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On norms of projections 
A. P. BOSZNAY and B, M. GARAY 

Let (X, |j • ||) be a normed space. A continuous linear mapping P : X-+X is 
said to be a projection if P 2 = P . As usual, the range and the null space of P is 
denoted by 31 (P) and Jf(P), respectively. Further, the norm of P is defined as 
| | P | = sup {||Px|||||x|| = l}. Clearly | | P | | s l excepting P = 0 and ||/|| = 1. (Here p 
and I denotes the zero and the identity operator on X, respectively.) 

Let Y be a one-dimensional subspace of X. It follows immediately from Hahn— 
Banach theorem [3] that there exists a projection P: X->-X for which &t(P)=Y 
and ||P|| = 1. 

The aim of this paper is to investigate the question of the existence of normed 
spaces for which P ^ I and dim ^ ( P ) > 1 imply | |P| |>1. 

By a density theorem, we solve the problem in finite dimensions. The infinite 
dimensional case seems to be entirely open. 

From now on, let X be an n-dimensional real vector space. Assume that n s 3 , 
Let ( • , XxX-~R be a fixed scalar product. Let ex, ...,e„ be a fixed ortho-
normal system with respect to the scalar product ( - , - ) . Every x£X has a unique 

n 
representation of the form x= 2 aiei> Thus the basis e l t . . . , en determines 

i = l 
a one to one correspondence between vectors of X and «-tuples (column vectors) 
in R". Given xu ..., x„€X, now it is possible to define the determinant function 
det (xx, ..., x„), as a function of column vectors in R". 

The set of norms defined on X will be denoted by N(X). N(X) can be made 
into a metric space in a very natural way. The distance between two norms 
II-Hi, II X - R + can be defined as ¿(|| -|li, II -y=sup{|U*lli-H*H«||<*,^>=1}-
As any two scalar products (moreover, any two norms) induce the same topology 
on X, the topology on N(X) induced by d does not depend on the. particular choice 
of the scalar product ( • , •)• Therefore, we are justified inspeakihg )about openness 
and density of subsets of X as well as of N(X) without referring to any particular 
scalar product. 
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Now we are in a position to formulate our main result. 

Theorem. Let X be an n-dimensional real vector space. Assume that 
Define 

Nx(X) = 

= {II • KN(X) \for any projection P: X^X; P^I and dim 1 imply ||P|| >1}. 

Then Nx(X) is open and dense in N(X). 
Proof of the openness of Nx(X). Pick a norm || • in Nx(X). There exists 

a constant K > 0 such that (<x, x ^ s A l x I l ! . If i/(|| • ||x,1| • y s i f , then 
| B * l i - I W I . | * » 1 / 2 , and consequently, (1 -r,K) M i S M , s ( l l l x l l , . 

It follows easily from a compactness argument that inf {||P||1|i>: X-*X is a 
projection, P^J, d i m ^ ( P ) > l } > l , i.e. for any projection P: X^X there holds 
H P I k s l + a for some fixed a > 0 provided that P ^ I , d i m ^ ( P ) > l . Therefore, 
I I P x I U e C l - ^ U P x I l ^ a - ^ i H - ^ l l x L s O - ^ X l + a X l + ^ r ^ l x l l , . Conse-
quently, q being sufficiently small implies | |P| |2>1, || • I J ^ I W . 

The proof of the density of Nx (X) requires more difficult considerations. If 
SczX, the set of all linear combinations of elements of S, i.e. the subspace spanned 
by S is denoted by Span (S). The orthogonal complement of Span (S) is denoted 
by Span-1 (S). Let us recall that dim Span (5)+dim Span-1 (S)=n . 

Def in i t ion . Let N be a. fixed positive integer. For sake of brevity, we call a 
set {xj, to be independent if for any Yc{xx, ..., x^} and for any 
partition F1={1x1 , n̂ } , . . . , r k = f x 1 , . . . , f t x } of Y Y^Y—9 if 

k 
i,j=\,...,k; «j^O; IJ Yj=Y) satisfying n^sn, j= 1, . . . ,k there holds 

J = 1 

(1) dim ( f ) Span (1^)) = max {0, n - £ (" - «>)}• 
j=i >=i 

Further, we say that a vector x=(x x , . . . , xN)£XN is of type J if the set of its coordi-
nate vectors {x1 ; . . . , Xjv} is independent. 

