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Characterization of operators of class C0 and a formula 
for their minimal function 

A H A R O N A T Z M O N * ) 

Introduction 

The class of operators C 0 was introduced in 1 9 6 4 by SZ . -NAGY and C . FOIA§ [ 1 1 ] 

and consists of all completely non unitary contractions on a complex Hilbert space 
which are annihilated by a non-identically zero function in H°° of the unit disc. 
Among the annihilating H°° functions of a contraction of class C0, there exists an 
inner function which divides (in H°°) all others ( [11 ] or [12 , p. 124] ) . This inner 
function is determined up to a constant factor of modulus 1, and is called the minimal 
function of the contractions. For results concerning the structure of contractions of 
class C0 we refer to [3], [13] and [14]. 

The first characterization of contractions of class C0 was given by Sz.-Nagy 
and Foia§ in terms of an algebraic condition on the characteristic operator func-
tion [12 , p. 2 6 5 ] . Using this characterization, J. DAZORD [ 4 ] obtained a characteriza-
tion of C0 operators in terms of a growth condition on their resolvent, which how-
ever is of an implicit form and is difficult to verify. (See Corollary 4.2.) 

In this paper we give a characterization of C0 operators in terms of an explicit 
growth condition on their resolvent, and establish a formula for the associated 
minimal function, also in terms of the resolvent (Theorem 1.1). A similar charac-
terization of C0 operators whose spectrum is a thin set in a certain sense, is given 
in [2]. (See Section 7.) 

The above mentioned characterization and formula for the minimal function 
can also be expressed in terms of the characteristic operator function (Theorem 5,3). 
The interest in obtaining such a result was pointed out by R. G . DOUGLAS [3 , p. 190] . 

Our exposition is self contained in the sense that the concepts from operator 

Received October 28, 1983. 
*) This research was supported by the Fund for the Promotion of Research at the Technion — 

Israel Institute of Technology. 



,192 Aharon Atzmon 

theory that are used in the proofs of the theorems, are essentially those which appear 
in their statement. So for example, except for Section 5, we do not use in our proofs 
the characteristic operator functions or functional model of Sz.-Nagy and Foia§. 
Although resulting in longer proofs, this approach seems to be of interest and also 
leads to new proofs of the characterizations of operators of class C0 given in [12, 
p. 265] and [4]. (See Corollary 4.2 and Corollary 5.4.) We also obtain a new proof 
of the existence of a minimal function for C0 operators (Theorem 1.1). 

The contents of the paper are as follows : In Section 1 we introduce the con-
cept of meromorphic vector function of bounded a-characteristic and state our 
main result. In Section 2 we prove some preliminary results which are needed for 
the proof of the main result. Section 3, which is the principal part of the paper, is 
devoted to the study of contractions with resolvent of bounded 1-characteristic. 
To every such contraction T we associate a function <pT in H°°, which is ex-
pressed in tenns of the resolvent of T, and is a minimal function of T in the case 
that T is of class C0. We also characterize in this section the resolvents of operators 
in this class, and prove the invariance of the class under certain Môbius transforma-
tions. In Section 4 we present the proof of our main result and obtain as a Corollary 
the result of DAZORD [ 4 ] . In Section 5 we characterize contractions T whose char-
acteristic function 9T has a scalar multiple, and express our main result in terms of 
0T. In Section 6 we characterize contractions of class D0, that is, contractions which 
are annihilated by a non-identically zero function in the disc algebra, and give the 
general form of an annihilating function of such a contraction. Finally in Section 7, 
we consider contractions with resolvent of bounded a-characteristic for some 0 S a < 1, 
and prove that they are of class D0, and have (in a certain sense) a thin spectrum. 

The basic notions and facts concerning the Banach algebra H°° and the func-
tional calculus of Sz.-Nagy and Foia§ for completely non unitary contractions, 
will be used freely in the sequel without giving always an explicit reference. For H<° 
we refer to [7] or [9] and for the functional calculus to [12, Chapter III]. 

1. Definitions and main result 

Throughout this paper, will denote a complex Hilbert space and SF(J)V) 
the algebra of all bounded linear operators on JC. For àn operator T in £?(3#') 
wé shall denote by A(T) its spectrum, by Q(T) its resolvent set, and by RT(X) its 
resolvent, (XI—T)~ 1 ,X£Q(T) . We shall also denote by LT, the operator function 
defined by: LT(X)=(I-J.T)RT(X), X£Q(T). The term contraction will mean in the 
sequel an operator T in Se(3^) such that IITH^l. 

The open unit disc {XDC: |A|<1} will be denoted by D and the unit circle 
|A| = 1} b y / \ 



Characterization of operators of class C0 193 

If X is a complex Banach space and F is an A'-valued meromorphic function 
on D, we shall denote for every by. n(t, F) the number of poles of F i n 
the disc {A€C: (counting multiplicity), and for every a^O and 0 5 r < l 
we.set 

r 
N(r,F) = f ((«(/, F)—n(0, F))/t)dt + n(0, F) log r 

o 
and 

a* 
m«(r, F) = (1/2«) / log+ ||(1 - rfF(re^)\ dB 

o 

(where for asO, log+ a=max {log a, 0}). 
We define the a-characteristic of an Z-valued meromorphic function on D to 

be the function 

Ta(F, r) = m.(F, r)+N(F, r), 0 S r < l . 

If sup Tx (F, c)<»>, then we say that F is of bounded a-characteristic. • 0Sr<l 
The set of all Z-valued meromorphic functions on D of bounded «-charac-

teristic, will be denoted by Na(X). The elements in N0(X) are called functions of 
bounded characteristic. For X=C this is the classical definition of R . NEVANLINNA 

[15]. Vector valued functions of bounded characteristic are considered in [2]. 
To simplify notations we shall denote in the sequel the set by Na, 

and if T is a contraction such that the operator function A—Rr(A), 1.£Q(T)C\D, 
is meromorphic on D and is in N^, we shall say briefly that RT is in Na. 

