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On cell complexes generated by geodesies in the non-Euclidean 
elliptic plane 

SUREN V. APIKIAN 

Abstract. In this paper we consider some properties of cell complexes in the non-
Euclidean elliptic space, which are generated by n geodesic lines. The cells are 
geodesically convex polygons and in non-degenerate case the number of cells equals 

l ^ j + l- Each cell-complex has at least one cell with maximal number of vertices. 
If we denote by this maximal number and an=min £„, where the minimum is 
taken over all possible complexes, then we show that a3=3, a 4 = 4 and a„=5 for 
all n s 5 . 

Introduction. Consider the space G of straight lines on the plane R2. Let 0£RS 

be the origin and denote by [O] the bundle of lines through O. For g(:C7\[C>] let 
(p, <p) be the polar coordinates of the foot of perpendicular from the origin on g. 
It is usual to consider the pair (p, <p) as coordinates of the line g, where /?£]0, 
<p€[0, 2iz], Thus C?\[6>] is mapped onto semi-cylinder without rim, having ordinary 
cylindric coordinates. Note that diametrically opposite points on the rim correspond 
to the same line from the bundle [O]. Hence for the space G we obtain the model 
C of a semi-cylinder with identified opposite points on the rim (see A. Baddeley 
in [2]). By means of central projection the manifold C can be mapped onto the 
elliptic plane E2 with punctured pole N (see Fig. 1). 

We shall denote the corresponding homeomorphism by <t>: G-+E^\N. 
Especially important is that under <P the bundles of lines on R2 correspond to the 
geodesies in E2 (see [1]). 

Note that the inverse mapping 1 is well-defined if an origin and a reference 
direction are chosen. 

Denote by T the space of geodesic lines y in E2. One can easily see that <P~1(y) 
is either a bundle of parallels (if N£y), or a bundle of lines, passing through a 
point (P^R?. Thus we have the mapping T\ r\[N]—R2. A collection of geodesies 
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and <P(SP) lie on a line 
through the centre of the circle. 

{y,}"=1 is called non-degenerate, if no three yrs pass through a point. If we choose 

the pole N£{Jyt, then {&>
i = 1/(yi)}1=1 is a set of points in R2. Note, that if {yJJU 

i=1 
is non-degenerate, then the corresponding set {^¡}"=1 consists of n points in general 
position, i.e. no three lie on a line. 

The application of mappings <Z>_1 and T facilitates the analysis of many pro-
perties of cell-complexes by reducing the problem to the investigation of the cor-
responding sets in G. The efficiency of such approach was suggested to the author 
by R. V. Ambartzumian. 

The main problem. We consider a cell-complex in E2, generated by non-degen-
erate collections of geodesic lines {yi}"=1- Our problem is as follows. In non-degen-
erate case the number of cells equals 1 and every cell-complex has at least 

one cell with maximal number of neighbours (the cells are polygons, they are regarded 
as neighbours, if they have a common side). If we denote this maximal number 
by then the problem is to find min where the minimum is with respect to 
all possible non-degenerate collections {y,}"=1. Let us fix a non-degenerate {yi}"=1 and 

n 
consider the corresponding set We call two lines gx,g2(iG (gi,g2£ U l^ii) 

¡=i 
equivalent if they produce the same separation of the set into two subsets. 

Further we shall call each class of equivalent lines an atom in G. Each atom 
corresponds (via 4>-1) to a cell in E2 and there is exactly one unbounded atom, 
which corresponds to the cell in E2 containing the pole N. We shall use the following 
algorithm to determine the number of neighbours of a cell a from a cell-complex 
on Ez. 

Algor i thm. Denote by gtj the straight line through the points ^ and Pj. 
The number of neighbours of the atom a is equal to the number of lines from the 
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collection gij, which belong to the boundary of the atom <t>~1 (a) (the latter lines 
will be termed "limiting" lines of the atom). 

For example (see Fig. 2) the atom containing the line g is a pentagon. 

Figure 2. The limiting lines of the atom 
generated by g are gu,gi3,gu, g3t,ga. 

We state (without proof) the following simple lemma. 

Lemma. The number of sides of the minimal convex hull of the set is 
equal to the number of neighbours of the unbounded atom. 

Let us make some remarks on the properties of cell-complexes. Here and below 
the term "cell-complex" (c.c.) will mean "partition of the non-Euclidean elliptic 
plane E2 by a non-degenerate family of geodesies". 

