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On absolute summability of orthogonal series 
L. LEINDLER and K. TANDORI 

1. In[7] the second of the authors investigated some questions of general absolute 
summability of orthogonal series. The aim of the present note is to continue these 
investigations. 

In [6] the following theorem was proved: 

T h e o r e m A. If 

(1) ¿ { *2 n=0 k=2" + l 
holds true, then for any orthonormal system {<p„(x)} on (a, b) the orthogonal series 

(2) • , Zak<pk(x) 
k*=Q 

is absolutely Cesaro summable (or briefly |C, l\-summable) almost everywhere in 
(a, b). If (1) does not hold then there exists an orthonormal system {</>„"(*)} such thai 
series (2) is not |C, 11-summable almost everywhere in (a, b). 

Moreover P. BILLARD [1] proved the following result. 

T h e o r e m B. If the coefficient-sequence {an} does not satisfy condition (1) then 
the Rademacher-series 

(3) 2akrk(x) 

k=0 

is not • |C, 11-summable almost everywhere in (0, 1). 

Theorems A' and B imply the following statement: 
Let {<*„} be a given coefBcient-sequence. Then there are two cases. Either series 

(2) is |C, 1 |-summable for any orthonormal system {<?„(*)} on (a, b) almost every-
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where in (a, b) or the Rademacher-series (3) is not [C, l|-summable almost every-
where in (0, 1). 

Later F. M O R I C Z [3] established similar results in the case of absolute Riesz-
summability. Very recently H. S C H W I N N [5] proved an analogous theorem for 
Euler-means. 

In the present paper we shall prove some theorems of this type for an arbitrary 
regular summability method T. Moreover we give a necessary and sufficient coeffi-
cient-condition in order that series (2) for any orthonormal system {<p„(JC)} be abso-
lutely J-summable (i.e. |r|-summable) almost everywhere in the domain of ortho-
gonality. 

2. Let T=(ti,«)"„=<>• be a regular Toeplitz-matrix satisfying the usual con-
ditions: 

1. lim ti H = 0 (n = 0, 1, ...), 

2. lim 2 t i n = 1, 
n=o 

3. 2 ( < - ) (¿ = 0,1, . . . ) . 
n=0 

Let 

(4) (¡{a, (p; x)= 2 ti,«sn(x) (i = 0 ,1 , . . . ) , t-i(a, (p\ x) = 0, 
n=0 

where i„(x) denotes the nth partial sum of (2). Series (2) at a point x0 is said to be 
|7"|-summable if series (4) for each i at x0 converges and 

o o 

2 Ih(a> <p; X0)-/,_i(a, <p; x„)| 
/=0 

It is clear that the |r|-summability of series (2) at x0 implies the existence of the 
limit of /¡(a, <p; x0) as i —oo, i.e. series (2) is also T-summable at x0 . 

Let us define the terms Tt k as follows: 

T i . k = 2 h , B (*» k — 0, 1,...) and r_ 1 > t = 0 (fc = 0, 1,...). n=S 
Henceforth let {<p„(x)} denote an arbitrary orthonormal system on the <r-finite 

measure space (X, , /i). It is clear that if the matrix T is row-finite then 

(5) U(a, <p; x) =. 2 ',>(«o<Po(*)+••• +«»<?>•,(*)) = 
n=0 

= 2 Ti,tat(pk(x) (¿ = 0 ,1 , . . . ) 
*=o 
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holds true at any point x where each function cpk (x) has finite value, i.e. the equality 
in (5) holds true on X /¿-almost everywhere. 

If the matrix T is not row-finite, but the sequence {Ű„}€ /2, then it is easy to 
show that the equality in (5) also holds true on X /¿-almost everywhere. Indeed, if 
the series on the left-hand side of (5) converges on X /¿-almost everywhere to a 
function Ft(x) and the series on the right-hand side of (5) converges in the metric 
l?(X,sf,fi) to a function Gi(x)£L2(X, s f , (i), i.e. 

lim f ( 2 T ^ a ^ t o - G ^ x ) ) 2 d p = 0, 
x *=° 

then the equality Fi(x)=Gl(x) holds on X /¿-almost everywhere (i=0, 1, ...). 
We prove the following theorems: 

Theorem 1. If T is a row-finite matrix then condition 

(6) ¿ { ¿ ( r i > j t - ^ - i , * ) a a i } 1 / 2 < ° ° 
¡=o *=o 

implies that series (2) is \T\-summable on X /¿-almost everywhere. If T is not a row-
finite matrix then (6) and {a„}€/2 together imply the \T\-summability of series (2) 
on X ¡i-almost everywhere. 

Theorem 2. If 

(7) (fc = o , i , . . . ) 
1 = 0 

and (6) does not hold, then the Rademacher-series (3) is not \T\-summable almost 
everywhere in (0,1). 

Theorem 3. If the coefficient-sequence {at} does not satisfy condition (6) then 
there exists an orthonormal system {<?„(*)} such that series (2) is not \T\-summable 
almost everywhere in (0,1). 

Remarks . I. It is clear that if the matrix T satisfies the following conditions 

(8) 2 \nk-T,.Uk\ (FC = 0 , 1 , . . . ) 
»=o 

then (7) holds true for any coefficient-sequence {a„}. An easy calculation shows 
that the methods of summation (C, oc>0) and Riesz satisfy (8). 

