). 
The existence of a pth-root of qZ in F( 1,0) would imply a polynomial equation 
g" (qz) • 0z=c"-fp („z), where / and g are mutually prime, which is a contradiction. 
Lemma 1 gives the inductional step of the proof, as we have seen the irreducibility 
of ( x q - T v ) over F( l , W) for finite W. 

Third step: we prove the properties (1) and (2). 
If we replace the elements „z, iz, 2z, ... with ¡z, i+1z, j + 2 z , . . . , then the con-

ditions in Lemma 3 remain satisfied. So the polynomials (x*—Tv) and (xp—¿z) 
are irreducible over F(i+1, W) for finite JVsV, v£V\JV and i£co. The reduci-
bility of a polynomial over a field L needs only a finitely many coefficiences from L, 
therefore a reducible polynomial is also reducible over a suitable finitely generated 
subfield of L. So we get the properties (1) and (2) by an indirect proof. 

Fourth step: we prove the property (3). 
As the polynomial (xp—¡z) is irreducible over F ( / + l , W) for /'Çto, Lemma 1 

shows that if the g,h-power of an element of F(i+2, JV) belongs to F(i+1, W), 
then the element also belongs to F(i+1, W). So, if an element of F(l , 0) has a 
çlh-root in F(co, W), then this g,b-root belongs to F( l , W). However, ¡z can 
get the rôle of „z. Consequently we get the property (3) for finite j, k and W. Finally 
each element of F(j, W) belongs to a field F( i+1, W') for suitable finite W'Q W 
and /</ . 

Fifth step: we prove the property (4). 
Let x bè an algebraic element of K over F. Let L— F(x). The element qZ is 

transcendental over L, since x is algebraic. All the other conditions of Lemma 3 
are also satisfied with respect to L instead of F. Therefore, the system 
1, tv, ( t B f , , forms a basis of the field extension t=L{p, W U {v})/L(m, W), 
for v£V\W, satisfying the following property: an element of L belongs to 
F(o), W U {«}) iff the coefficients of the element with respect to this basis belong 
to F(<o,W). Consequently, X€F(A>, W(J {V}) implies x£F(co,W), since the coeffi-
cients of X must belong to F(a>, W) and x£L<L(m,W). So JC€F(CD, 0). There-
fore x^FQz) for a suitable i£a>. But F(fz) is a pure transcendental extension of 
F, so x£F. 

Sixth step: we prove the property (5). 
Let x be s-high in K. Clearly, x£F(i,W) for a suitable iç to and a finite WsV. 

Using Lemma 1 and properties (1) and (2) we get that x is s-high in F(/, W), too. 
Now we can apply Lemma 2 for F(i, W), so x£F. 

Seventh step: we prove the property (6). 
Let x be a /»-high element of K. Then x€F(a>, W) for a suitable finite WQV. 

By Lemma 1 and by the property (2) x is p-high in the subfield F(co, W), too. 
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So it is enough to prove the following statement by induction on the size of the set 
W: For finite WQV the /»-high elements of F(co, W) are of the form c• (¡z)m. 

If W=<&, then xd F(i+1, 0) = F(,z) for suitable i£co. So x=(iz)m - (/(¡zygQz)), 
where m is an integer, ¡z{fQz) and ¡zfg(,z). Here ( f( iz) lg{jz)) must be p-high 
in F(a>, 0). Suppose that there exists an element y£F(a>, 0 ) \ F ( / + 1 , 0) such that 
y"£F(i+1,0) and some pJ-th power of y is(/(;z)/g(;z)). Let fc=max{/i: j>$F(n+l,0)}. 
By Lemma 1 and by the property (V) y=(Jii.1z)b-{u^lvij^)), where u and v are poly-
nomials over F, and 0<i»</». Now, we arrive at the equation 

Gz)6""1 • [u(*z)y .g(;z) = / ( fz) . ( v ^ y 

in the polynomial ring F^z], Consider the powers of the irreducible factor kz in that 
equation. As ¡z is irreducible in F[,z], therefore ¡zf/(;z) implies (¡z,/(jz)) = l in 
F[jz], So ( iz,/( iz))=l in F[tz], too. Consequently kzif(tz), and by a similar 
argument ftzfg(;z). The exponent of kz in (kz)bpJ'' • (u(kz))pi • gQz) is congruent 
to b • pJ~l modulo pJ, while the exponent of kz in /(¡z)-{v(kz))pl is divisible by pJ. 
This is a contradiction, and so, in opposit our assumption, the quotient (/(¡z)/g(jz)) 
must be/»-high even in F(i+1,0). Therefore by Lemma 2 (/(¡z)/g(;z))€F, con-
sequently x has the form c • (¡z)m, what we had to prove. 

