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On the asymptotic estimate of the maximum likelihood
of parameters of the spectral density having zeros

M. S. GINOVIAN

1. Introduction

1. Let x,, t=0, 1, .. be a stationary Gaussian time-series with E(x)=0
and spectral density (SD) f(4). Suppose that the SD fis a function of an unknown
vector parameter 0=(0,, ...,0,)’c¢®, where @ is a bounded closed set in the p-
dimensional Euclidean space R?. We wish to obtain an estimate of this parameter
from data consisting of a part of a realisation of the series, which will be assumed
to be n consecutive observations denoted by x,, ..., x,. Obviously, we can consider
the maximum likelihood estimate §, of the parameter 6:

M L,(0; X) = max L,(8; X),

where L,(0; X) is the logarithm of the likelihood of the data X=(x, ..., x,)-
The function L,(0; X) can be written in the form (see [9], [11])

2 . L,0; X)=—(1/2){nin2n+Indet B, ;,+X'B,} X},

where B, ,9=||ck_ i@, j—i7 is the Toeplitz matrix connected with the function
fQ; 0).

It follows from formulas (1) and (2) that in order to find the estimate §,, it is
necessary to obtain the explicit expressions for detB, . and B, }9, and this is a
very difficult problem. Even in the simplest case of the first order autoregression
the explicit expression for L,(6; X) is complicated (see [3]).

Following WHITTLE [12] and WALKER [11}, let us introduce the estimate 8, of
parameter 6:

3) L,@,; X) = max L,(6; X),
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where L,(0; X) is “the main part” of the function L,(0; X) satisfying the con-
dition
@ n~Y2[L,(0; X)—L,(0; X)] -0 as n—e,

where the convergence is in probability. The estimate 8, will be called the asymptotical
estimate of the maximum likelihood (AEML).

For the strictly positive- SD ‘case the asymptotical properties of the AEML 4,
were investigated. by WALKER [11] and ‘DzHAPARIDZE [3). The case in which the
SD has “weak™ zeros independent of the parameter 8 was considered by the author
[5). In these papers it was shown that under wide conditions on the SD the func-
tion L,(6; X) can be chosen to have a-much simpler form than L,(8; X). Moreover
the estimates §, and 8, are asymptotically equivalent, i.e. the estimate 8, is also
consistent, asy;nptotically normal and asymptotically efficient.

In the present paper we generalize the abovementioned results to the case in

which the SD has both “weak™ and “‘strong” zeros of polynom1a1 type, ie. when
the function f(A;6) admits the representatlon _

OF : A0 = |Q,,,(e'*)|2h(/1 0),

where 0. (10.(0)]=1) is a polynom1a1 of degree m w1th roots on the umt
circle, which are independent of the parameter 6, and the function h(2; 0) has
“weak” zeros also independent of the parameter 6.

Note that a similar case was considered by DzHAPARIDZE [3], [4], but under
stronger restrictions on the function f(1;#). Namely he assumed that the function
k(4; 0) is strongly positive and the polynomial -Q,,(e'*) has no multiple roots. :

2. The following notations will be used: L} is the weight L? spacé with weight f;
H,(f) is the space of polynomials of degree n, considered as a subspace of L2; P/
is the projector from L2 to H,(f); G/(Z, p) is the reproducing kemel of the spacé
H(H: -1 s and (-, ), are respectively the norm and inner product in L%; |A4| r
and Al 5 are respectlvely the uniform and Hilbert—Schmidt norms of the operator
Ain L.

