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Some sufficient conditions for 'hereditarily finitely
. based varieties of semigroups

G. POLLAK

Introduction

The proofs of most theorems saying that one or another variety is hereditarily
finitely based are very similar to each other (in so far as syntactic proofs are concerned).
The general scheme of such’ proofs has been described in [6] (see also Theorem 2.5
of the present paper); however, this description does not help much more in future
proofs as finger-posts do in alpinism. The essential difficulty usually lies in proving
that the objects and relations in the scheme are what they ought to be (sometimes it is
not even easy to construct them). We think therefore that every unification which
renders possible to claim that a more or less broad class of varieties is h.f.b. is of
interest.

In the present paper we give sufficient conditions of the following two types:
a) if J is a fully invariant ideal of the countably generated free semigroup F, and a
certain quas1-ordered set (connected with F\J) is well-quasi-ordered then the vari-
ety SG (J) defined by all identities u=v, u, »€Jis h.f.b.; b) if Vis a variety, MCF
is a standard form for elements of J (i.e. every weJ equals to some w* €M), and M
itself, as well as the “process of standardization’ are subject to certain conditions,
then every variety in the lattice interval [V, VN SG(J)] is finitely based over V.
Furthermore, we show that certain concrete subsets of F satisfy these conditions. As
an application, we find all h.f.b. identities in one of the four classes of “candidates™
to such identities (see [3]; class (d)). This result accomplishes, in a certain sense, the
investigations concerning such identities ; namely, classes (c) and (d), as well as balan-
ced h.f.b. equations are completely described now (see [1], [4], [6]), homotypical and
some other equations of class (b) are settled in [5], and it looks likely that presently
known syntactic methods cannot help us much further.
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Part I. General sufficient conditions

1. Preliminary. We need rather a lot of not generally known concepts and
of notations running through this paper; so we have collected most of them here.

By the free semigroup F we always mean the countably generated free semigroup
F(X) on the set of generators X={x;, X, ...}. As we need also the free monoid F®°,
we shall call the elements of F terms, the elements of F® words (i.e. a word can be
empty, a term cannot). The coincidence of words will be denoted by u=w; the for-
mula u=v is an identity which holds in some subvariety V of the variety of all semi-
groups SG. The empty word, as well as the empty set, we denote by @; this will not
lead to confusion.

The set of all variables (letters) which occur in u will be denoted by X'(u). Fur-
thermore, lu| denotes the length of «, and |[u]; the number of occurrences of x; in w.
The words ug,, «® are the prefix and the suffix of length I of the word u (of length
=]), resp.:

a.n u=ugn' =u"u®, lul =1, lugl =@ =1

A third kind of denoting equality is defined by

def —ry
1.2 u=luu, <= u=wu, and X@u)NX(u) =0.

Note that u="!u,u, implies [X(u)|=|X(@4)]+|X(u;)]. If a word has no decompo-
sition of the form (1.2), it is said to be irreducible. Every word has a unique irredu-
cible decomposition:

P def r . . .
(1.3) u=!! ‘]]1 u; < u= 1171 4;, wu; irreducible for i=1,...,r.

We call the components u; the irreducible factors of u. The word u is said to be
semiirreducible if |u;] >1 for every i (in particular, 0 is semiirreducible). The decompo-
sition :

: 8
(14 u=!wy J] x.;ywi, w; semiirreducible
i=1

will be called the semiirreducible factorization of u, and wy, ..., w, its semiirreducible
Jactors. A word is said to be simple if its semiirreducible factors are empty (i.e. if no
letter occurs in it more than once). Besides (1.4), we shall also make use of the reduced
semiirreducible factorization

(1.5)

[ J
u=!w, iﬂla,ﬁi, W; semiirreducible, q; simple, Ww;, q; Z 0 for i=1, ...,s—1.

Clearly, both (1.4) and (1.5) are unique.
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By F,, we denote the set of all words having only semiirreducible factors of length
=n. In particular, Fgy=F,, consists of all simple words. Obviously, FuC F541,
for every n=1, and FO\F,=J, is a fully invariant ideal in F. Let Mc F°. Set

(1.6) M = {u: u=ag ]j u;a;, |ag...a| =m, 4 ="4,..48cM)},
i=1
(%)) M®™ = {y: ucM™, X(a,...a)NX (@) = 0}.

It is easy to see that
Lemma 1.1 FIC FEO+D) jf p=1,
Indeed, if u€ F{7l, then at most m factors of the factorization (1.4) of u can con-

tain some element of X(a,...a,) (as |X(ao...a))|=m), and every such factor is of
length =n. Put

v
u=a} J[ uia}
i=1
where every q; is equal to a factor of (1.4) which contains a letter of a,...a,. Clearly,

lag...apl = (n+Dm, and X(ag...a;)NX(ug...u.) = 0.

Two words u, u” are said to be of the same type if there is an automorphism
a€Aut F° which maps v into #’: ue=u". The set of all words of the same type
(an orbit of Aut F°)is called a zype. E.g. X and 0= {0} are types. The type of u will be
denoted by T'(u). If u is irreducible, simple etc., the same is said about T'(u).

An endomorphism ¢@€End F° is said to be disjoint if X(x;0)NX(x;¢0)=0
provided #5#j. The endomorphism ¢ is finite if |x; p|=1 for at most finitely many
x;’s. The number

7(p) = i=21(lxi<ol—l)

is called the growth of ¢. The set of all disjoint endomorphisms will be denoted by
Dend F°, that of all finite disjoint endomorphisms by Fde F°.
The proof of the following facts is straightforward (see also [4]).

Lemma 1.2. If u¢X is (semi)irreducible and p€Dend F°, then ug is (semi)-
irreducible.

Lemma 1.3. If u= ']Iw and @€Dend F° then up= ']]wq>

Let r(u) (=r), s(u)( s) be the number of factors in (1 3) and (1.4), respec-
tively.

Lemma 14. If @cFde F* then r(u)=r(up)=r()+y(p), s)=s(up)=
=s)+y(p), and the image of an irreducible factor u; ¢ X of u is an irreducible factor
of up.

4
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‘We have to deal with several order and quasi-order relations. The most important
_order relation will be the lexicographical order of words defined by

def .
U<gveov=u, VEF or u=wxu, v=wxpv, i<j.

The lexicographical order is not a well-order on F®, however, it is a well-order on

FON\F" (the set of words of length <n).

Let V be a variety of semigroups, and F(V) the free semigroup 1n V on the infi-
nite set of generators {x,v, X,v, ...}, where v: F—~F(V) is the canonical homo-
morphism. A fully invariant ideal J is said to be a V-ideal if J is the full inverse image
of Jv. In particular,

J(V)={uc F: there is a v€ F such that vZu, Vi=u=v}
is a V-ideal.
Let o be a set of identities. By V(o) we denote the subvariety of V consisting of
those algebras which satisfy . If J is a fully invariant ideal then

V(J)=V(r) where t={u=v: uvct}

(i.e. ¥(J) is generated by the algebra™ F(¥)/J).
Following Petrich, we term an identity u=v homotypical if X(u)=X(») and
heterotypical else. The ideal
Jo(V)={u€ F: there is a v€ F such that X(u)=X (), VEu=v}
is a V-ideal, too. Obviously, Jo(V)SJ(¥), and Jo(V)v is the kernel of F(V).
Two systems of identities o, g5 are said to be V-equivalent if-

Vho'lﬁo'z.