Now we suppose that there exists a W, and the statement is true for f f \ { w } . 
Let L=F(a>, and K=F(co,W). By the property (2) the degree of the 
extension K/L is q. Let N(d) denote the norm of d with respect to KjL for d£K. 
Only the following property of the norm will be used: N is a multiplicative mapping 
from K into L such that N(d)=dq for d£L. For the details see L. REDEI [16] 

and B. L. VAN DER WAERDEN [19]. N(x) is /»-high in L, as x is /»-high in K. So the 
element y=xq/N(x) is /»-high in K. Clearly j £ F ( i ' + l , W) for a suitable i£co. 
Suppose that there exists an element u£F(co, W)\F(i+l, W) such that 
up£F(i+1, W) and y is a pJ'-th power of u. Let k=max {«: w$F(n-f-l, W)}. By 
Lemma 1 and by property (1) u=h-(k+1z)b, where h(iF(k+l, W) and 0 
N(u)=N(h)-(N(M+1z))b=N(h)-(k+1z)bq. So N(u)$F(k+l, W), as N(h)eF(k+l, W) 
and p{bq. However, N(y) is the pJ-th power of N(u), and N(y)=N(xq/N(x))= 
=(N(x))q/N(N(x)) = 1. This is a contradiction, because by the property (4) 
N(u)$F(k+1, IV) implies that N(u) is a transcendental element, while its p1-th 
power should be 1. Therefore, in opposit our assumption, y must be /»-high even 
in F(i'+1, W). Consequently, by Lemma 2 ydF, and therefore y • N(x) is a 
/»-high element of L. So by the inductional hypothesis y • N(x) has the form c • (¡z)m. 
Using the property (3), we get: 

c • o r = y • N(x) = x" = dq. (f%z)/g%z)) n 
w£W 

This implies, that n„=0, g( fz)=l , q\m and /(¡z)=Gz)(n,/,). So x also has the 
desired form: x=d-(iz)(mlq). 
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P r o o f of the f i r s t p a r t of the m a i n lemma. First of all we fix a well 
ordering (Y, < ) of the variables. For y£Y let • 

F, = F({;«, t(b, u): i(=a), b<=B(u), u£Y and u < y}) 
and 

Ky = Fy{y, t(b,y): i€a>, b€B(y)}). 

The special extension F(E, Y,p, q) must be the union of the ascending chain of 
the subfields Ky, so it is enough to prove the unique existence of the subfields Fy 

and Ky by transfinite induction on y£(Y, -=). 
If y€Y is the least element of (Y, < ) , then Fy must be F. If y is not the least 

element of (Y , < ) , then Fy must be u£Y, u<y}, where the subfields K„ 
form an ascending chain. Finally we show that Ky uniquely exists,' whenever Fy does. 

Now, y is transcendental over Fy, because y is transcendental over 
F({M: u£Y, and Fy is an algebraic extension of F({u: u£Y, By 
the conditions for i, (i+1y)p=iy- The elements y—b=(t(b,y))q are polynomials 
from the polynomial ring Fy[y] for b£B(y), where none of them is a constant, 
none of them is divisible by y, none of them has a multiple factor and they are 
mutually prime. So Lemma 3 can be used for the extension Ky of Fy. By the pro-
perty (1) must be the simple algebraic extension of- Fy(jy) by the root of 
the irreducible polynomial (xp—¡y) for Z'€A>. Further Fj,({J>: I'€OO}) must be 
the union of the ascending chain 

FY ^FY(Y)SFY(IY)^FY(2Y)S ^ FY(IY) S.... 

Now we fix a well ordering (B(y), <) . Let (t(b,y)), where F < = 
=Fy({t(c, j '): c£B(y), c<b}) for beB(y). Clearly Ky must be the union of the 
ascending chain of the subfields F s , so it is enough to prove the unique existence lyb 
of the subfields F-= and Fц by transfinite induction on b€(B(y), «=). If b£B(y) 
is the least element of (B(y), < ) , then F < must be Fy. If & is not the least element 
of (BO), < ) , then F < must be U { F s : c£B(y), c<b}, where the subfields Fц 
form an ascending chain. Finally by the property (2) F ^ must be the simple algebraic yb 
extension of F < by the root of the irreducible polynomial (x4—(y—6)). yb / . 

To prove the second part of the main lemma, we need the following four sub-
lemmas. The first three sublemmas have a common condition: Let us take a special 
extension F(E, Y,p, q), where each set A(y) is an algebraically independent system 
of elements over the prime field, for y£Y. 

Sub lemma 1. Let Q(x) denote the following sentence: There exists a non-zero 
element u in F and an element w in F(E, Y, p, q)\F, where W is p-high in F(E, Y, p,q), 
(w—u) is the (fb-power of an element v of F(E, Y,p,q), and x=u/w. Then Q(x) 
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is equivalent to the following: The bipartite graph of the skin hits an edge {a, y) such 
that xd{(lly),(a/y),(a"/y)}. 

Proof . First of all we fix a well ordering (Y, «=) of the variables. Now we 
use the same notation as in the proof of the first part of the main lemma. Suppose 
that x is an element satisfying Q(x). Set j>=min {z: w£Kz}. Lemma 3 will be 
used for the special extension Ky/Fy. As Ky is algebraically closed with respect to 
F{E,Y,p,q), w is /7-high in Ky and (w—u)^Ky yields v£Ky. So w=e'(jyf, 
where e is a non-zero /»-high element of Fy, i€to and A: is a non-zero integer. It can 
be supposed, that p\k occurs only if i=0. Further 

O = c• (G&Wte))' hoy-b^-Uy-btff ...-(oy-btf» 
where 0 ̂ cdFy, G and H are mutually prime polynomials over Fy both of which 
have leading coefficients 1, n£co, blt b2, ..., bn are different elements from B(y), 
and 0<kj-=q for 7 = 1 , 2 , . . . , « . Set t=ty- According to the sign of A: we get 
one of the following equations in the polynomial ring Fy [/]: 

Hq(t) •(e-tk-u) = cq-Gq(t)-(f'-¿J -... • (**' - bn) if fc>0 

Hq(t) • (e - ( r 1 ) •u) = cq- G9(t) • ( r " ) • (tP' - bi) •... • - bn) if fc< 0. 

