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On norms of projections . e

A. P. BOSZNAY and B, M. GARAY

"Let (X, -]) be a normed space. A continuous linear mapping P: XX is
said to be a projection if P*=P. As usual, the range and the null space of P.is
denoted by #(P) and 4 (P), respectively. Further, the norm of P is defined as
| P|=sup {IIlelllell<l} Clearly |P|l=1 excepting P=0 and ||/ I]—l -(Hei'e 0
and I denotes the zero and the identity operator on X, respectively.) -

Let Y be a one-dimensional subspace of X. It follows immediately from Hahn—
Banach theorem [3] that there exists a projection P: X ~>X for which " 92(?) Y
and |P[=1.

The aim of this paper is to investigate the question of the existence of normed
spaces for which P=[ and dim #(P)>1 imply {|P[>1.

By a density theorem, we solve the problem in finite dimensions. _The.lnﬁmte
dimensional case seems to be entirely open. :

~ From now on, let X be an n-dimensional real vector space. Assume that n>3
Let (-, -): XXX~R be a fixed scalar product. Let e, ...,e, be a fixed ortho-
normal system with respect to the scalar product (-, -). Every x€X has a unique

n
representation of the form x= 23 oe;; o;,€R. Thus the basis e, ..., e, determines
i=1 . o

a one to one correspondence between vectors of X and n-tuples (column vectors)
in R®. Given X, ..., x,€X, now it is possible to define the determinant function
det (x,, ..., X,), as a funcuon of column vectors in R".

The set of norms defined on X will be denoted by N(X). N (X ) can be made
into a metric space in a very natural way. The distance between two _norms
I+Bes -t X~R¥ can be defined as d(| -1, I - Il)=sup {[lxl — Il |x, x)=1).
As any two scalar products (moreover, any two norms) induce the-same topology
on X, the topology on N(X) induced by d does not depend on the. particular choice
of the scalar product (-, -). Therefore, we are justified in'speakiﬂ“g about openness
and density of subsets of X as well as of N(X) without refemng to any pamcular
scalar product.
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Now we are in a position to formulate our main result.

Theorem. Let X be an n-dimensional real vector space. Assume that nz=3,
Define
N (X) =
= {| - |€ N(X) | for any projection P: X~X; P=I and dim Z(P)>1 imply | P||>1}.
Then N,(X) is open and dense in N(X).

Proof of the openness of N;(X). Pick a norm | -f; in N;(X). There exists
a constant K=>0 such that ((x,x)V?=K|x|,. If d(|-l,{-I|=#n, then
Wxlly—[xlls] =n(¢x, x))/%, and consequently, (1—nK)x|,={xl,=1+nK)x],.

" It follows easily from a compactness argument that inf {| Pll;| P: X—~X is a
projection, PI, dim #(P)=1}>1, i.e. for any projection P: X—X there holds
|Ply=1+a for some fixed >0 provided that Ps<I, dim 92(P)>1 Therefore,
| Pxfla = (1 —nK) || Pxlly = (1 —nK)(1+0a) | x], =1 —nK)(1+a)(1 +1K) " {|x]l,. Conse-
quently, n being sufficiently small implies ||P|,;>1, | - ||.€ N1 (X).

The proof of. the density of N,(X) requires more difficult considerations. If
ScX, the set of all linear combinations of elements of S, i.e. the subspace spanned
by S is denoted by Span (S). The orthogonal complement of Span (S) is denoted
by Span* (S). Let us recall that dim Span (S)+dim Span* (S)=n.

Definition. Let N be a fixed positive integer. For sake of brevity, we call a
set {x;; ..., xy}<=X to be independent if for any Yc{x;,...,xy} and for any
pal'ﬁtion Y1={1x1, cony lx } Yk={kx1, cer kx } of Y (k%l, Y,n Y1=g if

i#f; i j=1, ..., k; n;=0; UY Y) satisfying n;=n, j=1,...,k there holds

¢} dim ( (_] Span (Y;)) = max {0, n— é‘ (n—np}.