Similarly, a system o is V-finite, V-independent etc., if it is V-equivalent to a finite
system, not V-equivalent to any proper subsystem of itself etc. Furthermore, V(S V)
is said to be finitely based over V if V’'=V(c), o finite (or, equivalently, V-finite).
The interval [V, V) of the lattice of varicties is finitely based if every element of [V, ¥)
is finitely based over V. If V is finitely based, too, then we say that [V, V'] is finitely
based.
" . We say that the system of identities ¢ (or, also, the identity u=v» in the case
o= {u=v}) is hereditarily finitely based (h.f.b. for short) if the variety SG(o) is, where
SG is the variety of all semigroups (which, by definition, means that every subvariety
of SG(o) is finitely based).
Let J be a fully invariant ideal in F. A subset M C F is termed a standard form
Jor Vin J(or, for short, M is standard for V in J) if for every u€J thereisa u*¢M
such that Vi=u=u* (neither uniqueness nor the existence of an algorithm for find-
ing u* is demanded). Clearly, if M is a standard form, then so is every M’'2 M.
Moreover, if J is a V-ideal, u€J and w=u* imply u*€J. Thus, JOM is also a
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standard form for ¥ in J. However, sometimes it is more convenient to work with

larger standard forms. If J=F we simply say that M is a standard form for V.

Usually we state our theorems for standard forms in an arbitrary J because the more

elegant special case of standard forms for ¥ does not suffice in the applications.
Finally, if 6= {u,=v,} then by & we denote the system oU {v,=u,}.

"~ 2. Well-quasi-orders and h.f.b. varieties. A quasi-order relation < is said to
be a well-quasi-order (wqo for short) if there are neither infinite (strictly) descending
< -chains nor infinite < -antichains or, equivalently, if every infinite sequence contains
an mﬁmte (not necessarily strictly) ascending subsequence ([2]). The fol]owmg quasi-
ordenngs on subsets M C F® will occur: :

u<u)’ iff ' =u - -up-u, for some @cEndF° u,,u,cF?,
“u<ayu’” ff VeEu =u-up-u, for some @€End F% wuy, u,€ F°,
u<’ it o E up for some @€End F°, ‘
wu=u ff W= up for some ¢@¢Fde F°.

Note that in the last case it is sufficient to find a ¢’¢Dend F° such that ' =ug’:
this can be always modified so as to obtain a ¢<€Fde F°. :

Let, furthermore, P denote the set of positive integers and X the symmetric group
on P. For every k€P we define two quasi-orders, one on M XX and oneon M2XZX
as follows:

(u,m) <, (W', n") ff FpeFde FO(up = v/, x;,0 = x;p for 1 =i = k),
(uo;m) <, v";n) if JeeFde FO (up =o', X0 = Xy
o for 1 =i =k, vpeM).

The remark made above about ¢ is valid here, too. Also, it is worthnoting that in the
definition of €<f the word " does not play any role, and that < is a wqo if <, is.

In proving varieties to be h.f.b., often it is crucial to know that one or the other
of these quasi-orders is a wqo for some standard form M. As for the second one, this
is ‘even indispensable: : '

Lemma 2.1. Iszshfb then <1y, is a wgo on F°. -

Proof. 0bv1ously, no infinite descending <ay-chain can exist. If uy, us, ...
were an infinite <a,-antichain, then consider the system o={uy_1=uy:k=1,2, .. }.
We are going to show that V(o) is not finitely based, moreover, if 6,=0\{ug 1= Uor}
then V(ak)k:qu 1—uz,‘ Indeed, suppose there exist (u2k 1=)0y, ..., (=) such

that o, =9 -wj;- v}, v4,=v -wje;-v] for i=1,...,1—1, where @;€EndF,

v, V{€F° and either Vi=w;=w, or w;=w;€dy. If 1t is always the first instance
that prevails then Vi=u,,_3=u,,, which is not the case. Let / be the minimal index such

4
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that Vio,=v;,,, and, say, w,=u,_,, W;=up,, r=k. 'I'hen VEuy =9,=
=¢".u, _,¢,-v], contrary to the assumption.

Clearly, if << is a wgo (for some fixed M) then <, for 0=I/<k is a wqo, too.
However, already the condition that <, is a wqo on some M X X is rather restrictive
as the following lemma shows.

Lemma 2.2. If <, isawqo on MXZ then there is a natural number p such that
ul;=p for every ucM and icP. o

Proof. Put p(#)=max|u|;, and suppose p(u1)<p(uz)<...,Iujl,,m=p(u,).
Then we obtain an infinite < -antichain (u;, n;), j=1,2,... by putting =n;=
=(1k(j): if ¢ is disjoint and X ;,@=xyu, Jj=i, then |u;@ley=p()#p(F)
whence u;@#u;.

Let G, ={@1, ..., 3)E(F: |a,...a|l=n, |X(ay...a,)|=k}. The following
proposition enables a more flexibie handling of <.

Proposition 2.3. (MXZ, <) is wgo iff MXG, , is wqo for every n under
(u; a1, ...,a) < (W'; ay, ...,a.) iff r=r and
JecFde FO(up = ', a;p = a; for i =1, ..., 7).

Proof. The sufficiency is obvious because (i, )<<, (¥’,n") is equivalent to

(W Xyzs oo s Xan) <@ X1z -ov s Xgwr)- Now let <<, be a wqo, and let x,y, ..., X5 be
the variables of a;...q, (in the order of their first occurrence). Set

@.1)

1 q
m= (o(ty..(h))
and put (u; ay, ..., a)<,W; ay, ..., a)) iff r=r’, T(a...a)=T(a;...a.), T(a)=
=T(a)) for i=1,...,r, (4, W)<<, (', 7"). Now <, is a wqo because g=k and r,
T(ay...a,), T(a;) can take only a finite number of different “values”. Furthermore,
(w; ay, ..., a,)<,('; a, ..., a) implies (u;a,,...,a)<@’; 4], ..., ar’) because the
very endomorphism ¢ which satisfies up=u’, x,;¢=x,; maps a;on a;. Hence
< is a wqo.
The following proposition shows that the conditions that <, is a wqo for diffe-
rent numbers k are not very far from each other.

Proposition 2.4. If MCF°, and there is a natural number q such that weM
implies | X(u) N X(v)| =q, furthermore, <<, ., is awgo on M, then <<,is awqo on M for
every k.

Proof. For k=2g+1 (in particular, for k=1) the assertion is obvious. So
suppose it holds for some k. For (v, r)é¢ M XX consider the decomposition

u=u, Q Xem s t; = ky XN {X1gs ooy Xin} = ,
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and put

Xym>, RS Ug. My, @ = Uge Uy, U= Uy,

-

[ Y
|
.

Xi(w) = (X (ﬁ-) Nnx (tZ))\{x(m),}, X = igl X;(u), X (u) = X- @WDNX(u;).

Tt is easy to see that r=kp where p is the bound from Lemma 2.2, |X (u)|=rq, and
X () S X;(u)UX;,,(), whence qi=|)? (u)l=2q. Choose permutations m, ..., 7,
such that Im=(k+Dm, X, , ..., Xq +1r, BT€ the different elements of X (u;)
(e.g. in the order of their first occurrence in u,), and define

: (u,n) < (,n) iff (u,n) =<, (,7),
2.2)

(3, ) <pq42 (uf,mf) for i=1,..,r, and T(]] ]] x,,,,) T(gr']] xm,)

As (u, )<, (', 7’) implies T(@#)=T(@’), r is the same for (u, 7)) and for (', n'),
and the definition makes sense. Furthermore, (2.2) implies that ¢;=g; for 0=i=r,
because lm=(k+1)x, ln;=(k+1)n" for every /; in particular, Xy 1)z and Xgsqyn
are the first letters of the corresponding products, and this fixes the length of the inner
products.

From the assumptions it follows that < is a wqo on M X Z, so it is sufficient to
show that < is weaker than <<, ,, i.e. if (2.2) holds then there is a ¢ €Fde F° such
that up=u', x,@=x, for tsk+l By (2.2), there are disjoint endomorphisms
¥, @, ..., ¢, such that :

w=u, xY=x, for 1l=st=k,

WP = Uiy, X ;= X, for 1=t=gq+1, i=1,..,r.
Put :
X0 = {x,go,- if xsEX(ui)’
T gy if x4X@).