We recall that a contraction T is said to be of class C0., if Tnx—0 as n— «, 
for every x in Jf [12, p. 72]. 

Our main result is the following: 

Theorem 1.1. A contraction T is of class C0, if and only i f , T is of class C0., 
and RT is in Ar

1. Furthermore, if the last two conditions are satisfied, and {Alt A2, ...} 
is the sequence of poles of RT in t> repeated according to multiplicity, with k of the 
A„ being equal to zero, then T has a minimal function given by 

mT(Z) = n a m m j - m - v > ) « P ( - » ( * ) ) , Z€D, ij* 0 
where 

Sir 
w ( z ) = K m (1/2«) / ((eu+z)/(eit—z)) log ¡LT(Qeu)\\ dt, z£D, 

or alternatively, 
w(z) = f((e"+z)l(eu-z))dn(t), zdD, 

r 
where p is a positive measure on r which is the weak star limit as 1—; of the 
measures (1/2«) log ||LT(ge")|| dt, 0 < g c l . 

14 
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R e m a r k ' l . As will be shown in Lemma 2.2, the assumption that RJ- is" in 
Ni implies that ^ ( 1 —K |)-=«> and therefore (cf. [7, p. 54]) the above product 

B 
converges uniformly on compact subsets of D to an inner H°° function. The exist-
ence of the limits which define the function w and the measure n will be established 
in Proposition 3.1. 

R e m a r k 2. It is readily verified that the above formula for mT can also be 
written in the form 

mT(z) = lim 2» n T-T~7
 exP / T^logII^+(1 -e)2e"*r(<?e")« • s-i- |/j| 1 -Ajz J z—e' 2n 

2. Preliminary results 

In this section we present some preliminary results which are needed for the 
proof of Theorem 1.1. In the sequel, T will denote a fixed contraction in 
Following [12] we associate with T the self-adjoint operators 

DT = (I-T*TYI* a n d DT. = (I-TT*)1» 

and set 2/T=DT3^ and In addition we denote by KT the operator 
function defined by 

KT(X) = DTRT(X)(I-AT*), ?.EE(T), 

and by UT the set" {xÇJif : ||Dr.x|| ^ 1}. 
The first result of this section which will be needed in the proof of Theorem 1.1 

appears in [12, p. 263], however it is expressed there in terms of the characteristic 
operator function, and one part of its proof depends on the functional model. In 
order to keep our exposition self-contained, we present below an equivalent formula-
tion of this result, and give a proof which is similar to that in [12] but does not 
depend on the functional model and does not use explicitly the characteristic oper-
ator function. 

Lemma 2.1. For every X in DDQ(T) 

||Lr(A)|| =sup{p: r (A)xI : 

Proof . We assume first that J is invertible, and-prove the assertion for >1=0, 
that is, we show that :' 

jr-»B = sup {|Z>r-r-*je| : *€ : • 
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Since DTT-Î = T~1DT. [12, p. 7J this equality is equivalent to the equality Hr_1|| = 
= ||J || where J denotes the restriction of T'1 to To show this, choose x in 

and consider the orthogonal decomposition x where. x ^ ^ j * and 
Ûsing the facts that T~L maps 3>T* onto BT and maps isometrically 

onto [12, p. 7], and that | |/ | | ë 1 (since T is a contraction) we obtain that 

= i i r - i ^ r + i i r - ^ p s 

This shows that | | r _ 1 | | s | | / | | , and since the reverse inequality is obvious, we con-
clude that | | r - 1 | | = ||/|j. To prove the assertion in the general case, we assume 
that A is in DDQ(T), and consider the operator TX=(U-T)(I-XT)~\ which 
is also a contraction [12, p. 14]. Since TX is invertible, we have by the assertion just 
proved that 

\LtWW = fl^Tf1! = sup {WPt^xW :• UTJ. 

Setting S = ( l - ;-|A|2)1/i!(/-Ar)-1, we obtain by a simple computation that 

•\DTJ;lxr = (D%J^x,T^x)=.\\KT(k)S*x\\* 

and noticing that if and only if S*xÇ_Uf, we obtain thé desired con-
clusion. 

Lemma 2.2. If F is a meromorphic function on D with values in some complex 
Banach space, with poles {Al5 A2, ...} in D repeated according to multiplicity, then 
the following conditions are equivalent: 

(a) sup N(r, F) ~zoo, 

(b) 2 ( i - | A J ) < » . . » 

Proof . We assume that «(0, F)=0. The general case can be reduced to this 
one by an obvious argument. We also assume that |A„|ë|An+1 |,.w=l,2, ... , and 
set v(t)=n(t, F), Oëf-e l . Integrating by parts and taking into account the assump-
tion that v(0)=0, we obtain-that for every O ë r - d 

«w I I , . 
2 log r/|A„| = / (log r/t)dv(t) = / (v(t)/t) dt = N(r, F). 

n = 1 • 0 0 
oo 

This shows that, condition (a) is equivalent to the condition 2 1/|AJ 
11 = 1 

which is clearly equivalent to condition (b). This completes the proof. 

From Lemma 2.2 we obtain an equivalent definition of the. class Na(X): 

Coro l l a ry 2.3. If X is a complex Banach space and F is an X-valued mero-
morphic function on D, with poles {A1; Aî; ...} repeated according to multiplicity, 

13» 
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theft F is in Na(X) for some if and only, if sup m . ( r , F ) < °° xand •• 
OSrcl 

n 

Proof. This is an immediate consequence of Lemma 2.2 and the'definition of 
the class Na(X). 

