On absolute summability of orthogonal series

L. LEINDLER and K. TANDORI

1. In [7] the second of the authors investigated some questions of general absolute summability of orthogonal series. The aim of the present note is to continue these investigations.

In [6] the following theorem was proved:
Theorem A. If

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left\{\sum_{k=2^{n}+1}^{2^{n+1}} a_{k}^{2}\right\}^{1 / 2}<\infty \tag{1}
\end{equation*}
$$

holds true, then for any orthonormal system $\left\{\varphi_{n}(x)\right\}$ on (a, b) the orthogonal series

$$
\begin{equation*}
\sum_{k=0}^{\infty} a_{k} \varphi_{k}(x) \tag{2}
\end{equation*}
$$

is'absolutely Cesàro summable (or briefly $|C, 1|$-summable) almost everywhere in (a,b). If (1) does not hold then there exists an orthonormal system $\left\{\varphi_{n}^{-}(x)\right\}$ such that series (2) is not $|C, 1|$-summable almost everywhere in (a, b).

Moreover P. Billard [1] proved the following result.
Theorem B. If the coefficient-sequence $\left\{a_{n}\right\}$ does not satisfy condition (1) then the Rademacher-series

$$
\begin{equation*}
\sum_{k=0}^{\infty} a_{k} r_{k}(x) \tag{3}
\end{equation*}
$$

is not.$|C, \mathbf{1}|$ summable almost everywhere in (0,1).
Theorems A and B imply the following statement:
Let $\left\{a_{n}\right\}$ be a given coefficient-sequence. Then there are two cases. Either series (2) is $|C, 1|$-summable for any orthonormal system $\left\{\varphi_{n}(x)\right\}$ on (a, b) almost every-

[^0]where in (a, b) or the Rademacher-series (3) is not $|C, 1|$-summable almost everywhere in $(0,1)$.

Later F. Móricz [3] established similar results in the case of absolute Rieszsummability. Very recently H. Schwinn [5] proved an analogous theorem for Euler-means.

In the present paper we shall prove some theorems of this type for an arbitrary regular summability method T. Moreover we give a necessary and sufficient coeffi-cient-condition in order that series (2) for any orthonormal system $\left\{\varphi_{n}(x)\right\}$ be absolutely T-summable (i.e. $|T|$-summable) almost everywhere in the domain of orthogonality.
2. Let $T=\left(t_{i, n}\right)_{i, n=0}^{\infty}$. be a regular Toeplitz-matrix satisfying the usual conditions:

1. $\lim _{i \rightarrow \infty} t_{i, n}=0 \quad(n=0,1, \ldots)$,
2. $\lim _{i \rightarrow \infty} \sum_{n=0}^{\infty} t_{i, n}=1$,
3. $\sum_{n=0}^{\infty}\left|t_{i, n}\right| \leqq K \quad(<\infty) \quad(i=0,1, \ldots)$.

Let

$$
\begin{equation*}
t_{i}(a, \varphi ; x)=\sum_{n=0}^{\infty} t_{i, n} s_{n}(x) \quad(i=0,1, \ldots), \quad t_{-1}(a, \varphi ; x) \equiv 0 \tag{4}
\end{equation*}
$$

where $s_{n}(x)$ denotes the nth partial sum of (2). Series (2) at a point x_{0} is said to be $|T|$-summable if series (4) for each i at x_{0} converges and

$$
\sum_{i=0}^{\infty}\left|t_{i}\left(a, \varphi ; x_{0}\right)-t_{i-1}\left(a, \varphi ; x_{0}\right)\right|<\infty .
$$

It is clear that the $|T|$-summability of series (2) at x_{0} implies the existence of the limit of $t_{i}\left(a, \varphi ; x_{0}\right)$ as $i \rightarrow \infty$, i.e. series (2) is also T-summable at x_{0}.

Let us define the terms $T_{i, k}$ as follows:

$$
T_{i, k}=\sum_{n=k}^{\infty} t_{i, n} \quad(i, k=0,1, \ldots) \text { and } T_{-1, k}=0 \quad(k=0,1, \ldots)
$$

Henceforth let $\left\{\varphi_{n}(x)\right\}$ denote an arbitrary orthonormal system on the σ-finite measure space (X, \quad, μ). It is clear that if the matrix T is row-finite then

$$
\begin{gather*}
t_{i}(a, \varphi ; x)=\sum_{n=0}^{\infty} t_{i, n}\left(a_{0} \varphi_{0}(x)+\ldots+a_{n} \varphi_{n}(x)\right)= \tag{5}\\
=\sum_{k=0}^{\infty} T_{i, k} a_{k} \varphi_{k}(x) \quad(i=0,1, \ldots)
\end{gather*}
$$

holds true at any point x where each function $\varphi_{k}(x)$ has finite value, i.e. the equality in (5) holds true on $X \mu$-almost everywhere.