II. Theorems 1 and 2 imply the cited theorems of P. BILLARD and F: MÓRICZ,-
moreover they include the results concerning the |C, asl/2|-summability öf the 
first author [2], and the theorems of H. SCHWINN [5] published very recently in 
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connection with Euler summability. All of these assertions can be shown by ele-
mentary calculations. 

III. By Theorem 3 condition (6) is always necessary in order that series (2) 
for any orthonormal system {(pn(x)} should be |r|-summable almost everywhere 
in the domain of orthogonality. 

3. Proofs. P r o o f of T h e o r e m 1. Let E^si with n(E) < <*>. Then, by (5); 
we have 

2 f M", <p; x ) - i i - i ( a , <P; *)| dn ^ (=0 / 

^ ME)}1" 2 { f {h(.a, q>\ x)-tt.x{a, <p; x)fdp}1,a ^ i=0 E 

== {p(E)}m 2 { / ( ' ¿ a , <p; x) — ti_1(a, <p; x)fd^1" s 
1=0 x 

^ {n(E)Y12 Z i Z i n . - T ^ y a i y * , 
¡ = 0 k-0 

which implies that the series 

(9) 2\h(a,(p; x)\ 1=0 

converges on E ¿¿-almost everywhere. By the assumption the measure space ( X , si, ¡i) 
is <T-finite, so it also follows that series (9) converges on X /¿-almost everywhere, 
that is, series (2) is |r|-summable on X /¿-almost everywhere; as desired. 

P r o o f of T h e o r e m 2. We distinguish two cases. If {a„}$l2 then by a well-
known theorem of A. ZYGMUND [8] the Rademacher-series (3) is not T-summable 
almost everywhere in (0,1), and consequently it is not ITI-summable almost every-
where in (0,1). In this case our theorem is already proved. 

Next let us assume that {a„}£/2. In this case we need a slightly modified version 
of a well-known theorem of ORLICZ [4]. We formulate it as a lemma. 

Lemma. For any Lebesgue-measurable set £ ( ^ ( 0 , 1 ) ) there exist a positive 
number K=K(E) and a natural number k0—k0(E) such that if {a„}€/2 and 
k^ka then • 

K(E)(mcsE){24Y'^ f \ 2 akrk(t)\dt 

holds true. 

Returning to the proof of Theorem 2, if now we assume the contrary of the 
statement of Theorem 2, that is, that series (3) is ¡r|-summabie on a set E(Q(0, 1)) 
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of positive measure, then there exist a positive number M and a set F(QE) of 
positive Lebesgue measure such that 

(10) 2 |Uia, <p; ^-fi-xia, q>;x)\sM 
;=o 

holds for any x£F. 
Then, by Lemma, there exists a natural number k0=k0(F) such that 

(11) / | 2 ( T ^ - T ^ a ^ i x p x 

F  k~k0 

^K(F)(mes F) { J ( T ^ - T ^ f a ^ . 

Moreover, by (7), we have 
(12) 

¡=0 k=0 fc=0 
where 

M(k) := 2 P^-T^J • \ak\ (fc = 0,1, ...). 
i = 0 

Now, using (5), (7), (10), (11) and (12) yield 

(13) K(F)(mes F) 2 { 2 (T^-T^fa^ ^ 
i—0 k=k0 

is (mes F)(M+°2 M{k)) < 
k=0 

furthermore, using (7) once more, we get 

(14) 2 C2 = **2 M(k) 1=0 Jfc=0 k=0 

Estimations (13) and (14) imply that (6) holds true, which is a contradiction, 
and this proves Theorem 2. 

P roo f of Theorem 3. We distinguish two cases again. 
If (7) holds true for each k then, by Theorem 2, the Rademacher-series (3) is 

not |r|-summable almost everywhere in (0,1). 
If (7) does not hold for a certain natural number k0, that is, ; , 

00 

• • 2 l^ko-^-i.J- Kl =otv (=0 
then we define a special orthonormal system {^„(x)} as follows. Let 

7 2 , x£(0,1/2), • 
xe(i/2, i), 
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furthermore let us choose the functions ijfk(x) {k=0, 1, ...; k^k0} such that they 
are zero on (0,1/2) and form an orthonormal system on the interval (1/2,1). 
Then the system is orthonormal on (0,1). For this system we obviously 
have 

1 oo 

f ( 2 IU(a, «A; *)->,-!(.a, tfr; x)\)dx £ 
0' i=0 

1/2 
s / (2\ti(a,il>;x)-ti-1(a,ii,;x)\)dx = 

o 1=0 

= 0 ^ 2 / 2 ) K I 2 ¡Ti^-T^l 
i=0 

whence 
i „ 

(15) \a\ T\ := sup / (2 | i | (< i , <P\ x ) - ^ ^ , <p; x)\)dx =~ 
{«>*} 0 '=0 

follows, where the supremum is taken for all orthonormal systems {<p„(x)} on (a, b). 
On account of a theorem of the second author [7] statement (15) implies the existance 
of an orthonormal system {<p„(x)} for which series (2) is not |T|-summable almost 
everywhere in (0,1). 

This completes the proof. 
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