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A note on integral operators

BEN pe PAGTER

In 1974 A. V. BunvaLov [1] proved that the set of all absolute integral operators
from an ideal L into an ideal M of measurable functions is equal to the band gen-
erated by the integral operators of finite rank. A detailed discussion of this theorem
can be found in {3] (Chapter 13). This result was proved under the additional hypothe-
sis that the normal integrals on the domain L (i.e., linear functionals ¢ that can be
written as ¢ =¢,—¢@,, where ¢, and ¢, are positive order continuous linear func-
tionals on L) separate the points, which guarantees the existence of sufficiently many
non-zero integral operators. Some time ago it was conjectured by A. C. Zaanen
that Buhvalov’s result remains valid without the assumption concerning the nor-
mal integrals. In the present paper we prove that the conjecture is true. In particular
it will be shown that if L is an ideal of measurable functions not possessing any
non-zero normal integrals, then L cannot be the domain of any non-zero integral
operator. This last situation occurs for example if (Y, Z,v) is a finite measure
space not containing any atoms and if we take for L any of the ideals L, (Y, v)
(O<p=<1), L, .,(Y, v) (the weak L, functions) or the space Ly(Y, v) of all v-measur-
able functions on X. :

In this paper we restrict ourselves to considering real measurable functions only;
since all the results can be extended easily to the complex case by means of com-
plexification (see e.g. [3], sections 91 and 92).

1. We start with some notation and terminology. We refer to the book [2] for
any unexplained terminology concerning Riesz spaces (vector lattices), such as band
and the disjoint complement D? of a subset D of a Riesz space. Let (¥, Z,v) be
a o-finite measure space. By L,(Y; v) we denote the space of all v-measurable real
functions on Y which are finite v-a.e., with identification of functions which are
equal v-a.e. Let L be an ideal in Ly(Y, v), i.e., L is a linear subspace with the addi-
tional property that |g|=|f|, g€L,(¥,v) and f€L implies that gcL. A subset
Fof Y is called an L-null set if every f€ L vanishes on F v-a.c. There exists a maximal
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L-null set Fy,, which is unique modulo null sets. The set Y\ F, is called the carrier
of L. For the investigation of the ideal L we may assume that the carrier of L is
equal to Y. We denote by L, the ideal in L,(Y,v) consisting of all functions g
satisfying f |fg|dv<eo for all f€L. The elements of L, can be identified in the

obvious way with the linear functionals on L referred to in the introduction, which
are called normal integrals. Let Y, be the carrier of L. In general Y, is a proper
subset of Y. By way of example, if ¥ does not contain any atoms and L=Ly(Y, v),
then Y,=0 ([3], Example 85.1). Furthermore, Y,=Y if and only if L_ separates
the points of L ({3], Theorem 95.2).

Now let (X, 4, u) be another o-finite measure space and let M be an ideal
in Ly(X, p). The linear operator T from L into M is called an integral operator
(or kernel operator) if there exists a uXv-measurable function T(x,y) on XX,
the kernel of T, such that for every f¢L,

TN = f T(x, »)f()dv(y) p-ae. on X.

Furthermore, T is called an absolute integral operator if the kernel |T(x, y)| defines
an integral operator from L into M as well. In fact, the integral operator T is absolute
if and only if T is order bounded (i.e., T maps order intervals into order intervals),
and in that case the absolute value |T| of T in the Riesz space %,(L, M) of all
order bounded linear operators from L into M, is the integral operator with kernel
IT(x, »)I ([3], section 93). The set S (L, M) of all absolute integral operators from
L into M is a band in %, (L, M) ([3], Theorem 94.5). Observe that any integral
operator T from L into M is order bounded as an operator from L into Ly(X, p),
since the kernel |T'(x, )| defines an integral operator from L into L, (X, p).

As usual, for any g€L; and h€é M we denote by g®h the integral operator
with kernel h(x)g(»), and by L, ® M we denote the collection of all finite linear
combinations of such operators. The elements of L, ® M are called integral oper-
ators of finite rank. It follows from L, @ Mc #(L, M) that the band {L; @ M}*
generated by L, @ M satisfies {L, @ M}**C#(L, M). In the next section we will
show that (L, @ M}*=4(L, M), without any extra assumption about the carrier
of L.

