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The distance between unitary orbits of normal operators 
KENNETH R. DAVIDSON1) 

The problem of computing the distance between unitary orbits of operators 
is an important and difficult problem, even in the finite dimensional case. These 
problems have a long history, and we will mention some of the important results 
for the operator norm only. 

In 1 9 1 2 , WEYL [ 2 1 ] proved that given two Hermitian matrices A and B with 
spectrum a ^ a ^ . . a n d (repeated according to multiplicity) 
respectively, then 

dist(¿U(A), (B)) = max \at-b,\. 1 ̂ i^n 

This distance is clearly attained by a commuting pair of diagonal matrices in W(A) 
and <%(B), respectively. 

The normal case has received much attention, but the final answer is still not 
known. However, the natural analogue for the right hand side is obtained by looking 
at commuting pairs. If A and B commute, they are simultaneously diagonalizable 
which results in a pairing of eigenvalues {at, 1 Si^n, and \\A—B\\ =max |af—bt\. 
This is minimized if the pairing is optimal. This suggests the spectral distance 

8(A,B) = min max |a; — bK(i)\ It lsis/l 1 

where n runs over all permutations. Recently, it has been shown [5] that there is a 
universal constant c independent of dimension such that 

<504, B) S dist (W(A), %(B)) S c-^A, B). 

A number of cases in which equality (i.e. c=1) exists are known: unitaries [4], 
self-adjoint and skew-adjoint [18], and scalar multiples of unitaries [6]. 

In infinite dimensions, unitary orbits have received much attention. In this 
case, <%(A) is rarely closed. However, for normals, there is a nice description of 
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<%(A) in terms of a crude multiplicity function [10]. This, in turn, can be interpreted 
in terms of the spectrum of A modulo various (closed 2-sided) ideals of 38(H) [8]. 
For more general operators, the invariants for %(A) can be very complicated, and 
on this there is a large literature ([16], [9], [19], [11]). An important problem in oper-
ator theory and C* algebras has been the relation between the unitary orbit and 
ideal perturbations. The grandfather result is the Weyl—von Neumann Theorem 
and it has many important successors [3], [8], [19], [20], [12]. 

There is less information known about distances between unitary orbits. Some 
of this information has been obtained in an effort to give quantitative estimates 
in the study of compact perturbations following [7]. For example, BERG [3] gave 
concrete estimates for the distance between unitary orbits of direct sums of normals 
and weighted shifts. Later, HERRERO [ 1 5 ] gave very good estimates of the distance 
between unitary orbits of power partial isometries by improving on Berg's technique. 
Finally, the problem for pairs of self-adjoint operators has recently been solved [1]. 
They define a spectral distance in terms of the crude multiplicity function, and show 
that this is exactly the distance between the unitary orbits. Furthermore, this distance 
is achieved by commuting diagonal operators in the closure of the orbits. 

This is the starting point for the work of this paper. We show that the same 
spectral distance is the right one for normal operators. This distance is the infimum of 
\\A—51| for commuting pairs in the closed orbits, and this distance is attained by 
a pair of commuting diagonal operators. When A has no isolated eigenvalues of 
finite multiplicity, this is exactly the distance between orbits. In general, we obtain that 

dist (<%(A), %(B)) s c~15(A, B) 

where c is the same constant as in [5]. The general problem of determining if c = l 
reduces to the separable case with finite spectra. We do not know if a positive answer 
in the finite dimensional case would imply the same in the separable case. However, 
we believe that any proof would almost surely generalize. 

1. Preliminaries 

Let § be a Hilbert space, and let denote the algebra of bounded linear oper-
ators on §>. Given an operator A, °U(A) denotes the set {UAU*: U unitary in 3S(9))} 
and °U{A) denotes its closure. For 9Ji a closed subspace of dim 9Ji is the car-
dinality of an orthonormal basis for 9Ji. Let h denote the dimension of For each 
infinite cardinal asA, let denote the closed two sided ideal generated by 
{T£38(?>)\ dim RanT<a}. Let oa(A) denote er(A+J'a) as an element of the 
quotient C* algebra 38 ($>)/St. In particular, ^ is the set of compact operators 
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and <r^o(A)=ae(A), the essential spectrum. Also, let a0(A) denote the isolated 
points of finite multiplicity in a (A), known as the normal eigenvalues of A. For 
convenience of notation, we write a^A) for a (A). 

Let A be a normal operator, and let EA(-) denote its spectral measure. For 
r >0, X in C, the disc of radius> about X is denoted Dr(X). In [10], a crude multiplicity 
function is defined for normal operators by 

a (A) = inf {rank EA (Dr (A)): r > 0}. 