Then ¢ is well-defined: if x,€X(u)NX(y;), i<j, then s=im=t'n; for some
t=q,+1, t'=q;+1, however, then, the third condition in (2.2) guarantees that
1) =1'n}, i.e. X,0;=x,9;. Also, it is not difficult to see that ¢ is disjoint. Further-
more, @y=d" whence #'=IIx,, (in general, the sequence ¢, ..., 7, depends on
(u, 7). Thus, up=uty Xpm@P=x, for t=1,..,k+1.

In {6), the generally used syntactic method of proving varieties to be h.f.b. is
formulated in Proposition-2.1. Here we give a slightly different version. Let M c F?,
V a variety, and J a fully invariant ideal of F. We say that M is a good standard form
Jor Vin J (or a good standard form for V if J=F) if there exist a linear order relation
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< on M and a quasi-order relation < on M*={(u,v): u>v}cC M? such that the
following conditions are fulfilled:

C) For every ucJ thereisa u*EM such that Vi=u=u*;

0) (M, <) is a well-ordered set;

Q) (M*, ) is a wqo set;

A) If (u,v), (W', v)EM*, (u,v)<(«,?") then there is a wEM such that w<u
and Vt=(u v=>u '=w). ‘ . )

If one replaces F™ by J in the first part of the proof of Proposmon 2 1 in [6] .ong.
obtains : ,

Proposition 2.5. If there is a good standard form for V in J then the mterval
[V(J), V) is finitely based.

Itiseasy to see that if M is a good standard form for ¥ in J then it is a good stand-
ard form in the minimal ¥-ideal J,, which contains J. Thus, Jy,NM is a standard
form.for ¥ in J (even in J).

In order to obtain a sufficient condition for ¥ to be h.f.b., we need the followmg

Proposnlon 2.6. Let V be a variety and J a V-ideal. If the interval [V(J), V)
is finitely based and V(J) is h.f. b. over V then every subvariety of V is finitely based
over V. .

The proof is based on

Lemma 2.7. Let V be a varzety, J a fully invariant zdeal in F and V'= V(J)
Let, furthermore, o be a system of identities and uc F such that V(o)eu=v for any
veJ. Then V'(o)=u=u" implies (W' ¢J and) V(o)=u=1u'. ‘

Proof. Let (u=) v, vy, ..., 5 (=t') be a sequence of terms such that ;=
=0} W;@;-0], V41 =0; wi@;-w) for j=1,...;I—1, where v}, v]¢F°, @;,€End F,
and either w;, wj€J or Vi=w;=w; or (w;=w))€G. Suppose I, is the least index for
which w, , w, EJ Then V(a)l=u =u,€J, -contrary to the assumption. Hence
v;¢J (]— .. 0) and v, ..., 9 yleldsaproofof u=u" in V(o).

- Proof.of Proposition 2:6. A system of identities o can be supposed, without
loss of generality, to consist of three parts o,={(u=u)co:u, w'eJ}, o}=
={(u=w)co: u,u'¢J} and o,={(u=u’)co: ucJ, u’'¢J}. Using Lemma 2.1, we can
replace all but finitely many members of o, by identities -of type -oj: if -(u=uw’),
w=v)€o, and W' <yyp’ then V(/)=v'=u-w'Q-uy (4, u¢F°, €End F);
however, v"¢J whence Vi=v'=u,-u'p-u, and therefore {u=w’, v=v"} is V-equi-
valent to {u=u', v=u;-u'¢ - u,}. Thus, one can assume that g, is finite. The same
holds for o) because V(J)(c3) is finitely based by assumption, whence o7 is V(J)-
equivalent to some finite system ¢*, but then Lemma 2.7 implies also ¥ (o7)= V(7).
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Finally, V(e,)€[V(J), V] and therefore is finitely based over V. This completes the
proof.

Putting together Propositions 2.5 and 2.6, we obtain a condition which can be
used in proving varieties to be h.f.b. In these applications, the following lemma will
be referred to several times.

Lemma 2.8. Let V be a variety, J a fully invariant ideal in F, and M a standard
form for VinJ subject to the condition

(i) for every ueld thereisa u*e M such that Vi=u= u and [ X ()| =X ().

If u,veJ, X (u)$X (v) then for every (€ Dend F wzth X (u(o)lyél there is a wEM
such that | X(W)|<|X(up)| and Vie=u=v=>u=w.

Proof. Choose an arbltrary YeEX(vp)NX (u(p) if X (vgo)ﬂX (uqo);é[/) and put
y x; else.” Define y€End F by

_[x¢ if xeX(w),
x‘ll—{y if x¢X(u).

Then wy=up, and X@Y)=X@e)NX(up) if X(2@)NX(up)=0, X(@wyY)={y}
else. Now X(v)NX(u)c X(u);- hence X(vp)NX(up)c X (u(p) because ¢ is disjoint.
Thus, |[X(wy)|< X (u9)|, and, in virtue of (i), the term w= (mp)* meets the requlre-
ments. -
Now we give a sufficient condition, which may seem rather sophlstlcated at ﬁrst
glance, however, can be applied to reasonable classes of varieties. By (#, v) we denote’
the greatest common prefix of # and v, i.e. the longest subword w such that u=wi,
v=wb. :

Theorem 2. 9 Let V be a variety of semigroups, J a fully invariant. ideal in F
SF° for i=1,...,1, and let

{u_u1 Ay w€M;, and u = i =>X(ﬂ)ﬂX(u)<g}

be a standard form for V in J with some natural number g. Suppose, moreover, that the
Jollowing conditions are fulfilled with some natural numbers nand k=n +(I g+2:;
condition (i) from Lemma 2.7, furthermore, ]
(i) (M, X2, <) is a wqo set for i=1, ...,1; ' e
(iii) if v=tv=0v,..0€M, T=v,...9; _lv,, V=0 J, p€cFde F°, and vp Is a
prefix of some v =vi..v]€M such that vj=v; for i<j, furthermore,
|#™@|=n, then (i) is satisfied for vo with some (v@)* s. th. either (vp)f="
=v0 for i=1,...,j=1, {v;0, @0)})|=|5;0l—n or, for some h=j, (vp)}=.
=v;¢ for z<h (v(p)h is a proper prefix of 'v,,qo (of vj(p, if h-—]) '
Then [V(J), V) is finitely based. .
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Proof. Fix a factorization u=u,...u;, w,c M;, for every uc M. Define < on
M by
v<u iff either |X(v)] < |X (1),

or IX() =X, vy=u for i=1,..,j—1, vy<,u.
Furthermore, for (4, v)EM™* set w=v; if i<j, u;#v;, and

U= wx i, w=u..u_b;, b;=(u,0;),

v ={”J or v={wu or

I X005, lsl=n or [fl<n 7;=0, = lwx,db
If »;=9;, we put d—e ?=0. Let u, denote the product of all different variables of
(X @)NX )= U (X(uy...u)NX(uy4y...u)) (which shows that |u}=(I—1)g)

m the order of thelr ﬁrst occurrence in u, say. Suppose that x.q, ..., X,y 1S the
sequence of all different letters of a=x,x,(wx,0)™u,; clearly, r=lajl=(—1)g+
+n+2=k. Choose n€ X such that tn=c(¢) for t=r, and for (4, v), (,v) EM* put

(u,0) < (W, v) ff (u,7m) < (4,7n") for i=l1,...,1,
r= r’, j =j,9 |Wle = Iw’le’s T(xdxeﬁ) = T(xd'xe’ ﬁ,)’
X@)| = [ X@)| < | X@)]=1X@), wsvew =7, §;=v,ed =y

(letters with” denote objects which belong to (/, ).