Remark I. Let n^5 , and suppose that among the atoms of c.c. there is at 
least one n-gon. Then the c.c. consists of exactly one n-gon, n triangles and n(n—3)/2 
quadrangles. 

Proof . Let us denote the n-gon by a. We choose the pole N in a and construct 
the mapping f : r\[N]—R2. By the Lemma {^¡}"=1 forms a convex n-gon. 

Applying the above algorithm one can easily show (Fig. 3), that the remaining 
atoms are either triangles or quadrangles. Namely, the atoms, which contain a line 

triangular atom and g, belongs 
to a quadrangular atom. 
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separating one vertex from the others, are triangles and their number is exactly n. 

R e m a r k II. If n>3, then min^„>3. 

Proof . Suppose, to the contrary, that there exists a c.c. consisting of triangles 
only. Then, by the Lemma, for any choice of N, the minimal convex hull of the set 

= !P(yi)}7=1 is a triangle. 
It is not difficult to see that the atom defined by the line shown in Fig. 4 is a 

k-gon, with k^4. This contradiction proves Remark II. 

Remark III. If 4, then min^„>4. 

Proof . Suppose, to the contrary, that there exists a c.c. consisting of triangles 
and quadrangles only. By (II) we can find a quadrangular atom. If we choose the 
pole N in this atom then, by the Lemma, let the points and form the 
minimal convex hull of (Fig. 5). 

Consider the collection {^¡}"=1\{^k} (we delete the point &k), where &k belongs 
to the interior of This corresponds to the deletion of the geodesic yk 

on Ez. It can be proved that the deletion of this geodesic cannot result in the forma-
tion a new polygon with more than 4 sides. Deleting successively the points dif-
ferent from &>3, we obtain a five-point set (see Fig. 6). Here we can 
easily show the pentagonal atom. This contradiction proves Remark III. 

All other atoms are quadrangles and their number is j—n=n(n—3)12. 

Figure 5. Figure 6. 
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R e m a r k IV. Denote by qk the number of fc-gons of the c.c. The method 
described above answers the following question: What are the possible sequences 
(qt, q2, ...,q„), generated by c.c.? We have found that for n=3, 4, 5 all possible 
cases are as follows: 

In particular, we obtain that min £3=3, min ^4—4, min ¿¡=5. What is the min 
when n=-5? The answer is given by the following 

Theorem. 

Proof . It is sufficient to construct such a set of points on R2, which have 
only "triangular", "quadrangular" or "pentagonal" atoms. 

Consider a unit square on R2 (see Fig. 7). 
We shall place the points on congruent arcs which emanate from 

vertices ^ ( i = l , 2, 3,4) and lie within the square. Two points ftGoy and <2a€ff, 
(i^j) are called corresponding, if Qx goes in Q2 under euclidean motion, which 
brings (Tj in to a¡. 

n = 3, q3 = 4, 

n = 4, q3 = 4, q4 = 5, 

n = 5, q3 = 5, qt = 5, qs = 1. 

For n = 6 we have the following possibilities. 

03 = 6, q4 = 9, qs = 0, q6= 1, 

= 10, q4 = 0, = 6, q6 = 0, 
?3 = 6, q4 = 8, qs = 2, gr„ = 0. 

Figure 7. 
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Let y =f(x) be an equation of We shall find/(x), using thé following con-
dition : 

The tangent at every point of ax crosses a2 in the point, which corresponds to the 
point of tangency on a^. 

From this we derive the differential equation 

1—x—y dy (A) — = - r - with initial condition y(0) = 1. y-x ax 

The solution of this Cauchy problem exists, it is unique and it is a logarithmic 
helix. From (A) we deduce that the curve y=f{x) is convex in the neighbourhood 
of 3fx and it has horizontal tangent at the point ^ (side of the square). 