If the matrix T is not row-finite, but the sequence $\left\{a_{n}\right\} \in l^{2}$, then it is easy to show that the equality in (5) also holds true on $X \mu$-almost everywhere. Indeed, if the series on the left-hand side of (5) converges on $X \mu$-almost everywhere to a function $F_{i}(x)$ and the series on the right-hand side of (5) converges in the metric $L^{2}(X, \mathscr{A}, \mu)$ to a function $G_{i}(x) \in L^{2}(X, \mathscr{A}, \mu)$, i.e.

$$
\lim _{N \rightarrow \infty} \int_{X}\left(\sum_{k=0}^{N} T_{i, k} a_{k} \varphi_{k}(x)-G_{i}(x)\right)^{2} d \mu=0
$$

then the equality $F_{i}(x)=G_{i}(x)$ holds on $X \mu$-almost everywhere $(i=0,1, \ldots)$.
We prove the following theorems:
Theorem 1. If T is a row-finite matrix then condition

$$
\begin{equation*}
\sum_{i=0}^{\infty}\left\{\sum_{k=0}^{\infty}\left(T_{i, k}-T_{i-1, k}\right)^{2} a_{k}^{2}\right\}^{1 / 2}<\infty \tag{6}
\end{equation*}
$$

implies that series (2) is $|T|$-summable on $X \mu$-almost everywhere. If T is not a rowfinite matrix then (6) and $\left\{a_{n}\right\} \in l^{2}$ together imply the $|T|$-summability of series (2) on $X \mu$-almost everywhere.

Theorem 2. If

$$
\begin{equation*}
\sum_{i=0}^{\infty}\left|T_{i, k}-T_{i, k-1}\right|\left|a_{k}\right|<\infty \quad(k=0,1, \ldots) \tag{7}
\end{equation*}
$$

and (6) does not hold, then the Rademacher-series (3) is not $|T|$-summable almost everywhere in $(0,1)$.

Theorem 3. If the coefficient-sequence $\left\{a_{k}\right\}$ does not satisfy condition (6) then there exists an orthonormal system $\left\{\varphi_{n}(x)\right\}$ such that series (2) is not $|T|$-summable almost everywhere in $(0,1)$.

Remarks. I. It is clear that if the matrix T satisfies the following conditions

$$
\begin{equation*}
\sum_{i=0}^{\infty}\left|T_{i, k}-T_{i-1, k}\right|<\infty \quad(k=0,1, \ldots) \tag{8}
\end{equation*}
$$

then (7) holds true for any coefficient-sequence $\left\{a_{n}\right\}$. An easy calculation shows that the methods of summation ($C, \alpha>0$) and Riesz satisfy (8).
II. Theorems 1 and 2 imply the cited theorems of P. Billard and F: Móricz; moreover they include the results concerning the $|C, \alpha \geqq 1 / 2|$-summability of the first author [2], and the theorems of H. Schwinn [5] published very recently in
connection with Euler summability. All of these assertions can be shown by elementary calculations.
III. By Theorem 3 condition (6) is always necessary in order that series (2) for any orthonormal system $\left\{\varphi_{n}(x)\right\}$ should be $|T|$-summable almost everywhere in the domain of orthogonality.
3. Proofs. Proof of Theorem 1. Let $E \in \mathscr{A}$ with $\mu(E)<\infty$. Then, by (5); we have

