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Oil relations of coefficient conditions 
V. TOTIK and I. VINCZE 

In the theory of orthogonal series several different kinds of coefficient con-
dition are being used and among them the three most frequently investigated con-
ditions are 

(i) 2 c î ô n n=1 

(¡0 i M Y |[=1 n=vk+l 

and 

(iii) t-l n-k 
Here 6 >0, {g„}, {A„} and {%„} are certain monotone sequences of real numbers and 
{c„} is a real coefficient sequence. For different results incorporating (i), (ii) or (iii) 
we refer to [2], a paper devoted to the systematic study of the connections between 
(i), (ii) or (iii). In it L. Leindler gave sufficient conditions for the equivalence of (ii) 
and (iii) (for any sequence {c„}) and investigated the relation between (i) and (ii). 
Our aim in this paper is to give necessary and sufficient conditions for the equivalences 
above in a somewhat more general setting. 

Let us consider the conditions 

(1) 2en\cn\9^~> n=1 

(2) ¿ M y K 
Jk=l n = V k + l 

and 

(3) ¿ * * ( l f e i r < - . 
k=l n-k 
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where p and q are positive numbers, {(?„} and {xk} positive sequences, 
is a positive monotone sequence and {vft} is a subsequence of the natural numbers. 
We have the following theorems: 

Theorem \. a) I f p = q then conditions (2) and (3) are equivalent for every {c„} 
if and only if 

(4) (IIA) 2 1 ** ^ m̂ — A V 2 1 ** (m = 1, 2, 3, ...) ft=l k=l 
is satisfied with some constant A. 

b) If pjtq then (2) and (3) are equivalent if and only if (4) and 

(5) ¿m+A — 2Am (m=l,2,...) 

are satisfied with some natural number A. 

Theorem 2. Conditions (1) and (2) cannot be equivalent unless p=q. If p=q 
then they are equivalent if and only if there is an A with 

(1 /A)Xm AXm (m = 1,2, 3 , . . . ; vm < n hS vm+1). 

Theorem 3. a) If p^q then (1) and (3) are equivalent if and only if the three 
sequences 

{i?„}> {i/i?,,}. fc=i 
are bounded. 

b) If p=q then (1) and (3) are equivalent if and only if 

(1 /A)6m Si 2 ** Agm (m = 1,2, 3, . . . ) 
»=x 

is satisfied with a constant A. 

Our theorems have several consequences, the most remarkable one is that, 
since e.g. (4) and (5) are independent of p and q (p^q), the equivalence of (2) 
and (3) for a pair p, q (p^q) implies their equivalence for any other pair p', q'. 
Another direct corollary of Theorem 1 is [2, Theorem 2.1]. 

The sufficiency of our conditions can be verified by more or less direct con-
siderations using some well-known inequalities (such as Jensen's inequality) from 
the theory of sequences. Our necessity proofs, however, have a very general char-
acter — a certain boundedness principle is applied in them. Since the proofs run 
on similar lines we shall give a detailed proof only for Theorem 1. However, we 
emphasize that the method can be applied to Theorems 2 and 3 and to other equiv-
alence problems of this kind. 
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Proof of Theorem 1. We separately prove the necessity and sufficiency of 
our conditions. 

I. Necessity. Let Xx and X2 be the set of the sequences {c„} for which (2) and 
(3) are satisfied, respectively. Then with the usual operations and X2 are linear 
spaces. We introduce on them length functions || |!f: A^—R+ ( i= 1, 2) as follows: 
for c = {cn} let 

k=l n=Vk+1 

C , = 

and 

w if p, q S i , 
\e\t if 0 p =* q, 0</>< 1, 
Mcli),'p if o 0 < g < 1, 

flc^'if 1, 
\c\2 if q, 0 < p < 1, 
( | c | ^ if 0 0 < ? < 1 . 

These length functions induce two metrics: 

di(ci, Ca) = —c2||i, d2(c!, Ca) = 11̂  —c2||2 

and it is easy to see that (Xt, dx) and (X2, d2) are complete metric spaces, the 
metrics dx and d2 are invariant, i.e. ¿¡(cl9 c2)=di(c1—c2, 0) ( i= l , 2), furthermore, 
the mappings (A, c)—Ac of RxXt-+X\ ( /=1,2) are continuous in A for each c 
and in c for each A. 

Summarizing and putting into the terminology of function spaces we can say 
that (Xx, dx) and (X2, d2) are F-spaces (see [1, pp. 50—51]). 

Now 
suppose that (2) implies (3), i.e. Xx ^ X2. For c = and a 

natural number m let 
Tnc = d where d = {cl5 c2 , . . . , cm, 0,0,. . .}. 

By the assumption the sequence {Tm} of the bounded linear operators Tm: X2 

is pointwise bounded, i.e. for every c£X1 there is a bound Kc such that 

\Tmc\\2^Kc (m = l ,2 , . . . ) . 