It is shown there that two normal operators on a separable space have the same 
closed unitary orbit if and only if they have the same crude multiplicity function. 
This is easily generalized to Hilbert spaces of arbitrary cardinality, and is a special 
case of HADWIN'S Theorem 3.14 [12]. It is not difficult to see (cf. [8]) that if a is an 
infinite cardinal, then {X: a(A)^a} equals AA(A). For a (X )=n to be finite, non-
zero, X must be an isolated eigenvalue of multiplicity n. Thus the theorem of Gellar— 
Page and Hadwin can be formulated: 

P r o p o s i t i o n 1.1. Two normal operators A and B have the same closed unitary 
orbits if and only if crx(A)=alx(B) for each infinite cardinal, and <r0(A)=A0(B) 
including multiplicity. 

We are now ready to discuss the spectral distance formula of AZOFF and DAVIS 
[1]. In the finite case, one might also define a spectral distance 

q(A,B)= sup inf {r: r a n k E A ( F ) =g r a n k E B ( F R ) and r a n k E B ( F ) ^ r a n k E A ( F R ) } 
F finite 

where Fr={X: dist (X, F)^r}. A simple application of the Marrige Lemma [14] 
shows that indeed Q=5. So we define our spectral distance as follows: 

Def in i t i on 1.2. S(A,B) is the infimum of real numbers r > 0 such that 

rank EA(F) ^ rank EB(FR) and rank EB(F) =£ rank EA(FR) 

for every compact subset F of C. 

We wish to relate this formula to the various spectra. Let dH(X, Y) denote the 
HausdorfF distance 

dB{X, Y) = max {sup dist (x, 7), sup dist 0>, Z)}. 
xiX yZY 

Let Fin (X) denote the collection of finite subsets of X. Let 8f(A, B) denote the 
maximum of 

sup inf {r: rank EA (F) ^ rank EB (Fr)} 
FeFin<T0(̂ ) 

and the corresponding term with A and B interchanged. (Should a0(A) be empty, 
this term is defined to be zero.) We obtain: 
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Propos i t ion 1.3. Let A and B be normal operators. Then 

5(A,B) = m<n{df(A,B), sup dH(oa(A), OA(B))}. 
• 8oS«S/i 

Proof . Let a be an infinite cardinal, and suppose A belongs to oa(A). Then 
rank EA(Dt(X))^a. for all e>0. Thus if r=d(A, B), we have rank EB(Dr+e(X))^oc 
for all £>0. Hence oa(B) intersects Dr(A), so dist (A, oa(B))^r. Letting a and 
A run over all possibilities, and then interchanging the role of A and B, we obtain 

S(A, B) b sup dH(oa(A), oa(B)). 
H„Sa Sh 

By definition, 5(A,B)^df(A, B), so S(A,B) is greater than the right hand side, 
say s. 

Conversely, let F be a compact subset of C, and let a=rank EA(F). If a is 
infinite, then Aa(A) intersects F. Thus <tX(B) intersects Fs, and thus rank EB(Fs+e)^a 
for all e>0. If a is finite and F is contained in er0(A), the definition of 8f(A, B) 
gives a^rankE B (F S + C ) for e>0. Finally, if a is finite but F is not contained 
in £70(A), then F intersects cre(A). So as in the infinite case, a^K 0 ^ rank EB(Fs+e) 
for all s>0. It follows that 5(A,B)^s, and equality is obtained. 

Remark 1.4. If a(A)=ae(A), then 

S(A,B)= sup dH(oa(A),oa(B)). 
lSxSh 

Here a runs over the infinite cardinals and a = l , where o1(B)=o(B) by defini-
tion. To see this, note that if F is a finite subset of a0(B), then rank EA (Fr) equals 
zero or is infinite. So inf{/-: rank EA (Fr)^ rank EB(F)}=inf {/•: Frn«r(y4)^0}. 
Hence 5r(A,B)= sup dist (A, a (A)). 

X€CTO(B) 

2. Lower bounds 

Propos i t ion 2.1. If A and B are normal operators on then 

dist (fll(A), ^¿(B)) ^ sup dH(oa(A),oa(B)). 
lsctah 

Proof . Let a = l or some infinite cardinal, and let A belong to aa(A). Then 
rankEA(De(A))Sa for all £>0. If B' belongs to %(B) and we will 
show that rankEB(D s + s(A))^a for all £>0. Otherwise for some e>0, there 
is a unit vector x in Ran EA(Dtj2(A))D Ran EB.(DS+,.()))-. This gives 
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Hence <ra(B) intersects DS(X), and thus dist'(A, ot(B))^s: By symmetry, 
dn(<rx(A), ca(B))^dist (<%(A), ®(B)) for all a. 