Remark. In all notations the symbol J will be omitted if f().) 1.
~We shall use the main result of [5], therefore for completeriess of presentatxon
we reproduce it here.
Theorem A [S]. Let ihe SD f(:0) of the stationary Gaussian time-series x,
admit the representation (5), where Q,(¢"*) (IO (O)I—l) isa polynomtal of degree

m with roots on the unit circle, which are independent-of 0, and the function h(i; 6)
satisfies the following conditions:

1. lnh(Z; O)=u(d; 0)+3(4; 0), 6O,
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where u(-;0) and v(-;0) are bounded functions (¥ is the harmonic conjugate of v)
and |Iv||a°<7r/2

2 2 mOF=o(ffn), n—e
3. 2. la@r =o(/(/nn m), n—os;
4. lk‘2>” (b (O = 0(1/(1/5 In n)), n — oo,

for all 0O, where a.(0), c,(0) and b, () are the Fourier coefficients of the func-
tions n h(-;0), h(-;0) and 1/h(.;0), respectively. Then the limiting relatton (4)
holds, where the function L,(0; X) is given by (2) and

©
L,o; X) ——(n/2){1n2n+(1/21r) f Inh(4; 6)dA+(1/2n) f (i AY/h(4; 0))di},
where

™ L) =/my [ 60,0 G0 1, IO O 2 VTR

is the generalized periodogram of x,. (Z*(d}) is the orthogonal stochastic measure
®

participating in the spectral representation of x,: x,= f exp (iAt)Z7 (dA).)

2. Auxiliary results

Let the functions f(4; 6) and h(;0) be connected by the relation (5). We have
the obvious inclusion

QmHn(f) _g. Hn+m‘(h)'
Let us denote by N,, the orthogonal complement of Q,,,H,,( f) in H, ., (h):
® Hysm(h) = QnH,())® N,

Denoting by G,,n(d 1), Gi"(4, 1) and R,(A, ) the reproducing kernels of
the spaces H,(,, H,(1Q,*) and N,, respectively, from (8) we have .

O Geens 0 = QuHTAGH Gy W)+ Ra( ).
From (8) we also obtain that

(10) ’ Pn-(-m:: ¢n+Tm’
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where P,, .., @, and T, are the projectors from L? to subspaces H,,.,, @unH,(10,.|>)
and N, respectively.

The following assumptions will be made throughout the paper.

Al. The true value 8, of the parameter 8 belongs to a bounded closed set &
contained in an open set § in the p-dimensional Euclidean space R?.

A2. If 0, and 0, are any two points of 0, f(4; 6,) and f(.; 8;) are not equal
almost everywhere (4).

A3. For SDf(4; 8) all the conditions of Theorem A are satisfied.

Lemma 1. Let the partial derivatives 0 In h(4; 0)/06,, k=1, p, be continuous
Sfunctions of (1,0) for A€[—n, =), O¢S. Then for any 0,€0  such that 0,86,
(8, is the true value of 0)

(11
tim (1/n) [[ 162" 3, Dm0 DPr(t; 6o, 0)(h(2; O/h(s; 6)) dAdt =

T

= f T(t', Go,el)df,

where B
r(t; 6y, 6)) = 1—h(z; 69)/h(¢; 6,).
Proof. Under the given conditions we have (see [5, proof of Lemma 6])
(12)  5im /n) [[1G,rn(h ORr(t; 6, 0)(h(2; B/R(; 6,)) dhdt =

T

= f"(ﬁ 0o, 0,) dt.

-

To prove Lemma. 1 it therefore suffices to show that

(13) 5im (1/7) [f11G,+ m DE—IG2" (A, )Qu(HO(OPIX
Xr(t; 6o, 0 (R (A5 BoY/hu; 0))dAdi = 0.