Lemma 2.2 implies that (M, <) is a well-ordered set, because [u|=p|X(u)|
with some constant p. Furthermore, as r,j, |w|, and |x,x0| are bounded, and the
equivalences decompose M* in eight <-independent classes, the qo-set (M*, <) is
wqo in virtue of (ii). Thus, it remains to prove that (A) is satisfied.

If (v, v)<(u’,v") then there are disjoint endomorphisms ¢;, ..., ¢; such that
WQ=U], Xyny@i=Xpq for t=1,...,r and i=1,...,I; in particular, ¢, and g,
coincide on X (#,)N X(u,). Hence the endomorphism ¢ given by

x, —_ {xs(pi if xsex(ui),
s = x, 0, if x4X(w)
is well-defined and disjoint. We have w,p=u;, up=u'. Hence Vi=u'=(vp)*, and

all we have to show is (v@)*<u’. Clearly, we can suppose |x,p|=1 for x,4X(u);
hence, by (i),

X (@)~ X ((09)*)] = X (@)l — X (vp)l = | X ()| —|X (0)] = O.
This proves the assertion for the case |X(v)|<|X ()] (in virtue of Lemma 2.8, even for
X@)#=X @) if |X@)|5£1). Solet |[X@)=]X)l, | Xw)|= IX((mp)*)l. Then we have
also |X(W)|=1X(>")|. Nextnote that |w|,=|w’|,, and x,¢=x, (as e=2r, &’=27n")
guarantee wo=w’. If, moreover, §;=v; then ¥;=v}, ie. v,o=0v] for the first j
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components of »’. Hence, according to (iii), either (vp)f=v, ..., PP);_1=v;_;»
(ve)} is a proper prefix of vj, for some h=j or (vp);f=v; for i=1, ..., . In the first
case (vp)*<v'<u/, in the second one (vp)*<u’, too, because vj<,, u;. If, on the
other hand, v;=1;x,00;, then v;=¥x,9'D}, d<e, d'<e’ (because v=<u, v'<u),
and T(x,x,0)=T(x;x,.?") implies, in particular, |§|=[#’|. Now either |f|<n, then
we ha_ve v;=)x, 0" =(;x,0)p =v;¢, and the same argument as for the case 7;=v;
prevails (only vj<uj follows now from d’<¢e’); or |f|=n, and, again by (iii),
either thereis an A=j such that (vp)¥=v,0p=v, for i<h, (vp); is a proper prefix of
v, (of ¥jx, o if h=j) whence (@)*<v’, or (vp);=v; for i=1,...,j—1,
@}, (o) =|9)x,. 8, ie. (v9);=v]x4W;<,,u;, which yields the proof for
this case, the last one.

In the special case /=1 Condition (iii) reads somewhat simpler:

Corollary 2.10. Let V be a variety of semigroups, J a fully invariant ideal in F,
and McC F° standard for Vin J. Suppose that {M, <) is a wqo set for some k=2, (i}
holds, and for some n=k—2 we have '
(iii") if v=9b€M, @cFde F° Do is a prefix of some v'€M, and |3™¢|=n,
then (i) satisfied for some standard form (vp)* of v such that either (vp)*
is a prefix of vp or 1(vp, (vp)) =] .
Then [V(J), V) is finitely based.

Remark 1. If Vis homotypical (i) is fulfilled.

Remark 2. It is not difficult to distil from the proof that (iii) can be weakened in
the following manner. Instead of v€ M we consider pairs (v, )€ M XZ, and we re-
quire (iii) only for those ¢€Fde F® such that |y;¢|=1 for 1=i=k—n—2. This
enables us to dispose not only of the elements of X(x;x,(wx,5)™u,) but of some
more variables, too, provided k is sufficiently large. It is precisely in this form that
Theorem 2.9 will be applied at the end of the paper.

The next two theorems are devoted to special cases where the conditions can be
weakened.

Theorem 2.11. Let I be a fully invariant ideal of F. If {(FN\I)XZ, <) isa
wqo set then SG(I) is h.fb.

Proof. Choose an acl, and set M=(F\J)U{a}. Define v<u iff either
v=a, u€ F\J or »,u€ F\I and v<,u. By Lemma 2.2, < is a well-order.
For (u,v)eM™ put

w or

o (1 2.
U= Wi, v={wx,,5, d+#e, “_(d e...
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if vZw. Define
(u,0) < (', v) iff either uxu/, v=a, or u<v, v=w,
' or (u,n) <<, (u',n), v & a,w.

Clearly, < is a wqo relation on M*. Note that », W’ Za and if »=w then also vxa.

Anyway, there is a @€Fde F such that #'=ugp. If |X(v)]<|X(u)] then we can
suppose that |X(v9)]<|X(up)| whence vp<ugp. Now let [X(0)|=|X(w)|. If u</,
v=a then w=up=@p)*'=a<w'. If u<xu’, v=w, then w'=up=we- (xa)p=>
>wep=vp. If v,v"¢{a, w}, (u, ©)<<,(, '), then w'=uQ, x;,=x;0, X, =x,0, d’'<
<e’. Hence up=wo-.x, i@, vo=we-x; -vp, and either vp€l, (vp)*=a<u’,
or vp€ F\J, vp<,, % whence vp<u'. This completes the proof.

Theorem 2.12. If V, J, M are as in Corollary 2.10, (i) holds, and (M2X2 <<2)
is wqo, then [V(J), V) is finitely based.

Proof. Define < by _
v<u iff either | X(v)] <|X(¥)] or |XO)|=|XW), v<ixu.

For (u, V)EM™ set w={(u,v), u=wxd, v=w or v_wx,v, d=<e, and put d=1+
+max {i: x,X@)UX®)}, 5=0 if v=w. Let

n_(l 2]
“\de.)

(u,0) < (u',v) iff (us v; ) <<§ W, v';n’), [wl, = W,

and define

X(v) =X(u)c>X(v") =X@W), v=wer=w.

Obviously, < is a well-order o M and < is a wgo on M*. If X(»)>X(u) and
|X(@")]#1 then (A) follows from Lemma 2.8. If |X(«’)|=1 then |[X(u)|=1 by u<u’
and |X(@)|=|X@)|=1 by o'<u’, v<u. If, besides, X(»)#=X(4) then X(v')#
#X(w'); hence u=xT, v=x], u'=xD, v'=x, d<e, d’<e’, m|n’, and putting
X 0=xT" x,0=x,, we have «'=up, vp=(vp)*<u'. Finally, let X(»)=X(u).
Then X(v")=X(«'), and there isa @¢cFde F° such that up=u', x;0=x;, X, 0=
=X, v(pEM Now |w],=|w’|,. implies wo=w’, and either v=w, vp= wo=
=w=v'<u or v= wxdv, vp =w'x, - vp<u' because d’<e’. This completes the
proof. i

Remark. Of course, (M®XZ, <) is wqo if and only if (M*XZ, <2y is.
Hence we could have defined in advance and replaced M2 by M* in the text of the
theorem. This will be our way in the next section. (Lemma 3.7).
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3. Standard forms and h.f.b. varieties. In this section we show some (com-
paratively large) particular subsets of F° to be good standard forms whenever they are
standard and part of the conditions (i}—(iii) (or (iii")) is satisfied.

Theorem 3.1. If FQ) is standard for V in J and (i), (iii’) hold (with some néO),
then [V(J), V) is finitely based. _ -

ey

Proof. By Corollary 2.10, it is sufficient to show that (FBXZ, <) is a wqo
set for every k. The proof will be accomplished through a succession of lemmas.

Lemma 3.2. F,is wqo under <.

Proof. Denote by T, the set of all semiireducible types of length =n, and define
the quasi-order relation < on PXT, by

kT)<(K.T) if k<k, T=T.