2. Let (¥, Z, v) be a o-finite measure space and L an ideal in L,(Y, v). It will
be assumed that the carrer of L is equal to ¥. We begin with a lemma which char-
acterizes ideals L for which L; ={0}.

Lemma 2.1. The following statements are equivalent.
(@) L; ={0}. ,
(ii) For any A€Z with O<v(A)< <~ there exist disjoint sets {A,};—, in X such

that A=G A, Snv(A,,)::» and S’nh €L.
n=0 n=1 n=1 "
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Proof. First observe that L; ={0} if and only if for every AcZ with

0<v(Ad)<-< there exists 0=fcL such that f fdv=o. Now it is clear that (ii)
A

implies (i), by taking f= 5’ ny, . Now assume that L, ={0} and let 4A€X with
n=1 n
0<v(A4)~<-oo be given. By the remark above, there exists 0=jf¢ L such that f fdv=oco.
i A

Define .
A, ={yed: n=f@)<n+l} (n=0,1,2,..).

Then {4,}., is a disjoint sequence and G A,=A (modulo a nullset). Moreover,

n=49

since v(4)<o, it follows easily that f’ nv(A,)=, and it follows from
n=1

ny, =f that jinxA"EL.

0=

s

In the next proposition it is shown that an ideal L with L; ={0} cannot be
the domain of any non-zero integral operator.

Proposition 22. Let L be an ideal in Ly(Y,v) with L, ={0}, and let
(X, A, 1) be a o-finite measure space. If T is an integral operator from L into L,(X, u),
then T=0.

Proof. Assume that T is a non-zero integral operator from L into Ly(X, )
with kernel T(x, y). Since T is order bounded (and hence T is the difference of
two positive operators), we may assume that T>0. Furthermore, since X and ¥
are both o-finite, there exist X’€¢4 and Y’€X with O<u(X’), v(¥’)<o such
that T’(x, y)=T(x, Y)xx(x)xy.(¥) is not equal to zero uXv-a.e. on XXY. Let
L’ be the ideal in Ly(¥’, v) consisting of all restrictions of elements in L to ¥”.
Clearly (L), ={0} and T"(x,y) defines a non-zero integral operator from L’
into L,(X’, u). Hence, we may assume that (X, 4; ) and (¥, Z,v) are both
finite measure spaces with u(X)=v(¥)=1. Furthermore, there exists ¢>0 such
that the set P={(x; »)EXXY: T(x,y)=¢} satisfies (uXv)(P)=>0. Now it follows
from T(x, y)=g xp(x, y) that the kernel xp(x,y) defines a non-zero integral oper-
ator from L into L,(X, p), Therefore, we may assume without loss of generality
that p(X)=v(¥)=1 and the integral operator T from L into L,(X, y) has kernel
xp(x,y) with PSXXY and (uXv)(P)=4=0. It follows from

J{ [ 1, ») dp@} dv(y) = 6 >0,
r b 2
and from v(Y)=1 that the set A={y€ Y: f xp(x, y) d#(x)%é/Z} satisfies v(4)>0.
X
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Observe that if B& 4, B€Z, then
J 2 d(uxv) = (5/2)v(B).
XXB
Since L, ={0}, we can apply Lemma 2.1 to the set 4, and so there exist disjoint
sets {4,}, in Z with quA,,=A, .Z: nv(4,)= = and f='§; ny,€L. Put g=Tf.
k
Since Z ny 4 4 f, it follows from the theorem on integration of increasing sequences

that g= Z"TXA (n-a.e. convergent series in Ly(X, p)). For k=1,2,... let

E,—{xEX g(x)Sk} Then EtX. Since u(X)<eo, there exists k such that
u(X\E)<6/4. Let this k be fixed.
Since 4,54 (n=1,2,...), it follows from the observation above that

Gy = [ xed@xy= [ zd@x+ [ ppduxv)=

XX4, K\EDX 4, ExXAp

= p(XINE)v()+ [{ [ 1205 )24,0) 0D} dp(x) =
E, Y

sOvU)+ [Tr)BHdpE (n=1,2,..),
Ey

and hence

GvA) = [Tr)®dp(x) (r=12,..).
Bk -
This implies that

@) S ma)= [{SnTr)@due = [26)dn) = k) <=,
n= E. n=1 E, .

which is a contradiction. This completes the proof of the proposition.

