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On absolute summability of orthogonal series

L. LEINDLER and K. TANDORI

1." In [7] the second of the authors investigated some questions of general absolute
summability of orthogonal series. The aim of the present note is to continue these
investigations.

In [6] the following theorem was proved:

Theorem A. If
0 Z{

an+1

2}1/2

holds true, then for any orthonormal system {@,(x)} on (a,b) the orthogonal series

n
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oo

¥} D R 2, P (%)

k=0
is’ absolutely Cesiro summable (or briefly |C, 1|-summable) almost everywhere in
(@, b). If (1) does not hold then there exists an orthonormal system {p,(x)} such that
series (2) is not |C, ll-summable almost everywhere in (a, b).

Moreover P BILLARD [1] proved the followmg rcsult

Theorem B. If the coeﬁ‘iczent—sequence {a,} does not satisfy. condztzon (1) rhen,
the Rademacher-series o

3) . nz a,r(x)
is not. ]C 1|-summable almost everywhere in (0, 1).

Theorems A'and B imply the followmg statement ;-
Let {a,} be a given coefficient- -sequence. Then there are two cases. Either series
() is |C, 1}-summablé for any orthonormal system {¢,(x)} on (a, b) almost every-
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where in (a, b) or the Rademacher-series (3) is not |C, 1|-summable almost every-
where in (0, 1).

Later F. M6ricz (3] established similar results in the case of absolute Riesz-
summability. Very recently H. ScHwINnN [5] proved an analogous theorem for

Euler-means.

In the present paper we shall prove some theorems of this type for an arbitrary
regular summability method 7. Moreover we give a necessary and sufficient coeffi-
cient-condition in order that series (2) for any orthonormal system {¢,(x)} be abso-
lutely T-summable (i.e. |T|-summable) almost everywhere in the domain of ortho-

gonality.

2. Let T=(t; ) p=o. be a regular Toeplitz-matrix satisfying the usual con-
ditions:

1. lim¢4,=0 (n=0,1,..),

oo

2. tim >t =1,

I~ p=0

3. =fl)lt.-.,,l =K (<o) (i=0,1,..).
Let |
* ti(a, ¢; x) = S’ Liasn(x) ((=0,1,..), t.,(a, ¢;x)=0,
n=0

where s,(x) denotes the nth partial sum of (2). Series (2) at a point x, is said to be
|T |-summable if series (4) for each i at x, converges and

% [t:(a, ;5 x0)—t;i_1(a, @; Xp)| <eo.

It is clear that the [T'|-summability of series (2) at x, implies the existence of the
limit of #;(a, ¢; x,) as i— o, i.e. series (2) is also T-summable at x,.
Let us define the terms T; , as follows:
Too= St (bk=0,1,.) and T_,, =0 (k=0,1,..).
n=k

Henceforth let {¢,(x)} denote an arbitrary orthonormal system on the o-finite
measure space (X, ,p). It is clear that if the matrix T is row-finite then

) - t(a,9; x) = né:; 1 n (@@ () + ... +a,9,(x)) =

= kg;Ti.kak‘Pk(x) (i=01..)
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holds true at any point x where each function ¢, (x) has finite value, i.e. the equahty
in (5) holds true on X p-almost everywhere.

If the matrix T is not row-finite, but the sequence {a,}€I%, then it is easy to
show that the equality in (5) also holds true on X p-almost everywhere. Indeed, if
the series on the left-hand side of (5) converges on X p-almost everywhere to a
function F;(x) and the series on the right-hand side of (5) converges in the metric
IX(X, o, 1) to a function G,(x)€ L2(X, o, ), i.e. '

N
fim [ (3 Taon0n00—Gi() du = 0,
then the equality F;(x)=G;(x) holds on X p-almost everywhere (i=0,1,...).
We prove the following theorems: '

Theorem 1. If-T is a row-finite matrix then condition
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IIMg

v— Ty ag)? <o

implies that series (2) is |T|-summable on X p-almost everywhere. If T is not a row-
Jfinite matrix then (6) and {a,}€1* together imply the \T|-summability of series (2)
on X p-almost everywhere.

Theorem 2. If

)] ‘ ._Z:’ITi,k"'Ti,k—lllakl <o (k=0,1,..)

and (6) does not hold, then the Rademacher-series (3) is not ]Tl-summable almost
everywhere in (0, 1).

Theorem 3. If the coefficient-sequence {a,} does not satisfy condition (6) then
there exists an orthonormal system {,(x)} such that series (2) is not |T |-summable
almost everywhere in (0, 1).

. Remarks. L It is clear that if the matrix T satisfies the following conditions

®) " - 2Tl <= (k=0,1,..)

then (7) holds true for any coefficient-sequence {a,}. An easy calculation shows
that the methods of summation (C, a>0) and Riesz satisfy (8).