By the assumption none of the elements e, u, ¿l5 b2, ..., bn is zero. Therefore each 
of the binomials occurring in the equations is a proper binomial, consequently none 
of them has multiple factor. In both cases Gq(t) divides the binomial standing on 
the left side, so G ? ( / )= l . In the first case a similar argument shows that Hq(t)= 1. 
In the second case we get only that Hq(t)\rk. But e^l yields that t~k\Hq(t), 
so Hq(t)=t~k. Consequently q\k if k<0. Now, in both cases the degree of the 
left side is \k\, and the degree of the right side is n • p'. So n?±0 and i—0, since 
k^Q and zVO would imply p\k. Now n= 1, since the quotient of any different 
elements of B(y) is never an nth-root of unity. The second case is impossible as 
q\k= —n= — 1. So the only possible case is the following: e-y—u=cq-(y—b). 
Consequently, we have that x=u/(e-y)=bjy. The other direction of the equivalence 
is trivial. 

Sub lemma 2. Let E(a,y) denote the following sentence: The two elements 
a and y are transcendental over the prime field, Q(\ly), Q(a/y) and Q(au/y) (the 
notation is in Sublemma 1). Then E(a,y) is equivalent to the following: {a,y) is 
an edge of the bipartite graph of the skin. 

Proof . Let the elements a and y satisfy E(a,y). Then, by Sublemma 1 there 
are variables yk and elements bk^B(yk) such that (f/y=bk/yk for ¿ = 0 , 1 ; 11. 
The equation (a/y)11=(l/y)10-(a11/^) implies that: 

bWyl^WlyWbJy^. 
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As the elements bk are different from zero, each of these three variables yk is alge-
braically dependent of the other two over F. So, by the structure of the variables 
we get that j>0=yi=yu, and therefore b™=bl°-b11. Here the algebraic independ-
ence of A(y) implies the existence of a suitable c€A(y) such that {60, blt 

Q {1, c, c11}. Further b0, bt and b±1 are different elements, because the three quotients 
(My), (aly) and (aP/y) are also different. Consequently (b0, bu bn) is a permuta-
tion of (1, c, c11). So, we have to solve the equation \\i—\0j+k where ( i , j , k ) 
is a permutation of (0,1,11). The only solution is: i= 1, j=0, Jfc=ll. So, we 
arrive at the equations Hy=Hyl, aly=c/y1 and a11ly=c11ly1. Consequently y=yx 

is a variable, and a=c£B(y1)=B(y). The other direction of the equivalence is 
trivially true. 

Sublemma 3. Let V(y) denote the following sentence: y^O and Q(l/y) 
hold, and for all a and z from F(E, Y,p, q) E(a, z) implies that the both of (ajz) 
and (au/z) are different from (1 ¡y). Then V(y) is equivalent to the following: y is 
a variable of the skin. 

Proof . Let y be an element satisfying V(y). By Sublemma 1 l/y=b/u, where 
u is a suitable variable of the skin and b£B(u). If A(u)=0, then B(u)= {1}, and 
then 6=1. If A(u)^0, then for a£A(u), E(a, u) and E(an,u) hold, and there-
fore both of (aly) and (an/y) are different from (bjy). So (even in the case of 
A(u)^0), the only possibility is b—1. Consequently, in both cases y=u is a 
variable. The other direction of the equivalence is trivially true. 

Sublemma 4. Under the condition of the second part of the main lemma suppose 
that a given homomorphism h of F(E,Y,p,q) into F"(E",Y",p,q) maps the 
subfield F into F". Let Q"(x"), E"(a", y"), V"(y") and A"(y") be defined similarly 
for F"(E", Y",p, q) as Q(x), E(a, y), V(y) and A(y) are for F(E, Y,p, q). Then 
the following implications hold: 

(a) If h(x)iF' and Q(x) holds, then Q"(h(x)). 
(b) If h(y)iF" and E(a,y) holds, then E'\h(a),h(y)). 
(c) If h(y)$F" and V(y) holds, then Q"(l/h(yj). 
(d) If h(y)$F" and V(y) holds, then V"(h(y)), whenever none of the sets 

A(y) and A"(y,r) is empty. 

Note : in particular, each of these implications holds if h is a special homo-
morphism. 

Proof , (a) The validity of Q(x) is demonstrated by suitable elements u, v 
and w. The image of these elements demonstrate the validity of Q"(h(x)), since 
h(w)$F" by the assumption h(x)$F". 
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(b) We have only to use the definition of E(a,y) and the implication (a) of 
the present sublemma. 

(c) We can use the implication (a), since V(y) implies Q(l/y). 
(d) If none of the sets A(y) is empty, then V(y) is equivalent to the formula 

3a(E(a,y)). Using this equivalence and the implication (b) we get the implica-
tion (d). 

P r o o f of the second p a r t of the main lemma, (a) Let y be an arbitrary 
variable from Y. Using Sublemma 1 and the implication (c) of Sublemma 4 we get 
h(y)=x/b, where x£Y" and b£B(x). But h(y)£R" implies that 6=1 . Con-
sequently, each special homomorphism maps the set Y into Y". Clearly the restric-
tion h\pm is an injective mapping into F"UY", and h\F is a field homomorphism 
of F into F". The implication (b) of Sublemma 4 shows that h\FUr is a homo-
morphism of the bipartite graph (F, E, Y) into (F", E", Y"). So the restriction 
h\FUr is a pre-morphism. By 

(Ht(b,y))Y = h((t(b,y)Y) = h(y-b) = h(y)—h(b) = (t(h(b),h(y)))", 

we have (h(t(b, y))/t(h(b), h(y)))q=l for b£B(y). 
Both h(t(b,y)) and t(h(b),h(y)) belong to R", which clearly implies that 

they are equal. Now we prove that h(3y)=£h(y)) for i£a>. We proceed by induc-
tion on i. The case i=0 is clear. 