We recall that if (Ax, X2, ...} is a sequence in D which satisfies condition (b) 
of Lemma 2.2, and if k is the number of A„ equal to zero, then the Blaschke product 

B(z) = z* n iWMK-m-i«*)) 
V® " 

converges uniformly on compact subsets of D, and B is an inner function in H°° 
whose zeros in D are precisely the points X„, and each zero has multiplicity equal to 
the number of times it occurs in the sequence [7, p. 54]. 

If T is a contraction such that RT is in Na for some asO, then by Corollary 2.3 
the sequence of poles of RT in D (repeated according to multiplicity) satisfies cop» 
dition (b) of Lemma 2.2, and therefore by the above observation the Blaschke 
product associated with this sequence is a well: defined inner function in H°°. We 
shall denote in the sequel this function by BT. 

Lemma 2.4. If T is a contraction with resolvent in Nafor some aSO, then 
the function log \\BT(z)LT(z)\\ is subharmonic in D. 

Proof . Since the zeros of BT coincide with the poles of RT in D, including 
multiplicity, the operator function BT(z)KT(z) is holomorphic in D, and therefore 
[7, p. 34], for every x,y£JV, the function log \{BT(z)KT(z)x, y)\ is subharmonic 
in D. Hence, since by Lemma 2.1, 

log 1 BT(z)LT(z)\ = sup {log \(BT(z)KT(z)x, y)\: *<E UT, M ^ 1} 

for all Z£DP\Q(T), it follows that the function log ||BT(z)LT(z)| is subharmonic 
in DDQ(T), and therefore since it is continuous in D and D\Q(T) is a discrete 
set, it follows by simple argument that it is also subharmonic in D. 

We shall also need in the sequel the following elementary result which ap-
pears in [12, p. 263]. For the sake of completeness, we include the proof. 

Lemma 2.5. I f T is a contraction then for every X in bC\Q(T) 

(1 -|A|)li*r(>0li s 0Lr(;.)|| S l + 2 ( 1 -|A|)fl/?T(A)I. • • • 

Proof . Assume that A is in DC\Q(T). Since l ? r ( A ) = ( I - L T ) ~ L L T ( X ) we 
have that | |RT(A)| |S[K/-ir) -1 | | |LT(A)| | , and since T is a contraction, 

" | | ( / - i r ) - i | = | |2Z a T"\ \ * 21^1" = i / ( i - |A|) , v. . . 
B=0 »=0 
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and consequently (1 —|A|)||/?T(A)||^||.Lr(A)||. The second inequality is an immediate 
consequence of the identity LT (A)= l l+ (1 — |A|2) i?r(A) which follows by a simple 
computation. 

We shall also need in the sequel the fact that the class C0. is invariant under 
certain Möbius transformation. This is given by: 

Lemma 2.6. If T is a contraction of class C0. and a£D, then the operator 
Ta=(a/—T) (I—S.T)"1 is also of class C0.. 

Proof . Since T is a contraction Tx is also a contraction, and therefore the 
sequence of self-adjoint operators T*nTx is decreasing, hence converges strongly 
to some self-adjoint operator L. The assertion that Ta is of class G0. is clearly equiv-
alent to the assertion that L=0. To prove this, notice that T*LTa=L, hence 
(äl— T*)L(xI— T)=(/— aT*)L(I— äT) and therefore T*LT=L. This implies that 
T*nLT"=L for every positive integer n, so that for every xZ.Jff' we have that 

\\Lx\\ SlLlllr-JcIl, « = 0 ,1 ,2 

and consequently, since T is of class C0., we conclude that £ = 0 . This completes 
the proof. 

3. Contractions with resolvent in Nt 

We begin by showing that the limits in the definitions of the function w and 
the measure p in the statement of Theorem 1.1, actually exist for every contraction 
with resolvent in This enables us to associate with every such contraction T a 
function <pT in H°°, which by virtue of Theorem 1.1, is a minimal function when T 
is of class C0. 

Propos i t i on 3.1. If T is a contraction with resolvent in N1} then the measures 
(1/2«)log \\LT(Qeu)\\ dt, 0 ^ e < l , converge as 1—, in the weak star topology 
to a positive measure p on T. Furthermore, if w and <pT are the holomorphic functions 
on D defined by 

w(z)= f((ei'+z)l(eit-z))dp(t), z(LD 
r 

and 
(pT(z) = BT(z) exp (— w(z)), z£D 

then 

w(z) = Um (1/2«) f ((e*+z)/(e" - z ) ) log ||Lr(ec")l dt, z£D 

and \(pT(z)LT(z)\ s 1, z€D. 
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In addition, the function <pT has the following minimality property: I f f is a function in 
H°° which satisfies the condition 

\f(z)LT(z)\ 1, z€D 

then there exists a function h in H°° such that and f=hcpT. 

Proof . Since BT is in H" and BTj£0, we have that 
2ir 

f \log\BT(Qeie)\\dO, 
o 

is bounded as (cf. [10, p. 90]) and therefore noticing that ||LT(A)|| S i , l£DC\ 
f)Q(T) (since T is a contraction), we obtain from the assumption that RT is in Nx 

and Lemma 2.5, that 
2it 

/ |log \\BT(eeie)LT(eeie)\W d0, 0 -< q < 1, 
o 

is also bounded as g—l. Combining this with the fact that by Lemma 2.4 the 
function log ||BT(z)Lr(z)|| is subharmonic in D, we infer (cf. [6] or [7, p. 38]) that 
the measures 