Co ro l l a ry 2.2. If A and B are normal, and o(A)=<re(A), then 

dist (W(A), %(B)) S ¿(A, B). 

P r o p o s i t i o n 2.3. If A and B are commuting normal operators, then 

\\A -2?||s 8(A,B). 

Proof . By Propositions 1.3 and 2.1, we need only show that \\A—B\\ s 
SDF(A,B). Suppose F is a finite subset of <R0(A), s>-0, and rank EA(F)> 
>rank EB(FS). It suffices to show that M - £ | | S i . Now EA(F) belongs to W*(A)= 
= {A}", and thus commutes with B. So the restrictions A0 and B0 of A and B to 
EA(F)9) are commuting normal operators. Hence A0 and B0 are simultaneously 
diagonalizable. The spectrum of A0 lies in F, but B0 has at least one eigenvalue out-
side FS, which is paired with some eigenvalue of A0. Thus 

M - 5 I I SlMo-^oll s s . 

The main result of this section is an easy corollary of the result of [5]. 

Theo rem 2.4. There is a universal constant c > 0 so that for every pair of 
normal operators A mid B acting on the same space, 

dist (<%(A), W(B)) S c~lS(A, B). 

Proof . By Propositions 1.3 and 2.1, it suffices to show that \\A—5||S 
Sc-1«?^, B). So let F be a finite subset of o0(A), S>0, and rank£^(F)=-
> r a n k E B ( F S ) . Let &=EA(F), £ = E B ( F S ) ± § , X=A\Si and B=B\£. Let 
C=EA(F)EB(FS)-L be thought of as an operator from fl to ft. Then 

\AQ-QB\\ = IIEA(F){A-B)EB(FSY\\ S I\A-BJ. 

By Theorem 4.2 of [5], we get 

\\A-B\\^sc-i\\QL 

However, since codim £ = r a n k EB(FS)<dim ft, £ and ft intersect, and thus ||2|| = 1. 
This completes the proof. 

3. Best commuting approximants 

Now we construct closest possible diagonal operators in the unitary orbits. 
There is a technical matching problem that has to be solved, and this will be left to 
the next section. 
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In the following proof, we make use of this fact: If X is a compact subset of the 
plane, there is a Borel function/mapping C to X so that \z —/(z)|=d(z)=dist (z, X). 
To obtain such an / , let F(z)={x£X: \z-x\=d(z)}. Let 

0(z) = min {Arg (x—z): x£F(z)} 

where Arg (w) belongs to [0,27t) such that w=|w| exp(i Argw). Let / ( z ) = 
=z+d(z) exp (id(z)). It is readily verified that / is Borel as required. 

Theorem 3.1. Suppose A and B are normal operators on There are commuting 
diagonal operators A' and B' in "it(A) and Hiß) respectively such that \\A'—B'\\ = 
=5 (A,B). 

Proof . Let r=S(A,B). For each infinite cardinal ct^h, let Aa be a diagonal 
normal operator on a Hilbert space § a of cardinality a with a (Ax)=<jx (Ax)=oa (A). 
Similarly, let Ba be a diagonal normal operator on with o(Ba)=oa(Ba)=aa(B). 
Let fa be a Borel map of oa(A) into <ra(B) such that \fx{a)—a\^r for all a in cra(A). 
Similarly, let ga be a Borel map of aa(B) into <ra(A) such that \ga(b)—b\^r. These 
maps exist since dB(ox(A), ox(B))^r. Consider the diagonal normal operators 
Aa=Aa@ga(Ba) and Bx=fx(Ax)®Bx acting on §„©$„. This construction guaran-
tees that dim a, o(Ax)=ox(Ax)=ox(A), o(Bx)=ax(Bx)=oa(B), and 

Consider 9) = 2 (5«©Ö«)» and the diagonal normal operators Ä= © 2 Ä* 

and B= ffi 2 These are commuting diagonal operators such that \\A—B || S r , 
SoSaSA 

aa(Ä)=<ra(A) and oa(B)=ox(B) for all infinite cardinals, and o0(A)=Q=o0(B). 
To obtain the desired operators, we need to add on summands to give the 

isolated eigenvalues of finite multiplicity. We will produce commuting diagonal 
normal operators Af and Bf on a separable space such that \\Af—Bf\| =r, oe(Af)^ 
Qoe(A) (and oe(Bf)Qoe(B)) and o0(Af)\oe{A) and o0(A) (correspondingly 
<rQ(Bf)\<Te(B) and <r0(B)) coincide including multiplicity. Once this is accomplished, 
Jet A'=A(BAj and B'=B®Bf. These are commuting diagonal normals such 
that M'—-ß'llsr. Furthermore, ox(A')=ox(A) for infinite cardinals and a0(A/)= 
=cr0(A) including multiplicity, so by Proposition 1.1, A' belongs to Similarly, 
B' belongs to W(B). 