$$
\begin{gathered}
\sum_{i=0}^{\infty} \int_{E}\left|t_{i}(a, \varphi ; x)-t_{i-1}(a, \varphi ; x)\right| d \mu \leqq \\
\leqq\{\mu(E)\}^{1 / 2} \sum_{i=0}^{\infty}\left\{\int_{E}\left(t_{i}(a, \varphi ; x)-t_{i-1}(a, \varphi ; x)\right)^{2} d \mu\right\}^{1 / 2} \leqq \\
\leqq\{\mu(E)\}^{1 / 2} \sum_{i=0}^{\infty}\left\{\int_{X}\left(t_{i}(a, \varphi ; x)-t_{i-1}(a, \varphi ; x)\right)^{2} d \mu\right\}^{1 / 2} \leqq \\
\leqq\{\mu(E)\}^{1 / 2} \sum_{i=0}^{\infty}\left\{\sum_{k=0}^{\infty}\left(T_{i, k}-T_{i-1, k}\right)^{2} a_{k}^{2}\right\}^{1 / 2},
\end{gathered}
$$

which implies that the series

$$
\begin{equation*}
\sum_{i=0}^{\infty}\left|t_{i}(a, \varphi ; x)-t_{i-1}(a, \varphi ; x)\right| \tag{9}
\end{equation*}
$$

converges on $E \mu$-almost everywhere. By the assumption the measure space (X, \mathscr{A}, μ) is σ-finite, so it also follows that series (9) converges on $X \mu$-almost everywhere, that is, series (2) is $|T|$-summable on $X \mu$-almost everywhere, as desired.

Proof of Theorem 2. We distinguish two cases. If $\left\{a_{n}\right\} \nsubseteq l^{2}$ then by a wellknown theorem of A. ZyGmund [8] the Rademacher-series (3) is not T-summable almost everywhere in $(0,1)$, and consequently it is not $|T|$-summable almost everywhere in $(0,1)$. In this case our theorem is already proved.

Next let us assume that $\left\{a_{n}\right\} \in l^{2}$. In this case we need a slightly modified version of a well-known theorem of Orlicz [4]. We formulate it as a lemma.

Lemma. For any Lebesgue-measurable set $E(\subseteq(0,1))$ there exist a positive number $K=K(E)$ and a natural number $k_{0}=k_{0}(E)$ such that if $\left\{a_{n}\right\} \in l^{2}$ and $k_{1} \geqq k_{0}$ then

$$
K(E)(\operatorname{mes} E)\left\{\sum_{k=k_{1}}^{\infty} a_{k}^{2}\right\}^{1 / 2} \leqq \int_{E}\left|\sum_{k=k_{1}}^{\infty} a_{k} r_{k}(t)\right| d t
$$

holds true.
Returning to the proof of Theorem 2, if now we assume the contrary of the statement of Theorem 2; that is, that series (3) is $|T|$-summable on a set $E(\subseteq(0,1))$
of positive measure, then there exist a positive number M and a set $F(\subseteq E)$ of positive Lebesgue measure such that

$$
\begin{equation*}
\sum_{i=0}^{\infty}\left|t_{i}(a, \varphi ; x)-t_{i-1}(a, \varphi ; x)\right| \leqq M \tag{10}
\end{equation*}
$$

holds for any $x \in F$.
Then, by Lemma, there exists a natural number $k_{0}=k_{0}(F)$ such that

$$
\begin{align*}
& \int\left|\sum_{F}^{\infty}\left(T_{i, k}-T_{i-1, k}\right) a_{k} r_{k}(x)\right| d x \geqq \tag{11}\\
\geqq & K(F)(\operatorname{mes} F)\left\{\sum_{k=k_{0}}^{\infty}\left(T_{i, k}-T_{i-1, k}\right)^{2} a_{k}^{2}\right\}^{1 / 2} .
\end{align*}
$$

Moreover, by (7), we have

$$
\begin{equation*}
\sum_{i=0}^{\infty}\left|\sum_{k=0}^{k_{0}-1}\left(T_{i, k}-T_{i-1, k}\right) a_{k} r_{k}(x)\right| \leqq \sum_{k=0}^{k_{0}-1} M(k) \tag{12}
\end{equation*}
$$

where

$$
M(k):=\sum_{i=0}^{\infty}\left|T_{i, k}-T_{i-1, k}\right| \cdot\left|a_{k}\right| \quad(k=0,1, \ldots)
$$

Now, using (5), (7), (10), (11) and (12) yield

$$
\begin{gather*}
K(F)(\operatorname{mes} F) \sum_{i=0}^{\infty}\left\{\sum_{k=k_{0}}^{\infty}\left(T_{i, k}-T_{i-1, k}\right)^{2} a_{k}^{2}\right\}^{1 / 2} \leqq \tag{13}\\
\leqq(\operatorname{mes} F)\left(M+\sum_{k=0}^{k_{0}-1} M(k)\right)<\infty,
\end{gather*}
$$

furthermore, using (7) once more, we get

$$
\begin{equation*}
\sum_{i=0}^{\infty}\left\{\sum_{k=0}^{k_{0}-1}\left(T_{i, k}-T_{i-1, k}\right)^{2} a_{k}^{2}\right\}^{1 / 2} \leqq \sum_{k=0}^{k_{0}-1} M(k)<\infty . \tag{14}
\end{equation*}
$$

Estimations (13) and (14) imply that (6) holds true, which is a contradiction, and this proves Theorem 2.