It is easy to see that

(14) S UGl DE—1GI2" (4, QDD D1 X

Xr(t; O, 0)(h(R; O)/h(1; 6))dAdt = tr (Pry (or/ o) P mho— Do (rox/He) B ho),

where rn/h, and h, are the operators of multiplication by the functions
r(r; 6y, 8,)/h(t; 8,) and h(r;6,), respectively.
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Therefore using formula (10) we obtain
(15) tr(Pn+m(r01/h0)Pn+mh0—¢n(r01/h0)¢nh0) =
=1tr (¢n(r01/h0)Tm ho+ T (roay/ho) Pobo+ T (roa /o) T, ho)-

Further, using the inequalities (see e.g. [2])

(16) tr (4,B,) = | 4,4 Bilns

(17) 1 4als = V| 4als

and the relation |4,};,=|(1/k) AA|,, from (15) we find

(18) (U/n) |tr (Po s m(For/10) Pt abo— o (Torl Bo) B ho)| =

= (}/m_/n S"“P |r(4; 9)|[|¢n|h | Tonlyyn + {Balayn [ Tl + VW]Tmh/thmh]-

The right-hand side of (18) tends to zero as n—eo, since by Lemma 1 in [5] and
by formula (10)
sup |@,], <oo and sup |D,|y, <eo.

Lemma 2. Under the conditions of Lemma 1

a9 lim (1) [[] f GO )Gt 1) 0u(DBm DX

X|Qm(OE(r (¢ 05, 0)/h(t; 60)) e (35 Oo)h(u; 0)didu = [ r*(s; 6y, 6y dr.

—n

Proof. It is known that under the given conditions (see {5, proof of Lemma 6])

tim () [T] [ Guenlho DG sm(®: (s B0, O/H( 09)di'

Xh(h; O)h(us ) dldp = [ r2(t: 0y, 0,) .

—r

Hence to prove Lemma 2 it is enough to show that

@) tim (/n) [T [ Guemlo DGy smtts (-5 G0, 00/RC 09) i~

—| f GI2nl* (1, ) GO (1, 1) 0 (D) TR 0 (DX

X(r(t5 0, 0)/h(s3 00) dfF]A (A5 6 (w3 60) d dis = O.
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It is easy to see that the relation (20) is -equivalent to the following
@1 Xim [P+ m(ror/ o) Pt mBolls — | @u (roa/ o) B holl] = 0.
Using the well-known inequality (see [1])
I AalE— 1 Ball7 = |4, — BlI3+2 1 4, — Bu]ls | Billn
and the fact that - .
12aConlho) .ol = V1 5Up (43 019,14 @l = 0(/7)

when n--c (which follows from inequality (17) and Lemma 1 in [5]), it is easy to
see that to prove (21) it suffices to show that
22) Bt (1/7)| 2 1 (7es/ 1) Pa o — o (Pl o) B, holl§ = .

From formula (10) we have

Py m(To1/16) Py mBo— D, (roa/ Bo) D, By = T,,,(r(,l/ho)P,,+;,,h0+(D,,(rm/ho)T,,, h,.
Using this fact, the inequalities (16) and [ 4, B,ll,=[4,l,|B,ls» we find

(UM Py s m(ror/ o) Prsmho— P (roa/ o) D, holl} =
= /M| Tl 2 1(ror/ho) Pt mboli+ | @uli | (For/ ho) T holl} =
= @fmysup Ir (s OITali sup |PomlEin+ 1 Tliyn sup (2,15} ~ 0

as n—oo, since by Lemma 1 in [5] and formula (10)

sup !dsnlh = oo aﬂd sup |Pn+m|1/h < oo
3 n

‘Lemma 3. Let A, be an nXn matrix such that |4-0 as n—o and
sup || A, <e. Then

lim [In (E,,+A..)—tr(A,)+(1/2) 144121 = 0-'

The proof easily follows from inequality (V) in [2].

3. The asymptotic properties of AEML §,

It follows frdm Theorem A, that the AEML 9,, can be found from the relation
U,(8,; X) = minU,(6; X),
where :

(23) U,(0; X) = (1/4n) f [ k@; )+ A)/h@A; 6)] da.
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1. Consistency of AEML 6,.

Theorem 1. Let the partial derivatives 9 Inh(A; 0)/39k, k=1,p, be continuous
Sfunctions of (4, 0) for /16[ n, 7], GES Then'the AEMLG is consistent, i.e. 8,0,
as n—oo, in probability. -

We first estabhsh three lemmas

Lemma 4. Let 00 be the true value of 6 and 01 be any other pomt of ©. Then
there is a positive constant K(0,, 0,) such that

(24) lim P{U (90) U,(0) <K, 00} = 1.