To produce Af and Bf, we must find a matching of the points in o0(A) to points 
in o(B) within distance r. Points close to oe(B) can be "absorbed", but points 
further from <re(B) must match up including multiplicity with points in <r0(B); 
and vice versa. To do this, we need a curious Maitiage Lemma type theorem. This 
theorem will be stated and proved in the next section. First we obtain the appro-
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priate setting for our problem, and finish the proof modulo this combinatorical 
theorem. 

: Let denote the points of a0(A) repeated according to multiplicity which are 
distance greater than r from <RE(B). Similarly let be the corresponding subset of 
Cq(B). Define a relation R on A0(A)Xa0{B) by aRb if and only if \a—b\^r. For 
each in F i n t h e set F(SF)={b£o0(B): aRb for some a in S/J is finite. 
And since S(A,B)^5f(A,B), we have |J/ |S |F(^)|<CO . Similarly, set G(@)= 
= {a€<r0(A): aRb for some t i n for each & in Fin(^0). Again, 

This relation satisfies the hypotheses of the Combinatorial Lemma 4.1. Thus 
there are sets séx and such that and and a 
bijection f : such that \a—f(a)\^r for every a in Let sé2=oü(Á$\six 

and choose a function / 2 : s/2-*<re(B) such that \f2{d)—a\&r for all a in si2. 
Similarly, define á?2 and g2: 3S2-*ae{Á). 

Define diagonal normal operators as follows: 

A1 = diag {an: Bx = diag{/(a„): a^s/J, 

A2 = diag {a„: a„£s/2}, B„ = diag {/2(a„): a„€s/z}, 

A~ = diag {g2(bn): bn£&2}, B2 = diag {bn: bnd@2}, 

Af = A1@Az@Aco, Bf = B1®Bco®B2. 

The properties of / , / 2 and g2 show that \\AF-Bf\\^r, <r0(A1QA2) agrees with 
(T0(A) including multiplicity, and AE (AF) U A0 (AM) ^ AE (A). The corresponding state-
ments for BF hold also. So AF and BF are commuting diagonal operators with the 
required properties. This completes the proof. 

Coro l l a ry 3.2. If A and B are normal operators, then 

dist (%(A\ **(*)) ^ HA, B). 

Coro l l a ry 3.3. If A and B are normal operators, and o(A)=ae(A), then 

dist (W(A), % (B)) = S(A, B). 

Remark 3.4. The equality dist (W(A), <%(B))=S(A, B) is readily verified for 
several classes of normals: the self adjoint case [1] can also be proven using the 
technique of [6], as can the case of scalar multiples of unitaries. The technique of 
[5] works for a self-adjoint A and skew-adjoint B. Just remember that one needs 
only worry about Sf(A,B). 
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4. Hie combinatorial lemma 

The result that we need is an infinite analogue of the Marriage Lemma [14]. 
There are a number of infinite versions of this theorem; notably [13] and [17], and 
our proof is very similar. However, the set up we require seems sufficiently peculiar 
that no known theorem applies directly. 

Let si and 0! be sets, and let R be a relation on For A a subset of si, 
define F(A)={b£@: aRb for some a in A}. Similarly, for B a subset of 38, define 
G(B)={a£s/: aRb for some b in B}. 

Lemma 4.1. Let and 3S be sets with distinguished subsets sf0 and 380, and 
let R be a relation on six 38 with F and G defined as above. Suppose that 

1) \A\ S |F(/1)| < ® for every A in Fin (s/0), 
10 |B|=S\G(B)\<oo far every B in Fin (3S0). 

Then there are sets stx and 3SX such that si^^Q.ji and 380Q3SiQ and a bijec-
tion f : sf^SSi such that aRf(a) for every a in 

Proof . Call a non-empty set A in Fin (s/0) strict if \F(A)\ = \A\. The restric-
tion of R to AxF(A) satisfies 1). So the Marriage Lemma [14] gives a bijection 
/: A-»F(A) such that aRf(a) for every a in A. 

Note also that when A is strict, s/\A and 3S\F(A) with distinguished sets 
S/0\A and 3SQ\F(A) still satisfy 1) and 1'). For if A' is a finite subset of SF0\A, then 

I W K W I = |FU'LU)\F04)| S \A'YJA\ — \F(A)\ = \A'\. 