H+iy))p = MG+ij)") = K>y) = i(h(y)) = (i+dh(y))Y, 

therefore Qi(i+1y)/i+1(h(y))y=i. The quotient of two different elements from R" 
is never a />th-root of unity, so h(i+1y)=i+1(h(y)). Summarizing, we have proven 
that h\FUR is a pre-homomorphism. 

(b) The uniqueness of the required extension is clear, since the set R generates 
the field extension F(E, Y, p, q)/F, further the restriction to F\JR of any possible 
extension must be a pre-homomorphism, and this pre-homomorphism is uniquely 
determined by the given pre-morphism. So the only problem is the existence of the 
extension. 

Let K be the subfield of F"(E", Y",p, q) generated by the range of the pre-
homomorphism generated by the given pre-morphism. By the first part of the main 
lemma there is an isomorphism T from F(E, Y, p, q) onto K, which is an extension 
of the given pre-morphism. Further, there exists the natural embedding U from 
K into F"(E", Y",p, q). The composition TU is just the special homomorphism 
we need. 

(c) The restriction of the special homomorphisms to the subset F U F , as 
an operation, is an identity preserving and composition preserving bijection between 
the monoid of the special homomorphisms and that of the pre-morphisms. 
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The investigation of «-partite graphs 

In the following « > 1 denotes an integer. An («+l)-tuple (F l 5 F3 , ..., V„, E) 
will be called an «-partite graph iff the sets V1, F2 , ...,V„ are disjoint and E is a 
subset of the union of the direct products Vt X Vj where Let F denote 
the union of the underlying sets V1,V2, ..., F„, and let V" be the union of the 
sets V", F 2 , ..., V'^. A mapping / : F — F " will be called a homomorphism of 
(Fj , F2 , ..., V„, E) into the «-partite graph {V", ..., V"N, E") i f f / i s injective, 
F ; is mapped into V" for i—1,2, . . . ,«, and (u, v)£E implies {f(u),f(v))£E 
Let Inj PG («) denote the category whose objects are the «-partite graphs and 
whose morphisms are the homomorphisms defined above. 

By the second part of the main lemma the structure of the monoid of the special 
endomorphisms is essentionally determined by the structure of the bipartite graph 
of the skin. If we iterate the special extension for different primes n times, then the 
special endomorphisms of that iterated extension can be described by the (n +1)-
partite graph generated by the bipartite graphs of the skins. 

Let TV be a subset of {(/, j ) : 1 ^ i « } . An «-partite graph (Fx, F2 , . . . ,V„ ,E) 
is said to be a unary «-partite graph of type N iff E f l ( F i X F J ) = 0 for (i,j)$N 
and (£,n(FiXFJ))op = {<V,M>: M€F;, vCVj, (u,v)£E) is a mapping of Vj into Ff 

for (i, J)£N. Let Inj UPG («, N) denote the full subcategory of I n j P G ( n ) gen-
erated by the unary «-partite graphs of type N. 

Inj PG («) cannot have a strong embedding into any category of algebras, as 
in the category Inj PG («) there are morphisms which are not isomorphisms while 
they are carried by injective mappings. In order to get a strongly algebraic sub-
category of Inj PG («) which is "binding with respect to right-cancellative categories" 
we investigate the category Inj UPG («, N). 

The following four claims offer a simple proof of the existence of arbitrary large 
rigid relational structures of bounded type (see P . V O P E N K A — A . P U L T R — Z . H E D R L I N 

[18]). The only fact which is not so trivial and will be used in the proof is that there 
are systems of almost disjoint sets which are large with respect to the underlying 
set. The «-partite graphs become simple relational structures by adding the unary 
relations Ft , F2 ..., F„. The «-partite graphs of the claims are rigid only with 
respect to their injective endomorphisms; but we can arrange that all the endomor-
phisms become injective by adding a further binary relation which is a full graph 
without loops. 

C la im 1. There exists a rigid 4-partite graph of cardinality (2k)+, if k is a 
strongly inaccessible cardinal. 

Proof . Let A be a set of cardinality k. As the cardinal k is strongly inaccessible 
there exists a set B of cardinality 2k such that B is an almost disjoint system of sub-
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sets of A (see S. SHELAH [17]). This means that the cardinality of the intersection 
of any two different elements from B is less than the cardinality of A, while the 
cardinality of any element from B is equal to the cardinality of A. Further, there 
exists a set C of cardinality (2*)+ such that C is an almost disjoint system of sub-
sets of B. Set 

E"= {(x,y), <z,i>: x$A, y£B, xiy, z£B, t€C, z£t). 

A B C 

Let the equivalence relation Q be the transitive hull of the following relation over 
C: two elements, u and v, are in relation iff there exist endomorphisms g and h of 
(A, B, C, E") such that g(u)=h(v). It is clear from the construction that each 
endomorphism of the 3-partite graph (A,B,C,E") is determined by the action 
on the elements of A. So (A, B,C, E") has at most 2k endomorphisms. Therefore 
the cardinality of the factor set D=CIQ is (2k)+. Let us fix a surjective mapping 
i : D-A. Set 

E = E"U{{s(z),z), (x,y): z£D, x£C, y£D, 

Since each of the equivalence classes, induced by the relation Q, is mapped into 
itself by any endomorphism of (A, B, C, E"), therefore each element of D is fixed 
by the endomorphisms of the 4-partite graph (A, B, C, D, E). So we get that 
(A, B, C, D, E) is a rigid 4-partite graph, and it is of cardinality (2t)"t:, as it was 
stated. 