(1/2*) log ||JBr(eei')£T(f?ei,)|| dt, 0 < a < 1, 

converge as q—1—, in the weak star topology to a measure ¡x on T, and the function 

u(z)= J Re ((e"+z)/(e" — z)) dp (t), z{£> 
r 

is the least harmonic majorant of the function log \\BT(z)LT(z)\\ in D. Since BT 

is a Blaschke product, we have that [7, p. 56] 
2lt 2jr 

lim_ J |log |£T(<?ei0)|| dO = lim_ ( - f log \BT{eei6)\dQ) = 0 

and therefore p is also the weak star limit as 6 — 1—, of the measures 
(l/27r)log||Z,T(ee''')ll dt, 0==e<l. Thus remembering that ||LT(A)|| 3d, X<iDC\Q{T), 
we obtain that p. is a positive measure, and since for every z£D the function e"— 
-*(ei'+z)/(ei'—z) is continuous on f , we also have that 

2ic 
w(z) = lim (1/2*) f ((e" + z)/(e" — z)) log ||Lr(eei')| dt, z£D. J 

It is also clear that u(z) = Re w(z), z£D, ,and therefore from the above mentioned 
majorant property of u, we obtain that 

log||5 r(z)L r(z)| | ^ Re w(z), z£Z> 
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which is equivalent to the desired inequality, 

||<pr(z)Lr(z)| ^ 1. 

To prove the last assertion, assume that / is a function in H°° that satisfies the 
condition | | / (z)LT(z) | |^l , Z£DC\Q(T). We may clearly assume that /=¿0. Since 
| |L r (z) | | s l , Z£DC\Q(T), it follows by continuity that | / ( z ) | s l , z£D. Consider 
the factorization f=B-g, where B is the Blaschke product formed by the zeros of 
/ i n D. Then g is in and 0 < | g ( z ) | ^ l , z£D, [9, p. 66]. Using the hypothesis on 
/ and Lemma 2.5 we obtain that 

( l - |z | ) | / (z) | | | i? r(z) | | ^ 1, z^DDeiT). 

This implies that every pole of RT in D, is a zero of / whose multiplicity is not 
less than the order of the pole. Thus B=B1-BT, where B1 is also a Blaschke product. 
Using again the hypothesis on / we obtain that 

log ||5(z)Lr(z)|| == - l o g |g(z)|, Z£DPIQ(T) 

and by continuity this inequality also holds for all z£D. Since g(z)^0, Vz€D, 
the function —log |g(z)| is harmonic in D, hence is a harmonic majorant of the 
function log \\B(z)LT(z)\\ in D. But by Lemma 2.4 and the above factorization of 
B, this function is subharmonic in D, and therefore (by [7, p. 38] or [6]) its least 
harmonic majorant in D is given by 

2n 
Ul(z) = iim (l/2n) f Re((ei' + z)/(e i '-z))log||5(0e i ')LT(ee i ') | |di, z£D 

and since B is a Blaschke product it follows by the argument already used in the 
proof of the first part of the proposition that 

2k 
u1(z)= lim (1/2n) f Re((eu + z)/(ei,-z))l0g\\LT(Qeit)\\dt =•Rew(z) 

e-1- o 

for all z£D. Combining all these facts we obtain that 

Re w ( z ) S - l o g |g(z)|, z£D 

hence the holomorphic function 

h(z) = B1(z)g(z) exp (w(z)), z£D 
( 

satisfies the conditions | f r(z) |s l , z£D and f~hq>T. This concludes the proof of 
the proposition. 

Remark . It is clear that lim ||jLr(gea)|| = l, uniformly on : every compact 
subset of R\O(T), and therefore the closed support of the measure N defined in 
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Proposition 3.1 is contained in RF)A(T). Hence in particular, if the set r r \ a ( T ) 
has linear measure zero, p is a singular measure, and q>T is an inner function. 

We can now characterize contractions with resolvent in N1. 

Theorem 3.2. If T is a contraction then the following conditions are equiv-
alent: 

(a) RT is in A^. 
(b) RT is a meromorphic operator function on D which admits a representation 

of the form 
RT(X) = G(X)/<p(X), >^DC\Q{T) 

where <p is a function in H°° whose zeros in D coincide with the poles of RT (including 
multiplicity) and G is a holomorphic operator function on D, which satisfies the con-
dition 

suP(i- | ; . | ) |G(;.) | | 

(c) The set DC)Q(T) is not empty, and there exists a function / ^ 0 in H°° 
such that 

sup (l-!A|)|/a)| | |i? r(A)|I 
;.EDn«(T) 

* 

Proof . (a)=>(b): If RT is in Nlt then the zeros of the function (pT (associated 
with T by Proposition 3.1) coincide with the poles of RT, including multiplicity, 
and therefore the meromorphic function cpTRT extends to a holomorphic operator 
function on D, which we denote by G. It follows from Proposition 3.1 and Lemma 
2.5 that (l- |A|)| |G(A)| |Sl for X£Df)g(T), and by continuity this inequality 
holds also for all Hence condition (b) is satisfied with <p=<pT and G=<pTRT. 

(b)=>(c): This is obvious. 
(c)=>(a): Assume that condition (c) holds for some function / p i 0 in H°°, 

and denote for every ?.dg(T) by d{X) the distance of X from <r (T). Since for every 
X£Q(T) we have the inequality (ci(A))-1 ̂  || (A)|j, (cf. [5, p. 567]) it follows from 
the assumption on / that for some constant M > 0 

I /(A) | S Md(X)ftl — \X\), X£DC\Q(T) 

and therefore by continuity, /vanishes on Z)Pl a (T). Consequently, s i n c e / is holo-
morphic and / ^ 0 , the set DOa(T) is discrete, and therefore by condition (c), 
all the singularities of RT in D are poles, and the order of each pole does not exceed 
its multiplicity as a zero of / Thus RT is meromorphic on D, and by the Blaschke 
condition satisfied by the zeros of a function in H°° [7, p. 53], we obtain that the 
sequence of poles of RT in D satisfies condition (b) of Lemma 2.2. Condition (c) 



Characterization of operators of class C0 201 

also implies that there exists a constant 0 such that 

flog+Kl-r)RT(r^dO^ / M\f(reie)\\dO+K 
0 0 

for all 0 S r < l . Since f£H°° and f^O, the expression on the right hand side of 
the above inequality is dominated by a positive constant which does not depend on 
r [10, p. 90]. Thus by Corollary 2.3 we conclude that RT is in Nlf and the proof of 
the theorem is complete. 