R e m a r k 1. In case of N=n, k= 1 one arrives at the usual definition of linear 
independence. 

R e m a r k 2. On the account of 

( j n Span(y,))^ = Span({Span^ (Yx),..., Span^ (Yk)}), 

(1) can be reformulated as 

(10 dim (Span ({Span-L ( l y . Span ̂  (?*)})) - min{«, J («-« , )} . 
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L e m m a 1. The set of vectors of type J is dense in XN. 

Proof . Pick a vector 3c=(x1,..., xN)£XN. Consider a partition Yt= 
= {1x l5 •••,1*„1}, FJt={ tjc1, of a subset Ycz{xu ...,xN} satisfying 
nj^n,j=l, ..., k. 

For j= 1,. . . , k\ 1= 1,. . . , n—nj define 

Jw, = d e t ( } x u ..., sxttj, ex, ..., <?,_!, el+1, ..., e „ _ v c o l f o , ..., e„)). 

The vectors Jw 1 , . . . , Jw„_Uj form a basis for Span-1- (YJ) provided that 

(2) d e t C * ! J x n j J W l , ..., J'wn_nj) * 0. 
k 

Suppose that any p^n vectors in (J {Jvvl5 ..., Jw„_n }, say z1, ..., zp satisfy 
j=i 1 

(3) det(zx, ...,zp, elf..., en_„) ^ 0. 

It is obvious that (2) and (3) imply (1'). Thus the set of vectors of type J con-
tains the complement of a real algebraic variety, consequently [4], it is dense in 
X". 

Suppose now x„ is a basis of X. The («— l)-simplex o-[xl5 ..., x„] with 
vertices ...,x„ and its interior int (o[xt, ..., x„]) is defined as the set of all 
x£X of the form 

n a 
x = 2 a i x i where a ; s 0 ; ¿ = 1 , . . . , « ; = ^ 

¡=1 1=1 
and . . 

n n 
x = 2 x i x i where ^ > 0 ; i = l, . . . ,n ; i=l 1=1 

respectively. The vector v(a[x1, ..., x„]) defined by 

det (Xa-Xx,..., x „ - x l 5 col (<?l5 ..., e„)) 

is a nonzero element in Span-1 ({x2—xl5 ..., x„—Xj}), i.e. it is a normal vector to 
o[Xi, ..., x„]. 

Lemma 2. Let x= (x 1 ; ..., xN)£XN be a vector of type J. Given £>0, then there 
exists an N-tuple of real numbers (elf ..., %)£RJV satisfying 0<e ,<e ; /=1 , ..., N 
such that for any Z c { x l 5 . . . , xN, — x l 5 ..., — xN} and for any partition Z , = 
= { 1 x 1 , . . . , 1 x„}, . . . ,Z n = " x j of Z (Z,TlZ,=0 if i ^ f , i,j=l,...,H; 

U Zj=Z) satisfying 
•Jm 1 

ixj^±pxr for \i-p\ + \j-r\ ^ 0 
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there holds • • ! 

(4) Span({P((7[(l+1
fi l)1x1,...>(l+1£n)1x ( I]), ... r 

. . . ,«(^[(1+"£!)%,. (l +n£„)X])}) = X. 

Proo f . (4) is equivalent to 

(4') det(r((7[(l+161)1x1 , . . . ,(l+1
e n)1x„]),. . . 

..., +ne1)nx1, ..., ( l+ n e n )X] ) ) ¿ 0 . 

As in the proof of Lemma 1, the desired result follows from [4]. 

A bounded set KizX is said to be a centrally' symmetric convex polyhedron 
if there exist nonzero linear functional fs: X—R, s= 1 , . . . , t such that 

t 
K= |~| {x£X\ | / j ( x ) | ^ l } . The bounding hyperplanes of K are defined as 

s—1 
{ x € l ' | / s ( x ) = - l } , s=l, ..., t. Assume that 

(5) for any bounding hyperplane H, the intersection HC\K is an (n—l)-simplex. 
(Such simplices are called the facets of K.) 
For sake of brevity, we say that the facets <t[x15 ..., x j and o-fiq, 

are non-neighbouring if there holds 

{Xt, xni — Xi, ..., XB}n {Xi,..., X„, Xi, x„} = 0. 