As T, is finite, PXT, is a wqo set under <, and, according to [2], so is the set ¥ of
vectors (ay, ..., ), 4€PXT,, of arbitrary length under the relation

(otgs oes o)) < (Bys ... B if there is a sequence i(1) <...v<i(l) =m
~ such that o; < By

(the additional condition /(/}=m accepted here obviously does not change the situa-
tion). Assign to u€F, the vector a(W)=(x,...,%) where o=(|a], T(W))
(see (1.5)), and put

u<w iff a(u)<a() and T(W,) = T(Wp).

This relation is a wqo, too, because F(‘,’,)-»VXT,, (w—»(a(u), T(%,))) is a strict ho-
momorphism of (F(‘,’,), <) onto a wqo set. On the other hand, if u<#«’ then we can
construct a @€Fde F° such that up=u": there exist endomorphisms ¢;€Fde F°,
j=0,...,5, with (a;W;)e;=dj;W;; (where i(0)=0, ay=a;=0). Denote the first
letter of a; by x,;, and put '

x5 if x,EX(ajo), t# r(j),
-1
X0 = apwp) - x,n0; if t=r(j),
X (k.__i(j]Zl)H W) - Xy G). .

Xan i x4 X(w),

where N =xr€n’?.(xl») i. Itis easy to see that g fits for our aim.
i U

Lemma 3.3. If M is closed for subwords, << is a wqgo on M, and the length of
the irreducible elements of M is bounded then << is a wqo on M XZ for every k=0.

Proof. Let (4, m)¢e MXZ and suppose that . gy, ...,uq (F(1)<...<i())
are those irreducible factors of # which contain some X, s=k. Put. u,=uy,,...
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...#;) and suppose that x, occurs in u, for the first time at the m,-th place (i.e.
U=y X lly, Xen§X(p), |d=m,—1); if x,4X@) put m,=c. Clearly,

1
u=!v, /I=71 Uy ;yv;- Assign to (v, ) the vector

b(u, ) = (my, ..., my3 1; T(ui(l))a cees Tty 5 05 oo )
and set
b(u, ﬂ) < b(u', 7[,) iﬁ m, = m;, l= l,, T(u,(,)) = T(u{(,,),

yy<v; for 1=s=k 1=r=l 0=sj=1

Then (4, 7)< (¥, 7")e>b(u, ) <b(’, #’) defines a wqo on M XZ. Indeed, (u, )
—b(u, #) is then a strict homomorphism between quasi-ordered sets, and the set
of the vectors b is wqo under < because if N is an upper bound of || for irreducible
u€M then Is=k, m;=|u,|=kN, and T(u,) can take also only a finite number of
different values and the assertion follows from Lemma 3.2. Furthermore, if (u, 7)<
< (', ') then we can define @€Fde F° so that v;¢0=1], Uiy = U4y, and then
[tel= | |, m;=m guarantees also x,,¢=x., for s=1, ..., k,ie. (4, k)<<, (', n").

As an immediate consequence of Lemmas 3.2 and 3.3 we get
Corollary 3.4. F,, X X is wqo under <<, for every k=0.

Note, however, that Lerama 3.3 is only seemingly more general than Corollary
3.4 because it is not difficult to see that if the conditions of the lemma are fulfilled:
then M S F,, for some n.

Finally we prove

Lemma 3.5. FY)X X is a wqo set under <<, for every k=>0.

Proof. For (u, )€ FPXZ let s;<...<s;=k be those indices for which x, €
€X(dy...a,) (see (1.6)), and suppose that X OCCUIS i dq...a, for the first time at the
m;-th place. Assign to (u, ) the vector

c(u,m) =c(l, t; 81, ..0s i3 My, oy my; T(ay), ..., T(a), T(ay...a); &, ..., &)
and put
c(u,n) < c(u',n") if the first 2I+t+4 components of both
vectors coincide and (%, 7) <, (@}, n) for j=1,...,¢

Define (u, 1)< (¢, n")c(u, ) <c(u’, n’). Asin the proof of Lemma 3.4, we can see
that F®)X Z is a wqo set under <. Furthermore, if (¥, ©)<(«’, ') then we can de-
fine ¢@,cFde F° such that (a,.. a,)<,o,,_a0 .a; which guarantees also x 5x Po=
=X, . @,00=a, for i=1,...,1; r=0,...,1¢ and @;€Fde F° such that ﬂ,(o,_ﬁ

Xz @)= X5 . Putting together Pos +ees (p, (wh1ch is possible in virtue of (1.6)—(1. 7))
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we obtain a @€Fde F° with up=uv', x,@ =X, for s=1,..., k. This proves the
lemma and also the theorem.

In some special cases one can omit condition (iii"). We give here one theorem of
this kind.

Theorem 3.6. If FJ) is standard for V in J and (i) holds then [V(J), V) is fini-
tely based.

In virtue of Theorem 2.12, it suffices to prove

Lemma 3.7. F(%)*XZ‘ is a wgo set under <<% for every k=1.

Proof. Let (4, v; n)€ FE*XZ, v=b, ]]r' #;b; be the decomposition of » indi-
i=1

cated in (1.6). By Lemma 3.5 and Proposition 2.3, F((QXG”H, x 18 wqo under <

defined in (2.1). Put

def
(u,v; ) < (W, 03 7) &

def
. 7 o ’ ’ 7 ’
< (U5 Xigs <oos Xgms A vevs Aps Doy eees D) < (U5 Xigrs oves Xygrs Al +ovs gy Dy oovs b,

t=t, r=r, lal=Ilail, |b;]=|bjl.

Clearly < isawqo on F§*XZX, and thereis a ¢cFde F° such that up=u’, a,9=
=aj, byp=b;. Moreover, we can suppose that x;¢ is simple for every x€X
(for x,€X(u) this holds automatically, as fig=#", and |x,¢|=1 for x,€X(a;...a,)).

r
Thus, vqosb{,]fﬁi(p-bgeﬁ'(({;), because B,0€ Fyy), | [ bj|=p. This proves the
i=1 i=0
lemma.

Theorem 3.8. Let M;SF® for i=1,..,L If

M={u=u..u: ucM, | XWwNX(w) =q fori#j)}

is standard for V in J and (i), (iii) hold (with some n=0), then [V(J), V) is finitely
based. ) ’

Proof. It is easy to see that if @€ M then |X(@)NX®@))=(n+p)/2+PBq/4.
Now the assertion follows from Lemma 3.5 and Theorem 2.9.

We mention two more special cases.
Theorem 3.9. If F,, is a standard form for V and (i) holds then V is h.f.b.

Proof. The theorem becomes a special case of Theorem 3.1 (with J=F) if we
show that (iii") holds (with n+1 instead of n). So let v=705€ F,), v=1v, ]j Xy
i=1
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its semiirreducible factorization, jv;,|=n,

-1 8
=1 U 'I]l.. xc(;)vi-xc(,)i",, =1 . lec(i)vi, f",u, =0,
= =

and pcFde F°,

r
~ 2’ ’
Bp =0, Exdu)vj,
j=

Wil=n (.. Bp€F,), W Po|=n+1. As |5)|=n, we have |x.¢|=1. Further-
more, by Lemma 1.3, vp=!w-x.,¢-w. Hence w-x.4 ¢ -w*€Fy, since it can be
obviously achieved that X(w-x,,@)NX(w*)=0. This proves the assertion, as
[50|=15]<n.

Proposition 3.10. Let J=F(®). The variety SG(J) is h.fb.

Proof. Follows from Theorem 2.11 and Lemma 3.5.

Part I1. Application: a class of h.f.b. identities

The aim of this part is to prove the following

Theorem A. A non-balanced identity of the form
(%) U= Xy Xy X1 Xy Xppge - Xy = XD 28 = v (€2, e(j) = 2)
is h.f.b. if and only if v is not of the form .
(% %) v=x3.. %1% X 1) Xire. X, (R=(ii+1) or identical, n > 2).