Cla im 2. There exists a rigid (n+2)-partite graph of cardinality 24, if there 
exists a rigid n-partite graph of cardinality k^o. 



Endomorphism monoids of fields 29 

Proof . Let (Vu V2, ..., V„,E) be a rigid «-partite graph. Take two disjoint 
copies A and B of the power set of V. Set 

E" = E\J{{v,a), (v,b), (.x,y): v€K a£A, b£B, c€a, v£b, 

and V is the disjoint union of x and y where 

x£A and y£B}. 

It is'clear that (F l 5 V2, ..., V„, A, B, E") is a rigid (n+2)-partite graph of car-
dinality 2^1, if |K|sa>. 

Claim 3. Let (Vly V2, ..., V„, E) be a rigid n-partite graph of cardinality 
fcsco. Let further („V^ vV2, ..., vV„ , VE) be a rigid nv-partite graph of cardinality 
lcv for v(iV. Then there exists a rigid (n+2)-partite graph of cardinality 2K-

t>€V 
Proof . Set A= U {„E: v£V}, M={vV,: v£V, and B= UM. \V\ = 

= \M\ since \V\ is infinite. Let us fix a bijection / : V—M. Set 

E" = EH {{a, b), (a, c), (d, v): a€A, b, c, d£B, v£V, a = (b, c), d£f(v)j. 

Clearly (A, B, V1; V2, ..., V„, E") is a rigid («+2)-partite graph of cardinality 
2 kv 
".eK 

Claim 4. For each cardinal number k there exists a natural number n such 
that there exists a rigid n-partite graph of cardinality greater than k. 
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Proof . The proof is indirect. Let k=wî{k": each rigid «-partite graph has 
less than k" elements for arbitrary «}. By Claim 1 k is greater than (2®)+, and k 
most be a regular strong limit by Claims 3 and 2. Further, k cannot be a strongly 
inaccessible cardinal by Claim 1. 

Claim 5. For each cardinal number k there exists a natural number n and a 
type N such that there exists a rigid unary n-partite graph of type N having cardinality 
greater than k. 

Proof . Let (Vxi Vz,..., Vm, E) be an arbitrary m-partite gaph. Set E^= 
=En(ViXVj) for 1 Further, let 

graph having the same endomorphism monoid as (V1,VZ, ...,Vm,E). Claim 4 
finishes the proof. 

P r o p o s i t i o n 1. Let M be a right cancellative monoid. Then there exists a 
natural number n such that there exists a unary n-partite graph such that its endo-
morphism monoid is isomorphic to M. 

Proof . By Claim 5 we can take a rigid unary m-partite graph V2,..., Vm, E) 
such that | F | s | M | , and V is infinite. So we can fix an injective mapping / : M—Vt 

where the index i is suitably chosen. Now we take three disjoint copies A, B and C 
of the set M, and let 

An isomorphism between M and the endomorphism monoid of the unary (m+4)-
partite graph (Vly Vs,..., Vn, A, B, C, MxM, E") can be constructed on 
the basis of the following arguments. 

E" = {<«, <M, t>», (v, <«, i>»: <«, v)£E}. 

(Vu V» ...,Vm,E1!i...Elm,EZ3...E2m, ...,Eim.1)m,E,r) is a unary 

E" = E\J{{v,a), (a,d), <b,d>, (c,d): v£V, aÇA, bÇB, 

etc, deMxM, v = /(a), b — a • c, d = (a, c)}. 
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Let h be any endomorphism of the (w+4)-partite graph. The construction yields 
that any element of the set VUA is fixed by h. Suppose that h(e)=c, where e 
denotes the unit element of M being in the copy C. So the action of h on the set 
B is nothing else but the right multiplication by the element c. Further, the element 
(x, y)£MxM has to be mapped into the element (x, y • c). Consequently h acts 
on the set C as the right multiplication by c. 

P r o p o s i t i o n 2. For each similarity type t there is a natural number n and 
a type N such that there exists an extension of Inj Rel (t) into Inj UPG (n, N). 

Proof . Let t: W-+ Ordinal Numbers be a given similarity type. By Claim 5 
there is a rigid unary m-partite graph (F1; V„, ...,Vm,E) such that \V\S;\W\, 
\ V \ f o r and V is infinite. Clearly there is an index i such that we can 
fix an injective mapping / : and injective mappings fw: tv,r^Vi for w£W. 
Now we define an extension F of Inj Rel (t) into Inj UPG (m+3, N) for a suitable 
type N. Let (5, R) be a relational structure of similarity type t. This means that 
Rv is a tw-ary relation over 5 for w£W. Let 

= U{{w}xtfw: w € W ) , 5 = U{{w}Xl?wXiw: w£W} 
and 

E" = E\J {(«, r), <r, b), (v,b), (s, b): u£V, v£V, s£S, 

r£A, b€B, u =f(w), v =/w(fc), b = <r, k), where r£Rw, k£tw 

and s is the kth component of r}. 