Also if B' is a finite subset of 3S0\F(A), then G(B) is disjoint from A, so | ß ' | — 
^\G{B')\ = \G{B')\A\. 

Similarly, if B is a strict subset of there is likewise a bijection / : G(B)-~B 
such that f(a)Ra for all a in G(B). And sf\G(B) and 3S\B satisfy 1) and 1'). 

Use the Axiom of Choice to well order s/0[J3§0. Starting out of (A, B) we 
define (Aa, Ba) by transfinite induction. At stage a, we have a collection 
{(sfß,3&ß): /?«x} of pairs satisfying 1), l ' )and stßz>stß. and 38ß^38ß. if /?</?'«*. 
When a is a limit ordinal, set f ) ^ and 3Sa= p) 3Sß. Since 1) and 1') deal 

ß<a ß<a 

with finite sets, it is easy to verify that the hold for the intersection. 
If a = ß + 1 is a successor ordinal, then 
(a) If there are strict subsets of sfaC\sfß, choose a strict A and obtain a pair 

(A,F(A)). 
(b) If there are no strict subsets of but there are strict subsets of 

08of\38ß, choose a strict B and form a pair (G(B), B). 
(c) If there are no strict subsets, let a (or b) be the least element of the well 

ordering of which belong to s/ß[J38ß. Take any b (or a) such that aRb, 
and form the pair ({a}; {ft}). 
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In each case we obtain a pair (A, B) with \A\ = \B | < and, following earlier 
remarks, a bijection / : A—B such that aRf(a) for a in A. Furthermore, we set 

and 4 . = a , \ B . By the remarks at the beginning of the proof, and 
S&„ satisfy 1) and 1') in cases (a) and (b). They also hold in case (c), for if A is a finite 
subset of s/af]s/t, then since A is not strict, 

|F(4)\{i>}| s |F(4)| —1 ^ \A\. 

The same holds for finite subsets of 
This procedure terminates at some ordinal a with \a\^\s/0U3t0\. The result 

is a disjoint collection of finite pairs (Ait Bt) which exhaust s/0 and On these 
sets, functions / = / have been constructed so that aRf(a) for all a in At. Set 
J /2= U Ai and U Bt. The union / of the /¡'s is the required bijection. 

5. Further remarks 

The results of section 2 show that the problem of determining if the constant 
c equals 1 is basically a finite dimensional problem, for the difficulty lies solely in 
the SF(A, B) term. A quantitative way of phrasing the key issue is 

Ques t ion . If A and B are normal operators (on a separable space), F is a 
finite subset of <R0(A), S>0, and rank £ f l(F s)<rank EA(F), then is \\A-B\\ S i ? 

The reason one can reduce to the separable case is the following. Suppose A 
and B are normal with \\A—B\\<S(A, B). Let 9K be a separable reducing sub-
space of A containing the spectral subspace £A(<t(A)\<tHI(A)) such that <TE(A\3JL)= 
=<RE(A), and let 91 be a corresponding subspace for B. Let Si be the smallest reducing 
subspace for C*(A, B) containing both 9B and 9t. This subspace is separable. Let 
A'=A\9L,A"=A\SiX,B'=B\S< a n d B"=B\8.L. T h e n (t0(A')=(t0(A) a n d <rE(A')= 
=<RE(A); and A (A")=o^ ( A " ) = ( A ) . Similar relations hold for B. Further-
more, 

S(A",B")= sup dn(ca(A"), crx(B")) = sup dH(aa(A),<rt(B))^ 

is \\A"-B"I ^ }\A-B\\ 
and 

S(A', B') = max {¿¿A, B), dH(ae(A), <re(5))}. 

Thus S(A, B)=max {S(A\ B'), 5(A",B")} and \\A-B|| =max {\A?-B% \\A"-B 1} . 
So it must be the case that 

Ô(A\ B0 = Ô(A,B) > \\A-B\\ S \A'-B'\. 



222 Kenneth R. Davidson 

This reasonsing also leads to the conclusion that any constant с valid in Theorem 2.4 
for separable spaces is valid in general. 

Next, it is easy to approximate A and В arbitrarily well by normals of finite 
spectrum. So one may assume that A (A) and <R(B) are finite. This looks almost finite 
dimensional now. * • 

Quest ion. Can one show that any constant с valid in Theorem 2.4 for all 
finite rank normals works in general? 

I am confident that any proof valid in the finite case will extend to the separable 
one, but knowing this in advance would be nice. 

Finally, a special case subsuming much of what is known and is perhaps easier 
than the general case is the situation A—A* and arbitrary normal B. Does this 
case have c = l ? 
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