The assertion will be broken up into several propositions. From know on ¥
denotes SG(x).

4. Two special cases. To start with, we settle the negative part of the assertion.
Of course, here one cannot utilize the results of Part 1. '

Proposition 4.1. The identity
(T) X1 XiXi41XiXigg. - Xy = Xy .--xi_lx?x?+1xi+2...x" ‘
s hfb. iff n=2.

Proof. The fact that xyx=x2y? is h.f.b. has been proved in [5]. So let n=>2
and, say, i>1. Consider the identity

(om) tztxE. Xy = LVZIXE .. Xy~ 3 X o X o —1
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and the infinite systems (0)={0,,: m=1, ...}, (6¥)={0,: m>=k}. We claim that the
system o U {z} is independent. Clearly 7 does not follow from o, so we have to prove
that o*U{t}t# 0. To see this, we show that if ¢*U {t}i tyzex}.. x5, =w then

w =!(ty.Zt)'(.I_'];p])9 ijT(xyx)UT(xz),
@.1) ” o

1 .
PI= X% OF Py = Xy 3XoxXog—1, X(JIIPJ) = {xn cees Xagh
j= v

whence WRIPZIX].. Xy _aXp Xy, _,. Indeed, let wy(=tyzt x3...x5), Wy, ..., w,(=w)
be a sequence of terms such that, for every s=1,...,r, there exist w;, w €F?°,
0,£End F,” and (u,=v)€d*U {r} which satisfy w,_,=w] -y, -wl, w,=w,.

s? s
-9;Q+ W, , Suppose, furthermore, that w,_, is of the form (4.1) for some s=r (this
certainly is the case for s=1). First let u,=v,¢¢*; by symmetry, we can assume that
U =1yzIx}.. Xy, Sure enough, m<k because fyztxi...x%,<kw,-, for m=>k. Mo-
reover, the only subword of w,_, which is an endomorphic image of tyzt is tyzt
itself, and the only subwords which are squares are those of the form x}. Hence
u €T (u,) and .
] 13 !
Weoq =! U0, ' Il p;=tyztde. Xomye II Pj» ws=!v0s- I Py,
Jj=2m+1 j=2m+1 j=2m+1
€Ly, 1=2m+2, whence also w; is of the form (4.1). If
Uy = Xy Xi 1 XoXE 1 X0 Xy Vg = Xyoeo X X541 Xi X1 4000 -Xp

then (xx},,) @€ T(x?y? by the same reason as above, i.e. (xjx;,,)o,=p;_1p; for
some j=/, and w; differs from w,_, only in these factors which are replaced by
some p;€T(xyx); thus, w, again is of the form (4.1) because if j=/ (which, by the
way, can occur only if i+1=n) then x2,_,x2% is replaced by X _;XsXox—y. Fi-
nally, if w,=x7...%X;41%;X;19...%, then (X;X;.1%) @€ T(xyx) because the only
subwords of w;_, which are endomorphic images of xyx are those of the form x,x,x,
(=p; for some j) and tyzt, but this latter one is out of consideration because if
(xi X4, %) @s€tyzt then u,@p=u tyxtu; with w0 since i>1, which is impossible.
Therefore this case is similar to the previous one.
If i=1 then n>i+1 and we can consider the identities

(or) x3..x2 tyzt = xExixk.. X2, tyzt

instead of o,,, and dualize the above reasoning (with the only — unessential — diffe-
rence that here p;=x} or x;x,x; which is not dual to p,=xy_;XpXs_,). This
completes the proof.

Next we deal with a special case.
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Lemma 4.2. The identity

{4.2) W)Xy XX 1% Xy = Xy oo X (= V) (REZ)
is hfb.

Proof. First suppose that the symmetrical difference X(u)-+ X(v)={x;}. By
tepeated applications of (4.2), any word w of F**! can be brought to the form w*=
Ew{,_l)x‘;’{};...xﬁgw*("“"'”, d(j)=2; besides, the number of variables either does
not change or decreases by 1 at every step. Furthermore, applying (4.2) twice, using
the endomorphisms

Xitj if j=i,
— J Xai if ji=i = ] *eitj if j=i+2,
x"q’—{xz,-” if j==i, *¥ Xgi oo Xgi_1 if j=i+l,

Xais1XaiXsiee H j=i+2,
Tespectively, we obtain

X1 Xoio1X51 X214 10+ Xai 4 (- D X2itn 41+ Xongi-1 =
= Xy Xgio1 X510 0P - Xoisn+1--Xoasi41 = X1 Xoj1 X85 * UP * Xpppnt1ee-Xontio1 =
= Xg... Xpi—1X51X0141 -+« Xai~1X2: X35 +1X2i X3i 4.2 - Xon 4i-1 =
=Xpoe X WY Xgipnaree Xanaim1 = Xpoo Xi o O » Xpgpna1ee-Xontio1 =
= Xy XWXy W Xu W Xoianar e Xonpio1, W Z D,
and a third application of (4.2) relieves us from x,. Hence ViEw*=w**=
=W X FreWHETITEFEH ™Y and - X(w)SX(W)EX(w).  Thus,
by Lemma 1.1 and Theorem 3.6 [V (F***i~3), V) is finitely based, whence the assertion
follows obviously.
If (4.2) is heterotypical, and X(u) + X(v)#{x;}, we can assume that kn>n for
some k=m (i.e. X3¢ X (). Indeed, if this is not the case, then there is a j=n, j#i,
such that jr~'>m (i.e. x; does not occur on the right side). First let j#i+1, say

Jj=i+1, and let j be maximal. Executing in (4.2) the substitution x;—x;x,;, on
the one hand, and X, y—>X,41, Xj+o—>Xj415 ---> Xp—>X,_; ON the other, we obtain

U=Xy.. X X1 X5... X = xl...x,'xi.(.lx;...(x_ix,,+1)x1+1-.-x" = Xyo-+- X(n+1)o

where o=n-(n+1n..j+1), and x,,, occurs on the right side. Furthermore, if
i+1¢{1, ..., m} then
Xyeo XX 41X Xpgpg = X1 Xy X4 3% X 49X 43+ X2

and by means of the substitution x;_;—X;_X;, Xp>Xj+3, Xje1m+XiXir2s Xipt—>
+X; 442 (2=t=n) we can bring about that x;,, did not figure on the right side
which is the previous case.
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Now if x,,¢X(u), k=m then (4.2) implies
Xy Xy = xl...xk_l(xkxk')...-xm

and every term is equal to one of length =m in the variety V=SG(u=x;...X,z)
whence Vis h.f.b.
Now let (4.2) be homotypical. Next we show that (4.2) implies either

(4.3) Xy oo Xp Xp 41 Xp -0 Xp = Xy oee Xy

for some k=i, I=n or the dual of (4.3) — the latter if 7=(/7/+1). In this case, as
well as if n=1 (identical), the assertion is obvious. In the opposite case there is an
r=n, r¢ {i,i+1}, ras*r. Lete.g. r<i and minimal. Then

4.9 Xpoor Xy = Xgoee Xy o1 Xpn1 oo Xig1X(i 4 11 X1 o0 e X1 =
= Xger Xy pXp e (RKye 1 Xpg=1) oos X
Thus, (4.3) implies a permutative identity
Xy Xppa = X1 Xy 1 Xppe e XgpXgp1 oo Xp41, TQ#ET, SQFS,
and, according to [7], for sufficiently large / we have
Xy Xy = Xgee Xpo1Xpgoos X 1= p=1)s Xst1=n - X1

for every permutation ¢ of the symbols r,...,s+I/—n—1 whence, in particular,
(4.3) follows.