Proof, From: formulas (7) and (23) we have
(25) W= Un(eo)fz);(el) =(1/4n) f (In h(-t;v og,)/ﬁ(t; 0,)) dt+
+(1an) [ LOUAES 09—1/h(s 0)1dr =
= (1)47) f (In h(t; Op)/h(1; 6, de+(1/dzn) [ f [ Gl (4, G2 (1, )X -

X|Qm(D12[1/h (25 00)—1/h(t; 0D1Z7 (dD)ZT (dp).
Hence ‘

EG¥) = (1147) [ (1nh(t; 09/h(e; 0)de-+
£ (1famm) [ 1619 (h, ORI OELLACE 09— Vh(s; 01 £ 09 di dr.

Now using Lemma 1 we obtain

(26) L3 k3

EW,) = (1/an) [ In(h(:; 0/ (s; B)di+(1dn) [ [1—h(s; 60)/h(t; 6)]dt+o().
By the obvious inequality

@70 In (h(1; 0o)/h(t; 6)) < (R(2; 60)/h(t;6))—1

(here by assumption A2 we have strict inequality) from (26) we obtain

lim E(¥) & _10,,6,), say,where 1(8,,6;) = O.



176 M. S. Ginovian

Also, from (25) we find
D(Va#,) = (famn) [f| f Gion (G, DGR, X
XIOAOFI/h(t; 09— Vh(t; 03] difE (2 6 f(us ) di .

Hence by Lemma 2 we get

lim D(VYnW,) = (1/4n) [ [1=h(t; O)/h(t; BY] dt <o.
The desired result (24) then follows by a simple application of Chebyshev’s inequality :
K(6,, 0,) can be any constant less than /(6,, 6,).

Lemma 5. Let 6,€0 and 0,€S be chosen such that |0,—0,|<d (5 possibly
depending on 0,). Then there exists a number ny=0 such that for n=n,

(28) [Un(01; X) — U, (0s; X)| = Hj,,(6,; X),
where Hj ,=H; ,(6,; X) is a random variable such that

29) }i_{l‘} E(H;,,) =0 uniformly in n=n,,
and

(30) lim D(#;,,) = 0.

Proof. From (25), using inequality (27), we obtain

3D U (0D—-U,(6)| = (1/4n) f [1+LA)/hG; 01)]l1n (r(2; 6)/R(; 02))[ da.
Let us denote by

4
H91,d(91) = 2 Sup Sllp ® Ia ln h(l; 0)/30*',

k=1 —z=Ai==|0,~0] <358,

where 6(6,)=6 is chosen so that the set {f;(0,—6|=6(0,)} is contained in S.
Then, by the mean value theorem, from (31) we get

IUn(Bl)_ Un(02)| = Hd,n(gl; X),
where .

(32) H;,, (0, X) = (8/4m) Hy, 5, f [1+Z,(8)/h (25 6)]dr.

We now show that the random variable H ,,(01, X) satisfies the condltlons 29)
and (30). From (32) we have

(33) E(H;,,) = (5/2)H0, sy +(8/4nn) Hy, 56,4}

x [ j |Gent* (A, Qm(OF(F (2 8/h(t; B))dAde
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and : _ . .
(€0 D (Hs,n) = ((6/47n) Ho, s0)" ] f | f (GO t)G'%"(t;‘ WX

X|Qn(OF/h(t; 6)d12f (A3 01)f(ﬂ, 8, ¢ ai dp.

So it is easy to see that (29) follows from (33) and Lemma 1 while (30) follows from
(34) and Lemma 2.