Further; we say that a vector X=(x,, ..., xy)€X¥ is of type .# if the set of its coordi-
nate vectors {x;, ..., Xy} is independent

Remark 1. Incase of N —n, k=1 .one arrlves at the usual definition of linear
mdependence

Remark 2. On the account of

(n Span (Y,) L= Span ({Span-L 1), ..., Spant (Y)}), .
(l) can be reformulated as

1) dim (Span ({Span* (¥?), ..., Span* (¥)})) = min {n, 3 2 (n nj)}
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Lemma 1. The set of vectors of type S is dense in XN.

Proof. Pick a vector X=(xi, ..., xy)¢X". Consider a partition Y,=
={x, 2 ) s V=, ..., *x, } of a subset Yc{x,..,xy} satisfying
n=n, j=1, ...,k

For j=1,..;k; I=1, ...,n—n; define

'iw, = det (‘ixl, ooy jx,,J, el,' ceey el—l’ e‘+1, ceny e”_nj, Col (81, ey e")).
The vectors w,, ..., fw,,_,,j form a basis for Span* (¥;) provided that
) det (Uxy, ..., /X, 5 Wy, oy IWy_y)) # 0.
k. .
Suppose that any p=n vectorsin |J {Iwy, ..., Jw,,_,,j}, say zj, ...;z, satisfy
. Jj=1 .
3) det(z;, ..-» Zps €15 .00 e,-p) # 0.

It is obvious that (2) and (3) imply (1°). Thus the set of vectors of type 4 con-
tains the complement of a real algebraic variety, consequently [4]; it is dense in
X°, h ‘

Suppose now Xx,...; X, is a basis of X. The (n—1)-simplex o[x,, ...; x,] with
vertices X, ..., X, and its interior int (¢[x,, ..., x,]) is defined as the set of all
x€X of the form .

n n
x= Jax; where ,=0; i=1..,n JFo=1
i=1 i=1
and .
n : n
x= Jox; where o, =>0; i=1,..,n; So=1
i=1 i=1

respectively. The vector v(g[x;, ..., x,]) defined by

det (xz'—‘xl; veey X‘,,—xl, COl (el, aeey e”))
is a nonzero element in Span* ({X;—xi, ..., X,—X,}), i.€. it is a normal vector to
olx, ..., X,)

Lemma 2. Let X=(x,, ..., xy)€X" be a vector of type S. Given ¢=>0, then there
exists an N-tuple of real numbers (g, ..., ey)ERY satisfying' O<g<g; I=1, .., N
such that for any Zci{x,,...,Xys —X1,..., —Xy} and for any partition Z,=
={%15 ce0s Wk s Zo={%15 oo, X} of Z (ZNZ;=9 if ix=j; Qj=1,..,n;

L"J Z,;=2Z) satisfying
i=1 _

Ixy#+Px, for |i—p|+|j—rl#0
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there holds S S : S S S
C)) - Span({o(e[(I+%) Xy, ..., (L4+"6)'%,]); -..
b s o(ol(L+7%6) 1, o (FE"E X DY) = X.
Proof. (4) is equivalent to ,
@ ~ det (v(a[(l + el)lxl, v (141, 1x,,])
. v(a[(H— sl)"xl, s (1+ ; )"x,,])) » 0
As in the proof of Lemma 1, the desired result follows from [4].

A bounded set K&X s said to be a 'ce‘ntrally’ Symmetric convex polyhedrb’h
if there exist nonzero linear functionals f;: X—-R, s=1,...,¢t such- that

K-ﬂ {xeX i f,(x)[sl} The bounding hyperplanes of K are defined as

{xEles(x) 1}, {xEles(x)_—l} s=1,...,t. Assume that
(5) for any bounding hyperplane H, the mt_ersectlon HNK is an - (n—1)-simplex.
(Such simplices are called the facets of K.) o _
For sake of brevity, we say that the facets ‘o[%, ..., %,] and of%,, ...,’%.]
are non-neighbouring 1f there holds

{xl,u.., x", - xl, eee ,,}ﬂ{xl, . ,;n’, _-—;1’ woly _-;n} = 0.