Using (4.3), an arbitrary word w can be easily transformed to the form w=
=wg_yw Wi, xyx<|:1w’, i.e. the irreducible factors of w’ are contained in
XU T(x?®). However, (4.3) implies also

2 —
Xy X X1 X420 X = xkxk+1xkxk+l X =
= xl.--xkxk+1xkxk+2...x, - xl.--x‘

whence w=wgw W'=*"D, w'cF,. Thus, w*=wgw w'*DeFjug FE-,
and (i) holds as (4.4) is homotypical. Hence the assertion of the lemma follows by
Theorem 3.6 (here J=F).

5. Some auxiliary identities. From now on we can suppose, in virtue of
Lemma 4.2 and the results of [6], that

¢é.1) e(k)=2 for some k=m, kn1si,
We proceed by some identities which follow from (%) and (5.1). Note that
(5.2 (%) |- x"+2 = x4

s
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as (*) is supposed to be non-balanced. Hence (x*)v is an idempotent in F(¥).
Moreover, if (*) is homotypical then

(53) . (%) | X+ = 3
and already (x”“)v is idempotént.
Lemma 5.1. Suppose that (5.1) holds. If (5.3) holds, too, then
59 (%) = x"t2y1m42 = xn 42042 for g = 1.
If (%) is heterotypical (in particular, if (5.3) does not hold) then
(5_5) (.*.) [ x'l+2y2q+lz'l+2 — x'l+2yz"+2’ x"+2y2qzﬂ+2 = x'l+22"+2 fOI’ q = 0.

Proof. If (5.3) holds and (%) is heterotypical then [5], Lemma 2 yields even
Xyt xn 242 Qo let (%) be homotypical, and first suppose w1, wH#
@i+1). Thereis a k¢ {i,i+1} such that kns£k; let e.g. k<i and choose k to be
minimal. Furthermore, there is an /3%/ such that e(/)=2, as (%) is non-balanced.
Now put k=sr and

x"t? if 1<k,

XQ =1y if t=k, x,t//E{
2t if > k;

ye© if = In,
z"t2  else;

o = {y2 if t=k
@ = x.@ else.
We have in virtue of (%)

X"H2yZit2 = 2Ly . M2 = X2 pp . PR =
- xu+2zn+2ye(s)zn+2 = x"t2 42, lﬂ,b M2 =
= x*+2 2, o - 12 — xn+2zn+2y2e(s)zn+z =
= x"*t2. 99’ 2"TE = x"E. g’ . 2" = 32t
which implies (5.4). If, on the other hand, ©=1, then the substitution of
xt2 if <1,
X L=y if t=1,
Zt? of t=>1,
in (*) yields (5.4) immediately.
If (%) is heterotypical, we can confine ourselves, by the remark made above, to the

case where (5.3) does not hold. According to [5], Lemma 2, it suffices to prove
x¥PyI=x®_  However, in our case there is a k<m with e(k)=2, kn>n. The
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substitution

' _ [y i t=kn,
9 _,{ x¥  else : v

in () yields the required identity.

Define '
" my=min {j: jn #j},- my,=min {j: e(j)=2};

if m,>min (m, n)#max (m,n), we put n=(m+1 m+2), my=m+1, and if my>
=max (m, n), let n=1, my=ee.

Lemma 512.,If (%) x"*2=x"*% and either my,<m, or-mze{i,i;l-l} or my=
=my=i+1 then .
(5.6) | ' (%) F Xy X1 VP2 =22, o X2yt
Proof. First consider the case m;<m,. Choose ¢, y¢End F such that
x, if t<m

X=X, f t=mmn, xy=
' y"+2 else;

In virtue of () and Lemma 5.1 we have

{x,z,,1 if t=mm,
x,@ else.

Xpon Xy V=00 PR = U YR = Xy Xy 1 (R, Y =
= xl--'xml—l(y"+éx12n1)y"+z = u'/l * yn+2 = vlp ‘ yn+2 = xl"'xml—lx?nly"-,-z V
2 if mTT = i,
e=10 if mzu=>n,l.
1 else

Hence (5.6) follows.. . '
© Nextlet my=min ({—1, m;), and put

X, if t=my,

Xt(PE{yn+2 if t > my.

Then . .
N xl..:x,,,ay”“ = up B T

. \ .

T WX, YD YR A my = my = s

In the second case we define y€End F by

x?”3 if t= my
x, else

x,nPE{

5¢
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and obtain
xl"'xmg-lyn+2xlen(:)y"+2 = x1---xm,—1yn+2x?:,(’)yn+2 =

= Utl/ ‘ y"+2 = u‘p _yll+2 = xl“'xmz—lerlgyu+2‘

In both cases (5.6) follows.
If i+1<my,=m,, we get, by obvious substitutions in (x),

2 _ 2 _ , 2 _
Xie X1 VP =X XX Y =X X X X X VR =
2 2 2 2 _ 2
= Xy XX X XPEE Y = X XX Y = xR

Finally, if my=m,=i+1, put

X if t=i, _fxe if t=i+1, ot if =i,
xo=1" Xy = .
: DTASE | S e PR xi+2 if t=i+1; ¢ y*tE i t>i.

Applying (%) and Lemma 5.1, we obtain
X XY =00yt =g Yttt = x, L Xyt iyt =
—_ x1---xiy"+2x;'+2y"+2 - u‘p ,x’il+2yn+2 — U!,b .x;l+2yn+2 — x1---x.'-1(x?+2y"+2)3 —
=Xy XUy YR = X o YT =g xR = xl...xi;lx,?y"+’.
This completes the proof.
Lemma 5.3. If (%) is heterotypical and either my=m, or m,#i, then
.7 () b X Xy YT =y %, _ X2 YR,

Proof. If m,=m, then set

x, if t<=m x2 if t=mmn,
wo={B 0=y o
y» if t=m,, x. @ else.

By (%) and Lemma 5.1, we have (taking in account that e(m)#0 as m;=m,=m)
X g1V = 00 - Y = . Y = et yusa

= o - "R =y Koy 1 X0, YR
which implies (5.7).

If ism,<m, then (¥)x"*'=x"*? and in consequence of Lemma 5.2 and
Lemma 5.1 we have even

Xpoo X1 P = 20 Xy o X VT = Xy X o X i =
— x1---xn—zf'nfix','.+iy"+1 — x1---x,.—1x"n+1y"+1 — xl---x,,y"“-
Clearly, both (5.6) and (5.7) imply

(5.8) x]_...x,,_lyn+2 = xl...xy_zxﬁ_ly"+2.
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Furthermore, it is easy to see that .

(59) (5.6) - %... %, Y2 = X1 ... X2 X2 1 X V" = X X, o X0 2R, YR,
(510) (5.1 - X X, Y™ = Xy Xy X241 X, Y7, ,
(511) (5.8) - xyoox, Y2 =Xy Xy X1 X, VM2 = Xy X p X x, yRHE,
(5.12) GONGT) b Fyo X, Y™+ = Xy oo X1 YR = Xy Xy g%y P,

Remark. The only cases when neither the cbnditic)ns of the Lemmas 5.2, 5.3,
nor those of their duals are fulfilled, are given by (**) and
(5.13) . v= xl...xi_-lx?xi“...»x,,.

Lemma 5.4. () (x*y®)2=xy, '

Proof. If (#) is heterotypical the assertion follows from Lemma 5.1. So let (%)
be homotypical. We indicate the substitutions in (*) which yield the required iden-
tity.

If n=1, substitute , 4

: x={x2" if t=4i

P ly® if >

If kn=k for some k¢ {i,i+1} (suppose e.g. k<i), choose k to be minimal .

and set
X ={x2" if 1=k,
. FO=1ym if 1>k

The remaining case n=( i+1) is dualto n=1.