Since the length functions || • Ih and || • ||2 are homogeneous of the same degree, 
the theorem of Banach and Steinhaus valid for operators between F-spaces (see 
[1, p. 52]) yields that there exists a uniform bound A such that 

\ T m c \ ^ A M i (c€*i, m = 1,2, . . . ) 
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is satisfied, and letting here m tend to infinity we arrive at 

Mh^AMi (cexi)-
Similarly, it can be proved that if (3) implies (2) then with some constant 

( c i t ^ M , (ctxj. 

Now we introduce the perhaps somewhat awkward, nonetheless suggestive 
notations 

((2))= ¿ M k „ i r 4 > Jfc = l B = »k+1 

( 0 ) ) = 2 ^ { 2 \ c n \ " ) m 

k=l n=k 

for the sums involved in (2) and (3). 
According to what we have proved above the equivalence of (2) and (3) 

implies the inequalities ((3))^v4((2)) and ((2))^^4((3)). Applying the first one 
of these to the sequence 

f l if « = vm + l 
" 10 otherwise 

and the second one to 
•c f l if « = v m +l 

" 10 otherwise 

where m is a fixed natural number we get that 

*M + L VM + 1 
2 Xk^Atn, and Xm^A2 Kk «t=l k=1 

are satisfied and the necessity of (4) has been verified. 
To prove that (5) also holds we remark first that in the case A m \ we have by (4) 

AiSAfcSilM2)AX and so from our point of view the sequence {Afc} is the same as 
the sequence A£=l (condition (2) does not change if we replace {At} by {Aj*}). 
Thus, we may assume {Ak} to be nondecreasing (and the proof below shows that 
A m \ cannot occur at all). 

Let m and s/2 be two integers. Applying the inequality ((2))S/4((3)) to the 
sequence 

( 6 ) = f l if n = vm+2, vm+3, ..., vm+s 
w " lO otherwise 
we obtain for />/<?< 1 that 

^ m+2h = ((2)) ^ ¿((3)) =§ A *2' xksplq ^ A*s"Hm+s 
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and so 

if s^ilA)*1-"1«*, which proves (5). 
Similarly, if p/q> 1 then we obtain from ((3))s^4((2)) applied to the sequence 

(6) that 
* m + « / 2 m + s - 1 

Am(s/2)*/« S A ( 2 - ^((3)) ^ A%2)) = 2 i=l k=m 

and the proof is over. 
II. Sufficiency. Let us assume now (4) and (5) and we shall separately prove 

that (2) implies (3) and (3) implies (2) for any sequence {c„}. Let 

vm + l 
dm= 2 № 

n = v „ + l 
1) (2) implies (3). Since 

((3)) s i ( v 2 l = ' 
m = 1 4 = v m + l / = m 

it is enough to show that (2) implies /-= «>. 
If p/qS 1 then from the concavity of xPlq we get 

/ S 2 ( Y **)(2 d'J") S 2(2xkW* ^ A 2 W = ¿((2)) m=l fc=vm-fl j~m j=l ft—1 j — 1 
If, however, p l q > 1 then we have by (5) the inequalities 

2 A?" s c - e 1 s j A'/P/A«" S c (m = 1,2, ...) 
j = l j=m 

and so Jensen's inequality gives 

I S A 2 U 2 dj)"q = ¿ 2 ( 2 W'dMW'Y"' ^ 
m = l j =m m—1 j=am 

s k 2 ( 2 V 5 " ( W " ) = 

= K 2 W ( 2 *ip*)-*") s K 2 W = *((2)) < ~ 
J=l m = 1 i=1 

and this is what we wanted to prove. 

7 
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2) (3) implies (2). If p/q^l then we get from the convexity of xm and from 
(4) that 

( (3 ) ) s i ( x2 *>)( i dj)»" - i ( 2 1 *>)( 2 d*«) = 
m—1 t=»m+l j—m +1 m=l k = vm+l j=m+l 

= 2*p{2 2 j = 1 BI = lt = »m + l 

S c 5 2 dp s c((2)) —((3)) (c > 0) 
7 = 1 7 = 1 

and so (3)=>(2) follows. 
If plq< 1, then (5) is also satisfied and so there is an s with 

2 K t i 2 2 f t ( m = 1,2,.. .). 
Thus, for 

"(». + 1)5 
7M = ^ * * *=»™+l ' 

we have 

(7) y r a+ ' iS2ym (m = 1, 2, ...). 

Assuming (3), (2) will surely hold if 
« m—l (m-f l)s 

' ; 2 ( 2 ?j)( 2 d p ) 
m = 2 7 = 1 l=ms+l 

is finite (take also into account (4)) and by (7) this amounts to the finiteness of 

~ (m+l)s 
2" ym-i( 2 dp) 

m=2 • l=ms+l 

which clearly follows from (3). 
We have completed our proof. 
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