We conclude this section with a result that describes the action of certain Mobius 
transformations on contractions with resolvent in N1. This result will be required 
for the proof of Theorem 1.1. 

P r o p o s i t i o n 3.3. Let T be a contraction with resolvent in Nx. Fix <x£D and 
consider the function q (z)=(a—z)/(l—az), z£Z>. Then the contraction Tx=q(T) has 
also resolvent in N1, and there exists a constant c of modulus 1, such that 

<PT.(Z) = c<pT(q(z)), z£D. 

Proof . A simple computation shows that A€ Q (Ta) if and only if q(k)^Q(T) and 

RTa(k) = («A - l)-Kl-*T)RT(q(Xj), kte(TJ. 

Thus, using the representation of RT given by part (b) of Theorem 3.2, we obtain 

that 

where (p1(X)=(aX-l)~1q>(q(X)) and G1(A)=(l-aT)G(q(X)) for every l£D. Hence 
remembering that 

s u p ( l - | A | ) l G ( A ) | < -

and using the estimate 

( l - | A | ) / ( l - | 9 ( A ) | ) ^ 4 / ( l - | a | ) , A CD 

(see [7, p. 3, formula 1.5]) we obtain that 

supO-IADHG^A)! 

and therefore by Theorem 3.2, RT is in Nlm 

We turn now to the proof of the second assertion. A direct computation shows 
that for every 

LT^k) = (l-cd)(fll-l)-iLT(q(k)) 

and therefore ||Z,ro(A)||=||Z,T(g(A))||. Hence using the fact that by Proposition 3.1, 

|<pT(A)LT(A)B 3 1, A€Z>ne(r) 
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we obtain that also 

||<?>T(<7(A)Lr„(A)|| s 1, A ^ O W 

and therefore by the minimality property of the function <pT , there exists a func-
tion g in H°°, such that HglL^l and 

9t.W = gWVrW)' №. 
Changing the roles of Ta and T and noticing that q(q(X))=X, VA€A we obtain 
in the same way, that there exists a function h in H°°, such that ||/i|L = l and 

<pT(X) = h(X)<pTa(q(X)), XiD 
and therefore 

q>T(q(X)) = h(q(X))q>TmQ), X£D. 

Hence by the maximum principle g=c, where c is a constant of modulus 1. This 
concludes the proof. 

4. Proof of the main result 

For the proof of Theorem 1.1 we require one more preliminary result. 

Lemma 4.1. Let T be a completely non unitary contraction such that RT is in 
Nx. Then setting (p=q>T, we have that 

( i -HDgp(D*r (A) ] - 3 ' ^ z > r w ) . 

Proof . For eveiy AfZ> consider the holomorphic function hk on D defined by 

hx (z) = (<p (z) - q> (A)) (z - A) -1 , z£D, z ^ A. 

It is easily verified that and ||/iJL=i2/(l-|A|), and therefore also \\hx(T)\\^ 
S2/(1-|A|). Since 

<p(T)-<p(X)I = (T-XI)hi(T), X£D 

it follows that 

(<p(T)-(p(X)l)RAX) = -hk(T), X£Df)e(T) 

and consequently 
| | (<p(r)-<p(X)l)RT(X)\ \^ 2/(1 -|A|), XeDr]Q(T). • 

This implies the desired conclusion by virtue of Lemma 2.5 and Proposition 3.1. 

P roof io f Theorem 1.1. We assume first that i1 is an ¿avertible contraction 
of class C0. with resolvent in Nlt and prove that T is annihilated by cpT. For this, 
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we set <p = q>T, and consider the operator function 

F(k) = T<P(T)Rt(X), kea(T). 

Observe that since T is of class C0., it is completely non unitary, and therefore <p(T) 
is well defined. The singularities of F in D, which are the poles of RT, are removable, 
since by Lemma 4.1 we have for every 0 < r d j that 

sup{||F(A)[|: A6g(T), | A | < r } < ~ . 

Thus F is holomorphic in D, and therefore using the assumption that T is invertible 
we obtain from the Taylor expansion of RT around z=0, that 

F(X) = - 29(T)T-nk", X€D n=0 
the series converging in the operator norm. Combining this with the Laurent expan-
sion of RT for | z |> l , we obtain that for every re'B£D, 

F(rSB)-F(r-1(?9)=- 2 r^(p(T)T~ne^ne 

n= — oo 

the series converging again in the operator norm. On the other hand, using the 
resolvent identity 

RT(X)-RT(A') = (A'—A) RT (A) RT (X% A, X'£Q(T) 

we obtain that for every re'e£D 

F(rei9)-F(r~ V ) = eiflr_1(l-r^Fire^R^r-1^6) 

and therefore by Lemma 4.1, we obtain that for every x ^ J ? and reiS£D 

| |(F(re")--F(i-1«' ,))*|| ^ e r - i t f r i r - V V I l -

Hence applying the Parseval identity for Hilbert space valued functions on F, we 
obtain that for every 

oo 

2 r*M\](p(T)T-"x\\2 = (l/2n) f ¡¡(Fire^-Fir-ie^xfddii 
71=-. OO 0 

2lt OO 

^36r - 2 ( l / 2« ) f \\RT(r-i^)xfde = 2(> 2r2n\\Tnx\2. 
o n=0 

(The proof of this inequality was inspired by the methods in [16].) Since T is a con-
traction 

l i r - x r ) * ! s B r — W ) * ! , n = o, 1,2,. . . , 
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and therefore 