Let the unary (w+3)-partite graph (Vx, V2,..., Vm, S, A, B, E") be the image of 
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Let h: (S, R)-»(S", R") be an injective homomorphism. We define the morphism 
F(h): F(S, R)—F(S R") as follows: 

F(h)y = id\v, F(h)\s = h, 

WI{w)xR. = id|{W)X/i{'~>Uw for w£W, 

F(h)|<«.}x*wx«w = id |MX/i ( ' - ) |R wXid| t w for w£W. 

The operation F is clearly an extension if we can show that the functor F is full. 
In more detail it is enough to prove that for each morphism g: F(S, R)—F(S RT) 
the restriction g|s is a morphism of Inj Rel (/) and F(g | s )=g . As (V1, Vz,..., Vm, E) 
is rigid, g | K =id | K . So the subset {u>}Xi?w of A is mapped into the subset {w}X/C 
of A". Similarly the subset {w}xRKX tw of B is mapped into the subset {w} X / C X tw 

of B". Further we see that 

g|{w}xjt„xiw = g(wxRwXid| fw 
and 

g|{w)xRw = id|{w}Xg(,~)|Rw for w£W. 

Consequently, is a homomorphism of (S, R) into (S", The remaining 
part of the proof is trivial. 

P r o p o s i t i o n 3. For each similarity type t there is a natural number n and a type 
N such that there exists a strong embedding of Inj Alg (t) into Inj U P G (n, N). 

P r o o f . Let t: W—Ordinal Numbers be a given similarity type. By Claim 5 
there is a rigid unary m-partite graph (Vlt V2, ..., Vm, E) of type M and there is 
an index i such that there is an injective mapping s: and there are injective 
mappings sw: tw—Fi for w£W. Now we define a functor I f : SET—SET. For 
an arbitrary set A let 

Ba = U f t w j x ^ « » : w£W} and CA = U{{w}X/<WXi„: w^W}. 

Let H(A)=VUAUBa\JCa. If h: A-*A" is a mapping between sets, then the 
mapping H(h): H(A)-*H(Afr) is defined as follows: 

H(h)\y = id|K, H(h)\A = h, 

H(h)\Bjl = U ( i d | H X l i W : w£W}, 

H(h)\C/L = U { i d | M X ^ > i d L : wdW}. 

Obviously, the functor H defined above is faithful. Set n=m+3 and N=MU 
U{(/, m+2), (m+1, m+2), {i,n), {m+\,n), (m+2,n)}. Now we define a strong 
embedding F of Inj Alg (/) into Inj UPG (n, N) carried by the faithful functor 
H. Let (A, F) be an algebra of type t. This means that F„ is a /w-ary operation 
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over A for w£W. Set 

E" = £U{(s(w), <w, r», <Fw(r), <w, r», (sw(k), (w, r, k>), 

(r(fc), <w, r, k)), (<w, r), <w, r, k>) where <w, r. fc>€Cx 

and r(k) is the kth component of r j . 

Let the unary n-partite graph (V1,V2,...,Vm,A,BA,CA,E") of type N be the 
image of (A, F) under F. The underlying functor H uniquely determines the action 
of F on the morphisms. 

To show that the functor F defined above is full the only non-trivial step is to prove 
the fact that F is a strong embedding, which is similar to the proof of Proposi-
tion 2. 

The constructions 

Main lemma (third part). Let F be a given field of characteristic zero. Let 
be an integer and N ,be a type. Then there exists a strong embedding of 

Inj UPG («, N) into Ext (F, Fields). (The definitions can be found before Theo-
rem 3 and before the Claim 1.) 

Proof . By the Claim 5 there is a rigid unary fc-partite graph (fVlt W2,..., Wk, U) 
and an injective mapping s: F0—Wj for a fixed index j where F0 denotes the alge-
braic closure of F, and | ^ | > | F 0 | . Let us further fix a sequence r, q,p0-.Pi,Pi, ••• 
. . . ,p i ; ... of different primes. Now we are able to define the underlying functor of 
the desired strong embedding. In order to avoid the complicated notations we define 

. only the strong embedding, and later we give a simple argument to show that the 
strong embedding must be carried by a faithful endofunctor of SET. 

The functor G: Inj UPG (n, N)-Ext (F, Fields) is defined as follows. Let 
(F l 5 Vz, . . . ,V n ,E) be a unary «-partite graph. We define an ascending chain of 
fields by induction on i. Let Fi+1 — Fi(Ei,Yl,pi,q), 
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where the bipartite graphs (Ft, Eh Yt) are the following: 

\Yo = {x}, . 
LEo = 0; 

fY{ = W„ 
LEi = UCiiFiXWf), 0 1 I - 1 ' 2 ' - ' f e ' 

Fq where F^ is ,a new copy of F0, 
{ ( f - x , f ) , ( s ( f ) J ' ) : fiFo and / ' corresponds to / } ; 

[ Yk+l+i = V„ P _ 1 9 

Ek+i+i = Ior 

[ift+B+2+2i = where Wn is a new copy of Wy, for . 
^k+n+2+2i = {(w, WiCJ^j corresponds to w£Wj}, 

[it+ii+3+2i — WjXRi where Rt is the set of the roots of the i01 skin 
Ffc+n + 3 + 2i = {(r, <w, r>), (wf, <w, r>): Wig^i corresponds to wCF^} 

for igta. 