We take each ot to be a "piece" of logarithmic helix. Denote by A the common 
length of the arcs a, (/ = 1, 2, 3,4). Let <51; ô2, ..., ôk, ... be a sequence of posi-
tive numbers such that Now we proceed to construct the desired set. 
First we construct an auxiliary sequence of points {QJ on the curve o1. Let Qi be 
the endpoint of a1 and if the points Qlt Q2, ..., Qj have been constructed, then Qj+i 
is constructed as follows. We draw the line Q}. Let Q'j be the intersection point 
of this line with <r2 (see Fig. 8). Starting from Q] we move along o2 in the direction 
of at distance d}. In this way we obtain the point Q'j. Now we draw a line through 
Q'j, which is tangent to o1 and let Qj+1 be the point of tangency. It is clear that in 
this way an infinite sequence of points {<2,}™! can be constructed. Now we describe 
how we construct the collection {^¡}"=l. On ox we construct [«/4] points Qt, where 
[n/4] = "entier" of «/4. Further, we construct the corresponding points on the arcs 
<r, ( /=2,3,4) . Together with the vertices of the square we have now 4[«/4]+4 
points. The set {^¡}"=1 is obtained by deletion of 4—n (mod 4) extremal points on 
the arcs ot (which are distinct from the vertices of the square). The so obtained set 
is denoted by P. 

Figure 8. The length of arc QjQ] is 
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Now we shall verify that all atoms generated by P (equivalently the cells of 
the corresponding complex on E2) are triangles, quadrangles or pentagons. For 
the description of an arbitrary atom a it is sufficent to determine those two sub-
sets of P, which are separated by the lines of the atom. Therefore we shall use 
the following notations: a=F\P\F, where F, P\F are the two subsets in question. 

4 
Denote by Jt{ the set of points {SPj} lying on <r(, then P= | J By choosing 

>=i 
a sufficiently small A, it is possible to satisfy the following conditions: 

(a) Every is contained in the triangle ^¡Z^j, where j=i+1 (mod 4), 
/€{1,2, 3,4}. 

(b) The segments 0>
jQ l 0 = 2 , 3, 4) are intersected by no aL (/=2, 3, 4). The 

same is true for segments, joining ^ with the endpoints of tr,- (/=2, 3, 4). 
(c) The lines g intersect the same ai in at most two points. 
Let us introduce a classification of the atoms. In our classification we denote 

by stj the classes of the atoms. All the sets F, M in the description of the atoms 
will be non-empty. Below, the sign c denotes only proper inclusion. We put 

stx = {0|i>}, 

j /2 = {F\P\F, where Fez Jl{ for some i), 

sf3 = {J{i\P\Jii for some i}, 

= {Jtt U U Jlj\ where i ^ j } , 

< = {Jíi U F | P\(J^ U F), where Fc Jt}, i ^ j } , 
= {FÖM\P\(F(JM), whare Fez J(t, M c Jij ( i ^ j ) and every g intersects 

<Tj and (7j in one point only}, 
st, = {FIJM\P\(FUM), where F<zJtu M c Jl3 ( i ^ j ) and every g intersects 

a t (or aj) in exactly two points}, 
st,g = {JíiUFÖMlP^JfiUFÖM), where F <z Jik, M<zJt} and 

i T^j, j ^ k, k.} 

By our choice of k this classification is complete. Direct verification shows that 
the atom of six is a quadrangle (by the Lemma), 
the atoms of si2 are either quadrangles, or pentagons (by the construction of 

{ft} and (a), (b).), 
the atoms of séz are either triangles or quadrangles (by the construction of 

{QJ and (a), (b)), 
the atoms are either quadrangles or pentagons (by the construction of 

{Ő,} and (a), (b)), 
the atoms of are either quadrangles or pentagons (by the construction of 

{&} and (a), (b)), 

5 
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the atoms of are quadrangles (by the construction of at and (a), (b)), 
the atoms of ¿¡/7' are either quadrangles or pentagons (by the construction of 

{&}, a t and (a), (b), (c)), 
the atoms of sf e are quadrangles (by the construction of at and (a), (b)). 

Let us consider one of the types of the atoms, say in more detail (see Fig. 9). 
Let g be a line defining an atom from say F\F\F, where F c ^ . Then there 
exist two points Qk and Qk+1 belonging to Mx such that Qk£P\F, Qk+1£F. Further 
let Qk and Qk+i be the points from corresponding to Qk and <2*+i- Then the 
limiting lines are Q'k+iQk+i, Q'kQk, Qk&2> &kQ'k+i (by the construction 
of {Qi} and the choice A). Hence this atom is a pentagon. If Q k =Q x and 

One can similarly treat the other seven cases. This will conclude the proof of 
the Theorem. 
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