/1=—oo 

Combining this with the preceeding estimate we obtain that 

MT)*r ^ 36(1 - r 2 ) 2 r2"\\Tnxr. 
n = 0 

But the assumption that T is of class C0. implies that the expression on the right 
hand side of the above inequality tends to zero as r—1—, and consequently, 
<p(T)x=0. Since this holds for every x^^f, we conclude that <p(T)=0. To prove 
the same result for T not necessarily invertible, assume again that T is of class C„. 
and that RT is in Nt. Choose a£D(~)Q(T), and consider the function q(z)= 
=(a—z)/(l—az), z£D, and the invertible contraction Ta=q(T). By Lemma 2.6 
and Proposition 3.3, Ta is also of class C„. and has resolvent in Nu and therefore 
by what has just been proved, we have that <pa(T)=0 where cpa denotes the func-
tion cpT . But by Proposition 3.3, <px=c<poq where c is a constant of modulus 1, 
and therefore using the fact that qoq(X)=X, \/X£D, we obtain that (p=c~1q>aoq 
and consequently (p(T)=c~1(px(Ta)=0. This establishes the assertion in the gen-
eral case. 

We show next that <pT is a minimal function of T. For this assume that / is a 
function in Hm such that | | / | L s l and f(T)=0. To prove that <pT divides / in 
H°°, consider for every the holomorphic function gx on D defined by 

ga(*) = ( / ( z ) - / ( A ) ) ( 1 -mf(z))-*(z-X)-i(l ~lz\ ziD, z * X. 

Since H / I L s l also H&JLsl and therefore also | | g A ( r ) | | s l . Using the identity 

fa(2)(l -W)№) = ( / ( z ) - / ( A ) ) ( l -lz)(z-xyi 

and the assumption that f(T)=0, we obtain that for every AeDf le i r ) , 

fl/(A)Lr(A)|] = lgA(T)(l ^ 1. 

Consequently, by Proposition 3.1, there exists a function h£H°° such that 
and f=hq>T. Hence <pT divides every function in H°° which annihilates T. We show 
now that <pT is an inner function. For this, set again (p=cpT and consider the can-
onical factorization (p=<pi • (p2 where (px and <p% are the outer and inner factors of 
<p, respectively. Then (p1(T)<pi(T)=0, and therefore using the fact that q>i(T) has 
zero kernel since <px is outer [12, p. 118], we obtain that also <p2(T)=0. Hence by 
the result just proved, we have that 

= ^ 1, for all X€D. 
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On the other hand since H^IL^l also ||#>ilLsl, and therefore by the maximum 
principle q>i=c, where c is a constant of modulus 1. Thus <pT is an inner function, 
and consequently is a minimal function of T. (Since <p(0) is real we actually have 
that c = l , so that q>=<pi.) 

Finally to prove the remaining assertion of the theorem, assume that T is a con-
traction of class C0. Then by [12, p. 123] T is of class C0.. (For a proof of this fact 
which is independent of dilation theory see [8].) To show that RT is in NLT con-
sider a function / ^ 0 in H°° such that f(T)=0. For every A£D, consider the 
holomorphic function fk on D defined by 

h(z) = {f(z)-m)(z-X)-\ ziD, z*L 

Then HAILS2 | | /L / (1 - |A | ) and therefore also | I A ( r ) | | s 2 | | / L / ( l - | A | ) . Since 
f(T)=0 we h a v e t ha t fX(T)(XI-T)=f(X)I, hence if f(X)^0 then X£DC\q(T), 
and therefore since / ^ 0 , the set DPiq(T) is not empty. It also follows from the 
preceeding facts that 

¡/(A)*T(A)i| = |yi(2 ,)l = 2||/||eo/(l — |A|), 

for all A in D(~)q(T). Thus RT satisfies condition (c) of Theorem 3.2 and there-
fore by that theorem RT is in This concludes the proof of Theorem 1.1. 

Remark 1. Observe that we obtained above also a proof of the existence of 
a minimal function for a contraction of class C0 which is different from the proof 
of this fact given in [12, p. 124]. Still another proof of this fact appears in [3, p. 188]. 

Remark 2. It follows from Proposition 3.1 and the proof of Theorem 1.1, 
that if T is a contraction of class C0 then a function / in H°° annihilates T, if 
and only if, it satisfies the condition 

sup !/(A)|||LT(A)[|<~ 
XZDWT) 

which by virtue of Lemma 2.5 is also equivalent to the condition 

sup (1 —|A|)|/(A)|||i?r(A)|| <oo. 
^ecnetr) 

An immediate consequence of Theorem 1.1 and Theorem 3.2 is the following: 

Coro l l a ry 4 . 2 (DAZORD [ 4 ] ) . A contraction T is of class C0, if and only if 
T is of class C0., and there exists a function f^O in H°° such that 

sup (1 — IA I) |/(A) 11| 2?r (A)|| < oo. 
XtDOgiT) 
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5. Contractions whose characteristic function has a scalar multiple 

In this section we express the preceeding results in terms of the characteristic 
operator function associated with a contraction. We recall that [12, Chapter VI] 
if T is a contraction then its characteristic function is the holomorphic operator 
function 9T on D, whose value at every X£D is the bounded linear operator 8T(X) 
from the Hilbert space 3)T to the Hilbert space which is defined by the relation 

9T(X)DT = Dt.(I-1T*)-1(U-T). 

For every X£q(T) the operator 9T(X) is invertible and its inverse 9T(X)~L is the 
bounded linear operator from 3>T* to which satisfies the equality 

9T(X)~1DT. = Dt(XI-T)-HI-XT*) = KT(X) 

(KT is the operator function defined in Section 2). Thus from Lemma 2.1 we obtain 
for every X€g(T) the equality ||LT(A)H = [|0T(A)_1||, which is also proved in [12, 
p. 264]. This implies by Lemma 2.5, that RT is meromorphic in D if and only if 
Q?1 is meromorphic in D, and in this case these two functions have the same poles 
in D with the same orders (see also [12, p. 264]). Thus using Lemma 2.5 we obtain: 

Propos i t ion 5.1. I f T i s a contraction then RT is in Nlf if and only i f , 1 is 
of bounded characteristic (as a function from DC\q(T) into the Banach space of all 
bounded linear operators from ^r* to 2>T). 