If McX is a symmetric (1.e. symmetric with respect to the origin) convex
set with the origin in its interior, then its Minkowsky functional ®,: X-R*
defined by P, (x)=inf {x>0[xcaM} is a norm. Conversely; if we are given a
norm in X, then the unit ball it defines is a symmetric convex set with the origin
in its interior, and it is the corresponding Minkowsky functional.

Proof of the density of N,(X).

Step 1. Pick a norm | -| in N(X). Given ¢>0, then there exists a norm

[l-lg in N(X) with the following properties: :

©) adl-I,1-lo)<s;

D | -lix= Pk, the Minkowsky functional of a centrally symmetric convex: poly-
hedron K satisfying (5);

(8) denoting: the vertices of K by x,..,Xy; —X,..., —Xy, the vector

L X=(0x, ..., xx)EXY is of type S; '

O if oy, ...,0, are non-nelghbounng facets of K there holds

. - Span ({o(ay), ..., 2(3,)}) =
(10) for any two-dimensional (linear) subspace WcJX, the number of pairwise
non-neighbouring facets of K intersecting W -at a segment, is at least n(n—1).
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The existence of ||-[x satisfying (6)—(9) follows from the lemmas. (10) is auto-
matically satisfied if

max {|%—X||| there exists a facet ¢ of K such that %, %€o)
is sufficiently small.

Step 2. We show that | .||g€N;(X). Let us observe first that (8) implies the

following property of K:

(11) if the facets oy, ..., 0,_, are pairwise non-neighbouring and a two-dimensional
(linear) subspace W X intersects each of them at a segment then, for some
k*€{l, ...,n—1}," W intersects int (o). :

To the contrary, let us suppose that there exists an /(k)€{l, ..., n} such that

|/ Yk = Span ({Vxl, veey Vx,(k)_l, vx,(k)“, sesy vx,,})',
for each k=1,...,n—1. Since dim (Span (¥,))=n—1, (1) yields

n—-1 n—1
2 = dimW = dim () Span(¥})) = max{0,n— 3 1} =1,
k=1 k=1
a contradiction.

Step 3. Let us suppose now that P: XX is a projection for which [|Pfg=1,
dim #2(P)=-1. We have to show that P=1I.

Consider a two-dimensional (linear) subspace WcCZ(P). Assume that for
a facet ¢ of K there holds Wint (¢)=0. We claim that v(e)éA"L(P). Pick a
z€WNint (¢). It is sufficient to show that x€4"(P) implies x€Span' (v(0)).
In fact, we have |z|g=|P(z+Ax)|x=|z+2x[x for arbitrary A€R. On the other
hand, z€int(¢) implies (z+Ax)€s for |i] sufficiently small. Consequently,
x=((z+Ax)—z)/i€ Span+ (v(0)).

By the same reasoning, (10) and (11) imply the existence of pairwise non-neigh-
bouring facets ¢y, ...,6, of K such that »(agy), ..., v(c,)éA# L (P). Applying (9)
we obtain X< A"+ (P), which, in turn, implies that P=1.

For applications of the Theorem, see [1], [2].

Remark 3. The Theorem remains valid if X is allowed to be a complex finite
dimensional vector space. .

The following problems arise naturally:

Problem 1. What is the minimum number of vertices of centrally symmetric
convex polyhedra satisfying | - |x€ N;(X)? (In the three-dimensional real case it
is not hard to construct a centrally symmetric convex polyhedron K with twelve
vertices for which || -[|g€N,(X). On the other hand, it seems plausible that there
are no such polyhedra with ten vertices. Nevertheless, we are not able to prove it.)
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Problem 2. Give upper and lower bounds for
sup {inf {| P]IP: X — X is a projection satisfying
dim 2(P) > 1, P # I}|[ - |€ Ny (X))
Problem 3. The infinite dimensional case.
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