We define the image of (V1, V2, ..., V„, E) under G as the union of the above defined 
ascending chain of fields. Let h: (V^ V2, ..., Vn, E)-(V'{, V2, ..., V"n, E") be a 
morphism from the category Inj UPG (n, N). We define an ascending chain of 
homomorphisms h^h^-'-^h^..., ¿£co, where /z( :F;—F"t. Let hi be the identity of 
Fi for i = 0 , 1 , 2 , . . . , k+2. Using the second part of the main lemma we get a unique 
extension hk+2+i of hk+1+i such that hk+2+i\V{=h\Vt for i= 1, 2, ..., n. Using the 
second part of the main lemma again we get an extension hk+n+3+2i of hk+n+2+ii 

and an extension hk+n+i+2i of hk+n+3+zi such that hk+n+a+2i is the identity 
=id|r Xhi+1\R . Let, finally, G(h) be 

the union of the ascending chain of the homomorphisms defined above. G is 
clearly a functor and an embedding. So we have to prove that G is full and a strong 
embedding. 

By the first part of the main lemma, if an element w is either r-high or /»¡-high 
in a field G(V1} V2,..., V„, E), then either w£F0 or w£(Fi+1\Fi)(JF0, respec-
tively. The subfield Ft can be defined as the set of those elements of 
G(Vlt V2, ..., V„, E) which are algebraic over the set of j-high elements where s 
runs over {r,p0, ...,Jpi„1}. Therefore, each homomorphism of <?(Ki, V2,..., Va, E) 
into G(Vi,V2, ..., V^,E") maps the subfield F, into the subfield F", for ieco. 
Consider the subset {(w, r): JVj} of Yk+n+s+2i for arbitrary given r€R{. The 
cardinality of this set is greater than F0 and each element of this set is />FT+II+3+2i-high. 
Therefore, at least one of these variables cannot be mapped into the subfield 
Fk+n+8+8/. Using the implication (b) of Sublemma 4 for this variable, we get that 
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the subset Rt is mapped into the subset R", for idoj. Summarizing, we have proven 
that the restriction of each homomorphism of G(Vlt V2,..., V„, E) into 
G(V", V2, ..., E") to the subfield Fi+1 is a special homomorphism of 
Fi(Eh Yhpi, q) into F"(E",Y",Pi,q). So we may use the second part of the 
main lemma for the subfields F^Ef, Y^pi, q), for i£oo. An obvious combinatorial 
argument finishes the proof of the fullness. 

• Now we prove that G is a strong embedding. Let F(E, Y, p, q) and 
F"{E", Y",p, q) be two special extensions such that the additive groups of F and 
F" are isomorphic, and all the sets A(y) and A"(y,r) have the same cardinality. 
The first part of the main lemma gives that each mapping of Y into Y" naturally 
induces a group homomorphism of the additive group of F(E, Y;p,q) into the 
additive group of F"(E", Y",p, q). As the «-partite graphs contained in the con-
structed fields are unary «-partite graphs of a fixed type, the iteration of the above 
argument gives that each mapping of the underlying set of a unary «-partite graph 
into another one naturally induces a group homomorphism between the additive 
groups of the corresponding fields. This is, however, a much stronger property than 
that the embedding G is strong. 

P roof of Theorem 2. Combining the third part of the main lemma and 
Proposition 1 we get the theorem. 

P roo f of Theorem 1. It follows from Theorem 2, as the one-element monoid 
is right cancellative. 

P roof of Theorem 3. Using the third part of the main lemma and Proposi-
tions 2 and 3 we arrive at Theorem 3. 

P roof of Theorem 4. The implications (c)=>(b) and (b)=>(a) are obvious, 
it is enough to prove that (a)=>(c). By the fundamental theorem of binding categories 
(a review of the results can be found in the textbook of A. PULTR—V. TRNKOVA 

[15]) it is enough to give a strong embedding of the category of 2-unary algebras 
into the category Ext (A, Alg (i)) whenever A is an algebra of similarity type t 
having no one-element subalgebra. 

Let A=(X, m, ...) where m is an at least binary operation. In the following 
the polynomial m(x,y,...,y) will be denoted simply by multiplication: xy= 
=m(x,y,...,y). Now take a set Y disjoint to X such that and | F | s 8 . 
Let us fix an injective mapping i: X-*Y. Let (Y, R) be a rigid, connected, undirected 
graph having no loops (for the existence of such a graph see P . VOPENKA—A. PULTR— 

Z. HEDRLIN [18]) . Take two further copies Xx and Xz of X, where xi£X1 and x2£X2 

denotes the element corresponding to x£X. Let us take three further elements: u, 
v and w not belonging to ZUl rUA r

1UA r
2Ur. 

Now we define a faithful endofunctor H of the category SET. For an arbitrary 

2» 
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set Z let H(Z) be the disjoint union of the sets Z, X, Xlt Xt, Y, {m}, {i>}, arid {w}. 
For an arbitrary mapping h: Z—Z" let H(h) be the extension of h to H(Z) acting 
identically on H(Z)\Z. 

Finally, we define a strong embedding F of the category of the 2-unary algebras 
into the category Ext (A, Alg (/)) such that the carrier of F is H. Let (Z; g, h) 
be an arbitrary 2-unary algebra. Let the underlying set of F(Z; g, h) be H(Z). 
Recall, that xy denotes m(x,y y). The operations of F(Z;g,h) are defined 
as follows: Let A=(X,m, ...) be a subalgebra of F(Z;g,h). For y£Y and 
b, c€Y, b^c, set 

yy = u, 

be = b and cb = c if (b ,c )£R , 

bc — c and cb = b if (b, c)$R. 

For xdX (and for the corresponding x1^X1 and x2£X2) set 

where i: X—Y is defined before. 

uu = v, vv = w. 
For z£Z set 

zv = u, uz = g(z), vz = h(z). 