Lemma 6 (WALKER [11)). Let the random variable U,(0) satisfy the relation
(28) for all 0,€0; 0,6S such that |0,—0,|<8 (6 possibly depending on 8,) and
H; ,(0y; X) satisfies the relations (29) and (30). Then

P'}im'(?,, =0,, the true value of 0.
The proof of Theorem 1 now immediately follows from Lemmas 4, 5 and 6.

2. Asymptotic normality and asymptotic efficiency of AEML §,. Having estab~
lished the consistency of AEML 8,, we can go on to obtain the limiting distribution
of the vector Vn (8,—8,) in the usual way by applying the mean value theorem to
UD@,)-UP@O,), i=T,p, where U denotes the partial derivative 9U,(6)/09;;
(UP(8)=0U,(6)/06,],_q,), and 8, is the true value of 6. Of course, further con-
ditions must be imposed on SD to ensure that the second order partial derivatives
U$P=32U,/06,00; satisfy a suitable continuity condition and that a central limit
theorem can be applied to give the limiting joint distribution of ¥Vn U®(8,), i=T, p.

Theorem 2. Let the functions 3 In h(A; 0)/36,, k=1, p, be continuous in (4, 6)
Sor J€[—m, ], €S, and the functions 02 In h(A; 6)/00;00,, 0° In h(4; 6)/06,00,00,;
k,j,1=1,p, be continuous in (A,0) for A€[—m,=); OEN;(0,), where Ny(0))=
={0; |0—6,| <3} is some neighbourhood of 6,, and let the matrix I'y=|y, ,(90)" i
with

j“ln’

7:j(80) = (1/4m) f (@In h(2; 6)/06.)p-0,(01n h(A; 6)/08,)s-0, dA

be" non-smgﬁlar Then the limiting distribution of the vector ¥n (6,—6y) when n—+oo
is N©O,I;Y), and T, is the limit (n—~<) of the Fisher information matrix.
To prove this theorem we need two lemmas.
Lemma 7. Under the conditions of Theorem 2,
P lim USP(6}) = lim E(U$?(6,)) = 1,,(0)
where O5=wd,+(1— ®)06€ Ny (8), 0=w=1. . ‘
Proof is similar to that of Lemma 9 in [5), and so is omxtted

12
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Lemma 8. Under the conditions of Theorem 2 the limiting distribution of the
vector (—Yn UPO,), ..., ~¥n UL @)Y is N(O, I).

Proof. To prove this lemma it is sufficient to show that for any non-zero
vector v=(v,; ..., v,) the random variable

(39) 400 -VE ZaULe) =
_Vn 2 L 9 . S
= f[h(t %) 1] (39:1‘”'(” 0)]0%4:_
— f_,, GI2a* (4, )GICA" (1, 1) |Q,.(z)x=—,‘§g§—ggdth(dA)"“—Zf(du)—
}/n

o f at; 8y,

-

where .
. p
a(t; 0p) = Z 2, (91 h(¢; 6)/86,)-s,,
has the limiting distribution N(O, ¥2/2), where

¥% = (1/27n) f a3(t; 0y) dt = 2v'Fov.

Letusdenote
;(36) ¥, (3, 3 00)— j G2 "(A £)Glen2 (s, )@%ﬂd,

Since the function ¥ (A, 13 0p) is Hermman-symmetrxc in (A 1) and belongs to
Lﬁ, ‘by Schmidt’s theorem (see [10]) we get

(37) ¥Y.(4, u; 6) = Z v (00)‘1’1(1 00)‘/’1(# 0,

where v;(8,), j=1,7 n, is the sequence of the eigen-values and 0;(4; 00); j=1,n,
is the sequence of the orthonormal eigen-functions of the operator &,(ay/hy) P, h,.
The lattér is an mtegral operator in L generated by the kernel ¥ 2(4, 13 8;). Now
from (36) and (37) we have :