II. Theorems 1 and 2 imply the cited theorems of P. BILLARD and F: Mémcz,
moreover they include the results concerning the |C, azl/2|-summab1hty of the
first author [2], and the theorems of H. SCHWINN [5] published very Tecently in
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connection with Euler summability. All of these assertions can .be shown by ele-
mentary calculations.

III. By Theorem 3 condition (6) is always necessary in. order that series (2)
for any orthonormal system {¢,(x)} should be |T|-summable -almost everywhere
in the domain of orthogonality.

3. Proofs. Proof of Theorem 1. Let Ecof with y(E)<oo Then, by (5)
we have

2 flt(a @; x) , 1(0 @, X)]dﬂ_

i=0 g

fiA

= {u(E)} 2‘;{ [ (6@, 03 D—ti_s(a, @; X)) dp}”
= {u@®}" é‘;{ f(t,-(a, @ X)—t;_1(a, ¢; X)) d[,t}l’2 =

= {u(B)}* é; {kg (Tor—Ti-r,%afj?,

which implies that the series

® g: [t:(a, ;3 X)—t;-1(a, @; x)|

converges on E u-almost everywhere. By the assumption the measure space (X, &, )
is o-finite, so it also follows that series (9) converges on X g-almost evcrywhere
that is, series (2) is |T|-summable on X p-almost everywhere, as desired.

Proof of Theorem 2. We distinguish two cases. If {a,}¢/* then by a well-
known theorem of A. ZyGMUND [8} the Rademacher-series (3) is .not T-summable
almost everywhere in (0, 1), and consequently it is not |7|-summable almost every-
where in (0, 1). In this case our theorem is already proved

Next let us assume that {a,}¢I% In this case we need a slightly modified versron
of a well-known theorem of ORLICZ [4]. We formulate it as a lemma.

Lemma. For any Lebesgue-measurable set E(ZS(0, 1)) there exist a positive
number K=K(E) and a natural number ko-ko(E) such that if {a,}€l? and
ky=ky then

K(E) (rxles,E):{k;'hag}l/z = E.f |k§kla.,‘ "k(t)l dt
'holds true. - V .

Retummg to. the proof of Theorem 2, if now we. assume the contrary of the
statement of Theorem 2; that is, that series (3) is |T|- summable on.a set E(C(O 1))
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of positive measure, then there exist a positive number M and a set F (C E) of
posmve Lebesgue measure such that

(10) 2“ [ti(a, 0; X)—t;_1(a, @; X)| = M

holds for any x€F.
Then, by Lemma, there exists a natural number ko=ky(F) such that

11 ‘” Z (Tir— ;—l,k)akrk(x)[ dx =

k=kqy

= K(F)(mes F) { 2 T —Ti-s, k)zak}llz

Moreover, by (7), we have

(12) 35 Tu-Todan|= 3 M@,

where
M= 21T Tisal - lad (£ =0,1, ).
Now, using (5), (7), (10), (11) and (12) yield

13 K(F)(mes F) é("{kg‘ (T, — i_l,k)ﬁa%}lla' =

= (mes F)(M +:‘;2_:)1 M(k)) <,

furthermore, using (7) once more, we get

o ko—1 ko—1 ’
(14) Z{Z Tp-TiaPalf* = 5 ME) <=

Estimations (13) and (14) imply that (6) holds true, which ‘is a contradiction;
and this proves Theorem 2.

Proof of Theorem 3. We distinguish two cases again.

If (7) holds true for each k then, by Theorem 2, the Rademacher—serles (3) is
not |T|-summable almost everywhere in (0, 1). '

If (7) does not hold for a certain natural number k,, that is,

Z l iko 1—1 ko‘ |akol =00, -
then we define a special orthonormal system {/,(x)} as follows. Let

_ ﬁ, xE(O, 1/2)9
l//ko(x) - {0, xE(l/Z, 1),
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furthermore let us choose the functions ¥, (x) {k=0, 1, ...; ksk,} such that they
are zero on (0,1/2) and form an orthonormal system on the interval (1/2, 1).
Then the system {{,(x)}; is orthonormal on (0, 1). For this system we obviously
have o

f (é’)lt;(a, ¥; x)—t;_1(a, ¥ X)) dx =

1/2

= [ (3l v D=tia(a, ¥ D) dx =
J (2

= VZ[Dlax] 3 Toe=Tican ==,
whence

(1) la; T):= -3’11'; f('_glta(awp; X)—t; (@, @5 X)) dx =

follows, where the supremum is taken for all orthonormal systems {g,(x)} on (a, b).
On account of a theorem of the second author [7] statement (15) implies the existance
of an orthonormal system {¢,(x)} for which series (2) is not |T|-summable almost
everywhere in (0, 1).

This completes the proof.
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