If MAX is a symmetric (i.e. symmetric with respect to the origin) convex 
set with the origin in its interior, then its Minkowsky functional $ u : J - R + 
defined by <£M(x)=inf {a>0|x€aM} is a norm. Conversely, if we are given a 
norm in X, then the unit ball it defines is a symmetric convex set with the origin 
in its interior, and it is the corresponding Minkowsky functional. 

P r o o f of t he dens i ty of NX(X). 

Step 1. Pick a norm || -|| in N(X). Given e>0 , then there exists a norm 
|| • ||K in N(X) with the following properties: 
(6) ¿(11- II, II •«*)<£; ' 
(7) || •||K=<PK, the Minkowsky functional of a centrally symmetric convex poly-

hedron K satisfying (5); 
(8) denoting the vertices of K by x t , ..., xN, —x1( ..., —xN, the vector 

x=(xlt ...,xn)€XN is of type J; 
(9) if ax, ..., ffn are non-neighbouring facets of K, there holds 

Span(M f f l ) , ...,I>(<T„)}) = X-, 
and 

(10) for any two-dimensional (linear) subspace WczX, the number of pairwise 
non-neighbouring facets of K intersecting W at a segment, is at least n(n—1). 
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The existence of || • ||K satisfying (6)—(9) follows from the lemmas. (10) is auto-
matically satisfied if 

max{||x—x||| there exists a facet a of K such that x,x£<r} 

is sufficiently small. 

Step 2. We show that II • ||K€iV1(Ar). Let us observe first that (8) implies the 
following property of K: 
(11) if the facets ax , ..., on_x are pairwise non-neighbouring and a two-dimensional 

(linear) subspace JVczX intersects each of them at a segment, then, for some 
...,h—l}, W intersects int (ak*). 

To the contrary, let us suppose that there exists an /(&)€ {1, ..., n} such that 

WcYk = Span({¿x l 5 . . . , ¿x«*)-!, *xm+1,..., ¿x„}), 

for each k=l, ...,n—1. Since dim (Span (Yk))=n—l, (1) yields 

2 = d i m W s dim("n Span(Yk)) = max{0, n-J^l} = 1, 
k=1 k=l 

a contradiction. 

Step 3. Let us suppose now that P: X—X is a projection for which | |P| |K= 1, 
d i m ^ ( P ) > l . We have to show that P=I. 

Consider a two-dimensional (linear) subspace Wa!%(P). Assume that for 
a facet a of K there holds JFDint (<r)^0. We claim that . ^ ( P ) . Pick a 
z€ Wflint (<r). It is sufficient to show that xdJi(P) implies xiSpan-1-(i>(<r)). 
In fact, we have ||z||K=||P(z+Ax)||KS||z-|-Ax||K for arbitrary A£R. On the other 
hand, z£int (<r) implies (z+Ax)€<r for |A| sufficiently small. Consequently, 
x=((z+Ax)—z)/A€ Span-1- (^(ff)). 

By the same reasoning, (10) and (11) imply the existence of pairwise non-neigh-
bouring facets <T1; ..., an of K such that ...,v(<rnXJr±(P). Applying (9) 
we obtain X(zJr±(P), which, in turn, implies that P=7. 

For applications of the Theorem, see [1], [2]. 

Remark 3. The Theorem remains valid if X is allowed to be a complex finite 
dimensional vector space. . 

The following problems arise naturally : 

P rob lem 1. What is the minimum number of vertices of centrally symmetric 
convex polyhedra satisfying II • ||jc£jViW? (In the three-dimensional real case it 
is not hard to construct a centrally symmetric convex polyhedron K with twelve 
vertices for which || • On the other hand, it seems plausible that there 
are no such polyhedra with ten vertices. Nevertheless, we are not able to prove it.) 
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Prob lem 2. Give upper and lower bounds for 

sup{inf {IP|]IP: Ar—Aris a projection satisfying 

dim ®(P) > 1, P * 7}||| • |6JVi(J0>. 

P rob l em 3. The infinite dimensional case. 
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