%) 1@ (yaxV7) [J¥.0, 15 e;,)zi(dA)z' =
= 0=V 39000 [ i,03:.00%,05 02 HZTR ~

=(1an V) 3,00)| [ 0,2 092/ @0)f* = (12 V) 3,60 5300n
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where y;(6,)= f 0,(4; 0,)Z7 (d2), j=1,n, is a sequence of independent identically

N@©, 1) dlstnbuted random variables.
It is well known that the characteristic function ¢, («) of the random variable
7.(0,) has'the form (See [7], [8])

Wt B

(39) «p.,,.(a)— H (1—(iov;(B)/4m V)22

Therefore from (35), (38) and (39) it follows that the characteristic function ¢ A..(“)
of the random variable 4,(8,) has the form

04 (@) = exp{—(za}/— Jam) j a(t; 6) dt}jj:jl (1= (iav,(B)/dn V)2
and hence
(40) i}
In g, (@) = —(1/2) ,él In (1 —(iav; 004 V) ~ (i V7 [ 4m) f a(t; 0,) dt.
ﬁsiné 'the .inequalities (16); (17) and Lemma 1 in [5] it is easy to show that
(1/Vn)|®,(@o/ho) B, holy ~ 0, 1o
sup (1/V 1) ®(@0/ho) Bl < o

Therefore by Lemma 3 we have

1) lim 2 { (1 iav;(6,) 1av!(00) __; ( iav;(6,) ]’}]

Ladadl ] 4nyn anyn 47tl/—
= 1im [mdet[E,,.—qs,,ﬂqs,,h +
ne o Anynh, °
: - ioa 1 ia 2
+tr(¢,,—°¢,,h)—— &, 2 __g h ]=0
_ 4nhyVn ) 2 4nh,Vn o,,

Further, By Lemma 1 we have

. iaa N daVn f
lim |tr|®,——= dih)———— a(t; 6, dt]=0,
Bov oo 1'[ OV— (] 47C _‘[ ( 0)

and by Lemma 2,

i [3e

icay

(b,, h
" 4nh,Vn ¢

2 2 n
I —%t- f az(t;ﬂo)dt] =0.

h

12¢
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Therefore from (40) and (41) we obtain

tim In 9, (@) = —(@¥4m) [ a*(t; Op)dt.
Thﬁs the random variable 4,(0,) has the limiting distribution N @, y"/,2); ”

Proof of Theorem 2. Since UY(,)=0, j=T,p, by the mean value theo-
rem we have ' .

@ . 0=UPO) = UL+ I @) U @)

where 0*=wl,+(1—w)0,€ N5(0,), 0=w=1. The relation (42) may be re-
written- as

3) —VRUP @)= 3 Vn Bu—0)US @),
t=1
Now by Lemma 7
P lim U2 (6;) = 7:,(60),

and by Lemma 8 the random vector (—Yn U®(0,), ..., —¥n UP(8,)) has the
limiting distribution N(0, I'y). Therefore (43) implies that the vector Va (8,—0,)
has the limiting distribution N(O, I';’%). _

Finally, let us show that the matrix I'y is the limit (n—+<o) of the Fisher informa-
tion matrix. This statement follows from the following relation

lim(Un)D( 3 n0L,(0)00) = lim (1YmD( 3 wUH(©) =
— fim (1/n) D ((1f4m) [ ff GI0n1* (2, D GI2(, WIQA (X
X(a(t; 0)/h(t; 0)) dth(dA)?f‘(TJEi(l/4n) fa(:; 9) df) =
— tim (tf4nn) [f| J Gio; o WI2AOFEX
X (a(t; OYh(t; 8) 'S 05 6)7(u; O)dAdu = (Udn) [ ab(e; Oy,
where, as before, v=(vy, ..., v,)’ is a non-zero vector and -

a(t; 8) = 3 00l h(s; 6)/96,.

i=1
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4. Confidence regions for the parameter 0

The further arguments are based on the following theorem..