Otherwise the polynomial m(x,y, ...,y) is defined by 
wq = v if qdH(Z), and the value of wq has not been defined yet, 

pq =_w if p, q£H(Z), p w, and the value of pq has not been defined yet. 
In all the remaining cases let m be the projection to the first variable. All the opera-
tions are the projections to the first variable on the places where they haven't been 
defined yet. 

The action of F on the morphisms is uniquely determined by the underlying 
functor H, which completes the definition of the functor F. 

F is clearly a functor, an embedding and carried by H, so the only non-trivial 
property to prove is that F is full. This can be proved in the following nine steps: 

(1) There is no one-element subalgebra of F(Z; g, h) by the conditions on A 
and by the definition of m. 

(2) Each two-element subset of Y is a subalgebra, consequently the restriction 
of any homomorphism of F(Z; g, h) to Y is always injective. 

(3) (3c(b=bc))=>-beX\jY, therefore Y is always mapped into Z U Y by any 
homomorphism. 

(4) There must be a ydY such that y is mapped into Y, since con-
sequently u is fixed, for u=yy for all yd Y. 

(5) v and w are fixed together with u. 
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(6) Y is mapped into itself since it can be defined as the collection of those 
elements whose square is equal to u with respect to the multiplication. 

(7) Y is mapped into itself in such a way that it is an injective strong endo-
morphism of the rigid graph (Y, R), by the definition of the multiplication. There-
fore the set Y is fixed elementwise by any homomorphism. 

(8) For x£X, x2x1=/(x); therefore either the images of jc2 and xy belong to 
Y, and consequently the image of x also belongs to Y, or the elements x2 and 
are fixed, and consequently the element JC is also fixed. Thus, each x£X, and there-
fore each product xx is in XUY, consequently none of the elements of X can go 
into Y. Therefore the set X is mapped into itself. This means that only the second 
case is possible: the sets X, Xly and X2 are fixed elementwise. 

(9) Z is mapped into itself, since Z can be defined as the collection of those 
elements s for which sv=u. This mapping of Z is also an endomorphism of the 
2-unary algebra (Z; g, h) because of the definition of the multiplication by u 
and by v. 

Hence the proof of Theorem 4 is finished. 

References 

[1] M . E . ADAMS—J. SICHLER, Homomorphisms of bounded lattices with a given sublattice, Arch. 
Math. (Basel), 30(1978), 122—128. 

[2 ] L . BABAI—J. NESETRIL, High chromatic rigid graphs. I , in: Combinatorics (Proc. Conf. Keszt-
hely, 1976), Colloq. Math. Soc. J. Bolyai, vol. 18, North-Holland (Amsterdam, 1978); pp. 
53—60. 

[3] E. FRIED, Automorphism group of integral domains fixing a given subring, Algebra Universalis, 
7 (1977), 373—387. 

[4] E. FRIED, Some properties of the category of integral domains, Acta Math. Hung., 41 (1983) , 
3—15. 

[5] E. FRIED—J. KOLLAR, Automorphism groups of fields, in: Universal algebra (Proc. Conf. 
Esztergom, 1977), Colloq. Math. Soc. Janos Bolyai, vol. 29, North-Holland (Amsterdam, 
1982); pp. 293—303. 

[6] E . FRIED—J. SICHLER, Homomorphisms of commutative rings with unit element, Pacific J. 
Math., 45 (1973), 485—491. 

[7] E. FRIED—J. SICHLER, Homomorphisms of integral domains of characteristic zero, Trans. 
Amer. Math. Soc., 225 (1977), 163—182. 

[8] G . GRATZER, Universal Algebra, 2n d edition, Springer-VerJag (Berlin—Heidelberg—New York, 
1979). 

[9] J. DE GROOT, Groups represented by homeomorphism groups. I, Math. Ann., 138 (1959), 
80—102. 

[10] J. KOLLAR, Some subcategories of integral domains, J. Algebra, 5 4 (1978) , 329—331. 
[11] J. KOLLAR, The category of unary algebras, containing a given subalgebra. I, Acta Math. 

Acad. Sci. Hungar., 33 (1979), 407—417. 



38 Péter Prőble: Endomorphism monoids of fields 

[12] J. KOLLÁR, The category of unary algebras, containing a given subalgebra. П, Acta Math. 
Acad. Sci. Hungar., 3 5 (1980) , 5 3 — 5 7 . 

[13] W. KUYK, The construction of fields with infinite cyclic automorphism group, Canad. J. Math., 
1 7 (1965) , 6 6 5 — 6 8 8 . 

[14] S. MACLANE, Categories for the Working Mathematician, Springer-Verlag (Berlin, 1971). 
[15] A . PULTR—V. TRNKOVÁ, Combinatorial Algebraic and Topological Representations of Groups, 

Semigroups and Categories, Academia (Prague, 1980). 
[16] L. REDEI, Algebra. Pergamon Press (New York, 1967). 
[17] S . SHELAH, Classification Theory, North-Holland (Amsterdam, 1978). 
[18] P . VOPENKA—A. PULTR—Z. HEDRLIN, A rigid relation exists on any set, Comment. Math. Univ. 

Carolinae, 6 (1965) , 1 4 9 — 1 5 5 . 

[ 1 9 ] B. L . VAN DER WAERDEN, Algebra. Springer-Verlag (Berlin, 1960). 

DEPARTMENT OF ALGEBRA AND NUMBER THEORY 
L. EÖTVÖS UNIVERSITY 
MÚZEUM KRT. 6—8 
1088 BUDAPEST, HUNGARY 