Corollary 2.3. Let (X, A, p). and (Y, Z,v) be o-finite measure spaces and let
L and M be ideals in Ly(Y, v) and Ly(X, p) respectively. Denote by Y, the carrier
of L, and by X, the carrier of M. Let T be an integral operator from L into M with
kernel T(x,y). Then T(x,y)=0 pXv-a.e. outside XyXY,.

Proof. Let K denote the ideal in L,(Y\Y,, v) consisting of all restrictions
of elementsin Lto ¥\Y,. Itisclear that K, ={0}. Let S(x,y) be the restriction
of T(x,y) to XX(Y\Y,). Then the kernel S(x,y) defines an integral operator
S from K into M. It follows now from the above proposition that S=0, and hence
S(x,»)=0 pXv-ae. on XX(¥\Y,) (see [3], Theorem 93.1). Therefore T(x, y)=0
uXv-ae on XX(Y\Y,). Furthermore, the integral operator from L into M with
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kernel T'(x, y)xxx,(®) is the zero operator, hence T'(x, »)xp x,(X)=0 uXv-a.e.
on XXY, ie., T(x,y)=0 uXv-ae. on (X\Xp)XY. We may conclude, therefore;
that T'(x, y)=0 uXv-a.e. outside X,XY¥,.

In the next theorem we will show that the band of absolute integral operators
from the ideal L into the ideal M is equal to the band generated by the integral
operators of finite rank. Under the additional assumption that the carrier of the
ideal L is equal to the whole space Y this result was proved by A. V. BurvaLov [1]
(see also [3], Theorem 95.1).

Theorem 2.4. Let (Y, X,v) and (X, A, p) be o-finite measure spaces and L
and M ideals in Ly(Y,v) and Ly(X, ) respectively. Then the band (L, M) of
all absolute integral operators from L into M is equal to the band {L, @ M}“.

Proof. It is sufficient to show that any positive integral operator T from L
into M is contained in {L; ® M}*. Let T(x,y) be the kernel of T. Denote by Y,
the carrier of L, and by X, the carrier of M. By the above corollary we have
T(x,y)=0 uXv-a.e. on (XXY)N(X;XY,). Since Y, is the carrier of L], there
exists a sequence {¥,};, in X such that Y,t¥, and yy €L, for all n. Similarly,
there exists a sequence {X,}>, in A with X,tX, and Xx €M (n=1, 2,...). Now
define

T,=inf {T,nyy, ®xx,} (n=1,2,..),

which is an integral operator with kernel

T,(x,y) = inf {T(x’ »), "Xx,.(x)Xy,.(}’)}

(see [3], Theorem 94.3). Note that 0=T,¢{L, @ M}*. Since T(x,y)=0 uXv-a.e.
outside X,XY,, it follows that 0=T,(x, Y1T(x,y) uXv-ae. on XXY, and
hence 0=TAT in %,(L, M) ([3], Theorem 94.5). This shows that T¢{L, @ M}*.

Remark. 2.5. In [1] BurvALov presented an important characterization of
integral operators. Recall that the sequence {f,}:, in Ly(Y, v) is called star con-
vergent to zero (denoted by f,%0) if every subsequence of {f,};~, contains a
subsequence which is converging to zero v-a.e. on Y. Let L and M be ideals in
Ly(Y,v) and Ly(X, u) respectively. We say that the operator T from L into M
satisfies Buhvalov’s condition if it follows from O=u,=uc¢Ll (n=1,2,...) with
u, %0 that Tu,—~0 pointwise v-a.e. on X. It was proved by Buhvalov that the
operator T from L irto M is an integral operator if and only if T satisfies Buhva-
lov’s condition. In the proof of this theorem it is assumed first that the carrier of
L; is equal to Y (see also [3], Theorems 96.5 and 96.8), and then it is observed that
the general case can be reduced easily to this special situation. Indeed, consider
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the ideal K=LNL..(Y;v) and let T, be the restriction of T to K. If T ‘satisfies
Buhvalov’s condition, then-T, satisfies Buhvalov’s condition as well and the car-
rier of K] is equal to Y. Hence T is an integral operator with kernel T(x, y). Now
it is easy to see that T is an integral operator with kernel T(x, y).
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