Theorem 3. Let 8, be an arbitrary consistent, asympiotically normal and
asymptotically efficient estimate of the parameter 0 and let the random matrix I' =
=[5l ;=17 be am arbitrary consistent estimate of the limit I'y of the Fisher mforma-
tion matrix. Then the limiting (n— <) distribution of the statistic

“ st=n 3 Gu=0) =007

is the y*-distribution with p degrees of freedom.

Proof. It is easy to see that

th n 2 (ém 001)(6111 00])[}’ """ (00)] -

n-» oo

Hence the limiting distribution of the statistic S? is the same as that of
(45) h 2 (0," 001)(9111 001)?0 (00)
ij=1

Transforming the vector ¥n (§,—6,) to a vector ¢ via the unitary tranSfbmiation |4
such that the matrix V'I,\V is diagonal, we obtain

N o P
n(en—eo)IFO(on—oo) = 21 é? aiza

where ¢; is the i-th component of ¢ and o? is its variance. The random variables &;;
i=T, p, converge in probability to independent normal random variables with mean
0 and variance o7, i=1, p. Therefore the random variable (45) and hence the sta-
tistic S? has the limiting y2-distribution with p degrees of freedom.

Thus we have shown that for every interval [«, f] the relation

(46) < n(@,,—()o)’l"*(e,,—()o) <§
8
has limiting probability [ x%(x) dx. If « and B are chosen so that
B
f L) dx =1—¢, £=0,

then the set of values of 0 satisfying (46) will be a confidence region for 8, with asym-
ptotic confidence level &.



182 M. S. Ginovian: Asymptotic estimate of the maximum likelihood

References

[1] N.I. AmEezer—I. M. GLAZMAN, The theory of linear operators in Hilbert space, Nauka (Moscow,
1966). (Russian)

{2] R. B. Davies, Asymptotic inference in stationary Gaussian timeseries, Adv. Appl. Probab.,
5 (1973), 469—497.

(3] K. O. DzuaparRmZE, Estimation of parameters and testing hypotheses in spectral analysu'
of stationary timeseries, University Press (Tbilisi, 1981). (Russian)

{4] K. O. DzHAPARIDZE, An estimation of parameters of spectral density with fixed zeros, Teoria
Verojat. i Primen., 22 (1977), 729—1748. (Russian)

[5] M. S. GmoviAN, On the asymptotical estimation of the maximum likelihood of parameters
of the spectrum of a stationary Gaussian timeseries, in: Limit theorems in probability and
statistics, Yol. I (P. Révész, ed.) Coll. Math. Soc. J. Bolyai, 36, North-Holland (Amster-
dam, 1984), 457—497.

(6] M. S. GmoviaN, The asymptotic behaviour of the likelihood function involving polynomiat
zeros of spectral density, Zapiski Nauchn. Semin. LOMI, 108 (1981), 5—21. (Russian)

{7] U. GreNANDER—G. SzEGO, Toeplitz forms and their applications, University of California
Press (Berkeley, 1958).

[8] I. A. IsraHIMOV, On estimation of the spectral function of a statxonary Gaussian procms,
Teoria Verojat. | Primen., 8 (1963), 391—430. (Russian)

[9] I. A. IsraAHIMOV—YU. A. RozANov, Gaussian stochastic processes, Nauka (Moscow, .1970).
(Russian)

[10] F. Riesz—B. Sz.-NAGY, Legons d’analyse fonctionnelle, Akadémiai Kiad6é (Budapest, 1972)'

[11] A. M. WALKER, Asymptotic properties of least-squares estimation of parameters of the spec-
trum of a stationary non-deterministic time-series, J. Austral. Math. Soc., 4 (1964), 363—384,

[12] P. WanTTLE, Estimation and information in stationary time-seriés, Arch. Math., ‘2 (1953),
423—434,

INSTITUTE OF MATHEMATICS OF THE -.
ACADEMY OF SCIENCES OF THE ARMENIAN SSR
MARSHAIL BAGRAMIAN ST. 24B

375019 —- YEREVAN ARM. SSR,-USSR