We recall [12, p. 264] that a function /=£0 in H " is called a scalar multiple 
of 6T, if there exists a holomorphic operator function Q on D whose values are 
bounded linear operators from ^ to with norm not exceeding 1, such that for 
every X£D 

Q(X)9T(X)=f(X)I1 and 9T(X)Q(X) =f(X)I2 

where 7t and /2 are the identity operators on ¿¡¡T and 3tT* respectively. 
The above equalities are clearly equivalent to the equality 

QtQ)-1 = m m 

for every X£D such that f(X)^0. Thus from [2, Th. 2.1] and Proposition 5.1 we 
obtain 

Theorem 5.2. IfT is a contraction then the following conditions are equivalent: 
(a) RT is in Nx, 
(b) 9^1 is of bounded characteristic, 
(c) 9 T has a scalar multiple. 
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Remark. It follows from Theorem 5.2, Proposition 3.1 and the identity 
||0r(A)-1|| = ||LT(A)||, X£Dr\e(T), that if 9T has a scalar multiple/, then q>T is also 
a scalar multiple of 9T, and there exists a function ft in H°° such that | | / i | |„^l and 
f=hq>T. Thus cpT divides every other scalar multiple of QT and therefore can be 
called a minimal scalar multiple of вт. 

Finally, from Theorem 1.1, Theorem 5.2 and the equality ИбНА)"1! =||Lr(A)|[, 
X£DC\q{T), we obtain a characterization of operators of class C0 and a formula 
for their minimal function expressed in terms of the characteristic function : 

Theorem 5.3. A contraction T is of class C0 if and only i f T is of class C0. 
and one of the three equivalent conditions of Theorem 5.2 is satisfied. Furthermore, 
if T is of class C0 it has a minimal function given by 

mT(z) = BT(z) exp (— w(z)), z£D 
where 

2k 
w(z) = Um (1/2«) f ((e"+z)/(e i ' -z))log| |0T(0ea)-1[d/ i z£D 

e~* о 
or alternatively 

w(z) = f((ei'+z)l(eit-zj)dfi(t), z£D 
г 

where 
H = w* lim (1/2я) log Ц Я г О Т Ч dt. е-1-

An immediate consequence of Theorem 5.3 is 

Coro l la ry 5.4 (SZ.-NAGY and FOIA§ [12, p. 265]). A contraction T is of class 
C0 if and only if T is of class C0. and 9T has a scalar multiple. 

6. Contractions which are annihilated by functions in the disc algebra 

Let A denote the disc algebra, that is the Banach algebra of all continuous func-
tions on the closed unit disc D which are holomorphic in D, equipped with the 
supremum norm. In view of the von Neumann inequality [12, p. 32] and the fact 
that the polynomials are dense in A, there exists for every contraction T a norm 
continuous multiplicative homomorphism of the Banach algebra A into the Banach 
algebra J5f(X), which extends the mapping p-*p(T) where p is a polynomial (see 

also [3, p. 167] and [8]). It is easily verified that if f(z)= anz" is a function in A, 
n = о 

then the operator f(T) which corresponds to / by this homomorphism, is given by 

f(T)= lim 2 anr"T" (where the convergence of the series and the limit are in ' r~1~ B = 0 . 
the operator norm). It is also clear that if T is completely non unitary, then this 



,208 Aharon Atzmon 

homomorphism is the restriction to A of the homomorphism from H°° into 
given by [12, p. 117, Theorem 2.3]. 

Following [8] we shall say that a contraction T is of class D0 if there exists a 
function / ^ 0 in A such that f(T)=0. 

The characterization of contractions of class D0 is given by: 

T h e o r e m 6.1. A contraction T is of class D0, if and only ifRT is in Nx and the 
set o(T)f)r has linear measure zero. 

Proof : We assume first that T is a contraction such that RT is in N± and 
o(T)f)r has linear measure zero, and show that T is of class D0. Since the set 
o(T)C\r has linear measure zero, there exists by a Theorem of Fatou [9, p. 80] a 
function g^Q in A such that g=0 on o-(!T) f l f . (One can also choose by that 
theorem, g to be outer and so that it vanishes only on o(T)r\r.) Consider the func-
tion f=gcpT. We claim that / is in A and that f(T)=0. By the remark following 
the proof of Propositon 3.1, the closed support of the measure /z which is associated 
with <pT, is contained in o(T)C\r, and therefore since this set has linear measure 
zero (by assumption) n is a singular measure and cpT is an inner function. Since the 
accumulation points of the zeros of BT are also contained in <j(T)(~)r, it follows 
[9, p. 68] that <pT is continuous on D\(a(T)C\r). Therefore, since g=0 on o(T)(~)r, 
the function/extends to a continuous function on D which vanishes on o(T)C\r. 
T h u s / i s in A. 

To show that f(T)=0, consider the canonical decomposition T=Ta®T1 

[12, p. 9] where T0 and are the unitary and completely non unitary parts of T 
respectively. Since / ( ^ ^ ( ^ © / ( T J , we have to show that f(T0)=0 and f(TJ=0. 
The fact that T0 is unitary implies that <R(T0)<ZFF(T)nr, and therefore, since / = 0 
on o(T) Or, it follows from the spectral theorem for unitary operators that f(T0)=0. 
To show that also / (T 1 )=0 , observe first that for every X€Q(T) 

RT(X) = RTO(X)®RTL(X) and <r(T)(~)D = o(TJC\D. 