Proof of Theorem 3. We distinguish two cases again.
If (7) holds true for each k then, by Theorem 2, the Rademacher-series (3) is not $|T|$-summable almost everywhere in (0,1).

If (7) does not hold for a certain natural number k_{0}, that is,

$$
\sum_{i=0}^{\infty}\left|T_{i, k_{0}}-T_{i-1, k_{0}}\right| \cdot\left|a_{k_{0}}\right|=\infty
$$

then we define a special orthonormal system $\left\{\psi_{n}(x)\right\}$ as follows. Let

$$
\psi_{k_{0}}(x)= \begin{cases}\sqrt{2}, & x \in(0,1 / 2) \\ 0, & x \in(1 / 2,1)\end{cases}
$$

furthermore let us choose the functions $\psi_{k}(x)\left\{k=0,1, \ldots ; k \neq k_{0}\right\}$ such that they are zero on ($0,1 / 2$) and form an orthonormal system on the interval ($1 / 2,1$): Then the system $\left\{\psi_{n}(x)\right\}_{0}^{\infty}$ is orthonormal on (0,1). For this system we obviously have

$$
\begin{aligned}
& \int_{0}^{1}\left(\sum_{i=0}^{\infty}\left|t_{i}(a, \psi ; x)-t_{i-1}(a, \psi ; x)\right|\right) d x \geqq \\
\geqq & \int_{0}^{1 / 2}\left(\sum_{i=0}^{\infty}\left|t_{i}(a, \psi ; x)-t_{i-1}(a, \psi ; x)\right|\right) d x= \\
& =(\sqrt{2} / 2)\left|a_{k_{0}}\right| \sum_{i=0}^{\infty}\left|T_{i, k_{0}}-T_{i-1, k_{0}}\right|=\infty
\end{aligned}
$$

whence

$$
\begin{equation*}
\|a ; T\|:=\sup _{\left\{\varphi_{k}\right\}} \int_{0}^{1}\left(\sum_{i=0}^{\infty}\left|t_{i}(a, \varphi ; x)-t_{i-1}(a, \varphi ; x)\right|\right) d x=\infty \tag{15}
\end{equation*}
$$

follows, where the supremum is taken for all orthonormal systems $\left\{\varphi_{n}(x)\right\}$ on (a,b). On account of a theorem of the second author [7] statement (15) implies the existance of an orthonormal system $\left\{\varphi_{n}(x)\right\}$ for which series (2) is not $|T|$-summable almost everywhere in $(0,1)$.

This completes the proof.

References

[1] P. Blllard, Sur la sommabilité absolue des séries de fonctions orthogonales, Bull. Sci. Math., 85 (1961), 29-33.
[2] L. Leindler, Über die absolute Summierbarkeit der Orthogonalreihen, Acta Sci. Math., 22 (1961), 243-268.
[3] F. Móricz, Über die Rieszsche Summation der Orthogonalreihen, Acta Sci. Math., 23 (1962), 92-95.
[4] W. Orlicz, Beiträge zur Theorie der Orthogonalentwicklungen, Studia Math., 6 (1936), 20-38.
[5] H. Schwinn, Absolute Summability of Orthogonal Series by Euler-Means, Analysis, 2 (1982), 219-230.
[6] K. Tandori, Über die orthogonalen Funktionen. IX (Absolute Summation), Acta Sci. Math., 21 (1960), 292-299.
[7] K. Tandori, Über die absolute Summierbarkeit der Orthogonalreihen, Acta Math. Acad. Sci. Hungar., 22 (1971), 215-226.
[8] A. Zygmund, On the convergence of lacunary trigonometric series, Fund. Math., 16 (1930). 90-107.

[^0]: Received February 17, 1984.