This implies that RTi is also in Nx and BT=BT. Also, using the facts that for 
every X£Q(T), LT(X)=LTO(X)®LTI(X) and ||Lro(A)|| = 1 (since T0 is unitary) and 
remembering that ||Z,Ti(A)||sl, ^££(7^)0.0, we obtain that 

flLr(A)l = lL r i(A)l, XEe(T)F]D = QiTJHD, 

and combining this with the equality BT=BTi, we infer that <Pt—9t1- Since 
the set o(T)C\r has linear measure zero, the same is true for its subset o(T^)C\r, 
and therefore, since 7\ is completely non unitary, it follows [12, p. 84, Proposition 6.7] 
that 7\ is of class C„.. Thus by Theorem 1.1, 7\ is annihilated by q>T and since 
<pr>=<j)r we also have that f(Tt)=0. This proves that T is of class D0 . 
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To prove the converse assume that T is a contraction of class D0. Then by 
[1, Corollary 4] or [8], the set a(T)C\r has linear measure zero. The proof that 
RT is in Nx is exactly the same as the proof of the last part of Theorem 1.1. The 
only additional fact to observe is, that if / i s a function in A, then for every 
the holomorphic function on D defined by 

/*(*) = ( / (z)- / (A))(z-A)- 1 , 

is also in A. This concludes the proof of the theorem. 

The preceeding proof shows that if T is a contraction of class D0, then for 
every function g in A that vanishes on <r(T)f]r, the function f=g(pT is also in 
A and f(T)=0. We show next that this is the general form of a function in A which 
annihilates T. 

Propos i t i on 6.2. If T is a contraction of class D0 and f is a function in A, 
then f(T)=0, if and only if there exists a function g in A that vanishes on a(T)P\r 
such that f=gcpT-

Proof . In view of the preceeding observation it remains to show that every 
function in A which annihilates T, is of the above form. To show this assume that 
/ is a function in A such that / (T )=0 . Then also f(TJ=0, where Tx denotes as 
before the completely non unitary part of T. Therefore by Theorem 1.1, there exists 
a function g in H°° such that f=g(pTi, and since by the proof of Theorem 6.1, 
cpTi=<pT, we have that f=g<pT- Since (pT is an inner function which (as observed 
in the proof of Theorem 6.1) is continuous on D\(a(T)C\r), and since as shown 
in the proof of [1, Th. 4], / = 0 on <r(T), it follows that g extends to a continuous 
function on D, which vanishes on a(T)C\r. This completes the proof of the prop-
osition. 

Remark. As observed in [8], it follows from the characterization of closed 
ideals in the algebra A [9, p. 85] that every contraction T of class D0 determines 
uniquely a closed set Kcr of linear measure zero, and an inner function q>, such 
that a function / in A annihilates T, if and only if f=gq>, where g is a function 
in A that vanishes on K. Proposition 6.2 gives an independent proof of this fact 
and also provides the more precise information that K=a(T)Or and <p=<pT. 

7. Contractions with resolvent in Nx for some 0 s a < 1 

According to [2, Theorem 1.2] a contraction T has resolvent of bounded char-
acteristic, if and only if, T is of class D0 and a(T) is a thin set, that is, in addition 
to the Blaschke condition satisfied by the countable set a(T)C\D, also the con-

14 
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dition 

/ ( l o g l / d ( e " X r ) ) ) d 0 < ~ > 
o 

holds (where for A£C, d(X, a (70) denotes the distance of A from cr(T)). 
For contractions with resolvent in Nx for some 0 < a < 1, we only have a partial 

result: 

Theorem 7.1. Assume that T is a contraction such that RT is in Nafor some 
0 < a < l . Then T is of class D0 and 

2n 
/ (log+ l/d(eiB, o(T))y~s dO < co 
o 

for every ¿>0. 

Proof . We prove first the second assertion of the theorem. To simplify nota-
tions we set d(X)=d(X, a(T)), for every 16C. Remembering that [5, p. 567] 

( d ( A ) ) - ^ |JiT(A)||, xee(T) 

and using the assumption that RT is in Na, we obtain that there exists a constant 
M > 0 such that 

2n 
f (log (1 - r y /d ( re i e ) ) de^M, 0 == r < 1. 
o 

For every />0, consider the set 

E, = {0<E[O,2n): d(eie) & /} 

and denote its Lebesgue measure by m(t). Thus m is the distribution function of 
the function 9-»d(eie), 0€[O, 2n). Noticing that 

d(reiff) (1 -r)+d(eie), 0 r < 1, 

we obtain from the preceeding inequality that for every 0 < i S l , 

m(t) log 1/2Í1-" S J (log t*/d(( 1 - t)eie)) dO M 

and therefore since a < l we deduce that there exists a positive constant c such that 

zn(í)=á c(2+logl / f )~ \ 0 < í < 2 t c . 

It is also clear that m(t)=2n for ¿s2TI. Thus using the well known properties 
of the distribution function (cf. [10, p. 65]) we obtain by integrating by parts and 
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using the estimate above, that for every <5> 0 
2 K 2 K 

J (log+1 /d(eie)y-* do S f (2+logl¡dié*)) 1-* dd = 
0 0 

2s 2ic 

= / ( 2 + l o g l / 0 1 - ^ m ( 0 ^ 2 T t + c ( l - 5 ) / (2+ log 
o o 

Since 5 >0, the last integral converges, and the assertion is established. 
To prove that T is of class Z>„, denote for every eiB£r by d1 (eie) the distance 

of e'B from the set rf]a(T), and fix 0 < 5 < 1 . Then by the assertion just proved, 
2n 

f (log+ 1 Id^e18))1-'do 
o 

and this clearly implies that the set r H <x(T) has linear measure zero. Thus by 
Theorem 6.1, T is of class D0. 
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