Lemma 5.5. If n#1, n=(i i+1) then

- R (%) - x(+2y2x3+? = X3+ 2zyxgte,

Proof If (ae) is heterotypicaland (%) - x"+2=x"*3 then xI*+2yzxi+3=x+2x+3=

=x1tezyxite I ((*)is heterotypical and) (*)-x"+*1=x"*3 then, by (5.10),
xﬂ+2yzx£+2 xn+2(yz)2n+1xn+2 — le+222ny2n(yz)ﬂn+1xn+2
= x{”z y2n+lzx|2+2 — xg+222ny2_u+_lzan+1xna+2_ :

Put '
z if t=i,
xo =1yt if t=i+1,
z%n else.
Then

KB D a2ty Anantd
=t 3L oy L ZBXIHE = B 410 p2

and, by symmetry, x;+2z¥1+1)Bn+lpBnt8 xntpyxnte,
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If(*) is homotypical then kn><k for some k¢ {,7-+1}; say, k=i.: Set .

B t<ml, A+t i r<m,,
y if t=m;—1, x¢‘= yx3te if t=my,
z if t=m,, T 2t i t=mym,
x"“ if t=>=my; xg*t? oelse. |

X ¢ =

We obtain (usmg also (5 4) and Lemma 5. 4 if mln—z)
f'+2y2f'+2 xl+2 up - ﬂ-{-a x|+2 cvp- xiH-B i
= x’;*”yx“g*”z‘(”x’z'“ xn+ xn+2(zxn+8)a
=xjtioup. gt =xqt?.of . 3t = xi'“(”?“)“’"”()’-‘%f?)’f" ? x{f’zxg“yxg*",

where swt=m, - and
2 if mn=i,
e=
1 else.
By symmetry, xj*%zx}tiyxgti=x]*ozyxgte.
‘Corollary 5.6. Either (*)}—x{" yzyxate=xi*+227x1%2 or, (x)-x]t2 zyxg*'z:
_xn+ yzxn+3 R
Proof. If ns#1, n#(fi+1) then both identities hold by Lemma 4.8. If =1
then x}*2yzyxj+i=x7tyezx3+i=x1+2,20x2+2 by Lemma 5.1. The case n=
=(@ii+1) is dual. - o

(5.9), (5.10) and Corollary 5.6 imply

Corollary 5.7. If either the assumptions of Leinma 5.2 or those of Lemma 5.3 are
Julfilled then either ‘ :

G144 (%) xl...x,,_lAztzx,,y"” = Xy oo X1 231, Y02
or ST T
(5.14) (%) - x. X1 2z, Y742 = xp .., 822X, 70,

Furthermore, applying (5.9), (5.10), (5.14), (5.14’), we obtain

Corollary 5.8. If either the assumptions of Lemma 5.2 or those of Lemma 5.3 are
Julfilled then

(5.15) ) (*) |— WJ’"“ = WmXe(1)-+ XY™ tE,
C(j) #C(k)‘ lf ] # k9 {xc(l)! seey, c(l)} X(W)
for every weF™,
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6. Standard forms. Now we are able to construct standard forms for ¥V in the
V-ideal J defined by

J={w: there are arbltrarrly long terms which equal to w in 14

and for' V(J). Although the considerations below could be performed in the same
generality as till now, some special cases, in particular the one where (*) is homotyp-
ical and e(k)=2 only if k=(+1)z~!, would demand a separate consideration.
Therefore we continue the investigation of (%) accepting in what follows the further
restriction :

(T) e(k)=2 for at least two different values of %.

This suffices for the proof of Theorem A, since the case when e(k) 2 for exactly one
k has been settled in [6].

Lemma 6.1. If (%) is homotypical, (T) holds, and '|wj|=n*—n for j=1,2,3
then w=wywiweJ.
Proof Thereis a k such that e(k)=2, kni. leteg kn’>z Fnrst we show
that if |u;l=n for j=1, 2, 3 then there exist ¥y, vy, ;€ F such that
Uy = u1u§u3 = vlb§v=; = Up» ué = uQV2,'

6.1
@D [vgls = |uol; for x,€X(vy), [v)l =lul—n+2 for j=1,2,3.

Indeed, put w=uiX.qyXeg-1p Ua=XeryXegr)-XemB Us=Xegmt 1)+ -Xo(myUs-
Then ' ’
(%) Up = Ui X (1) Xo(iy Keqr1) -+ Xegemy D) Xy Xe+1) -+
*
- ves Xotin—1) Fogemy D) Xegon+1) - Xemy s = WY (Xoqumy B)? i U
with some u, u; €F°, and v, =4, %=Xcqn, v3=u;u; meet all requirements of
6.1).. :
If w is as stated then (6.1) can be applied » times. The term w=1,W; W, thus ob-

tained contdins every variable of W, at least n+1 times. Now suppose some ‘W¢ F
n+1l
contains a letter x, at least n+1 times. Then W is of ‘the form. w=uy, ]] x,u,

where u;€ F° for j=0,...,n+1. Put

Uy _1Xs if 1< i,

) x if t=1i,

XQo=qy " ot
. Uy Xgl;q t=i+l,
Xl if =i+l

Then Ww=ug, and |vg|>|W|, |ve|,>|wl,, i.e. we can obtain from W a longer word
of the same form, and therefore weJ. The same holds, then, for w and hence also
for w.. ' . .
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Lemma 6.2. Suppose (T) holds. If (x) is heterotypical then
6.2) J={w: u<aworo<aw}.

If () is homotypical and e(k)=2 for some k¢ {in~%, (i+1)n~2} then J contains the
subset

L= {w: w=wgge_ w2, 4y < p).

If (%) is homotypical, e(k)=2 iff knc{i,i+1}, but v is not of the form (4.1), then J
contains the subset

L'={w:w= Wt W, W Tey) UT () U X
for some irreducible factor w, of w}U
Uw: w=wxxx.wx,x,%,w7; W), Iw”| = n2+2n, W = n—2}.

Proof. The first assertion is trivial. If () is homotypical, e(k)=2, kn¢ {i, i+1},
say, kn>i+1, and weL then w=wg,s_ W -up-ww®' =" with somé @cEnd F,
and we can modify the mapping ¢ in such a way that x,¢’=x,¢ if t<kn, |x,,¢’|=n%
Po'l=1 if t=kn, and w=wgu_,w’ -up’ - w”w" ", However, then

W= W - 0" - W W =
= Wiant-my WD X DD 07« (K 02 - (XA XEP) @ w7 W=,

and the assumptions of Lemma 6.1 are fulfilled.

Now let kn={, K'n=i+1, e(k)=e(k’)=2, e(j)=1 if j=k, k’. Suppose first
that w is contained in L;, the first component of L’.

a) If w=wgs_, #w®™ ™, |#].>2 for some ccP (in particular, if |%| >2),
then n consecutive applications of (*) with substituting each time ¢;: xp>x,,
@j: X140, 165, >0 gives us a word w* with [w*|.>n+1, and the second part of
the proof of Lemma 6.1 verifies the assertion.

b) If w=w,ww™, xyxy< (in particular, if xpxy<®), then w=
=wx.axaw”, and choosing ¢@.€End F such that x,p=a, x,,,0=x,, wo=
EWa_,yW-u@-ww™ ", we have |W-vp-%].>2, and this case can be reduced
to a).

¢) If xyzx<w, then w=wxbx,w”, |bl=2. Putting x,90=x,, x,,.,0=b,
w=Ww-.up-Ww with |w|, |W|=n? we have (*)W.vp-W, which gives us case b)
as b? is a subword of vg.

It is easy to see that all possibilities are exhausted by a)—c). Finally, let we L. By
assumption, n¥1, w#(f i+1), whence there is an /=i, i+1 such that Ims2/;
let e.g. I=i+1 and maximal (then, clearly, In<l). Set w=w,-w)-wy-uy- wy,
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lwll’ lwalgng“'”’ xi'pExc: xi-!-lexd’ xixExn xi+1xExs’ and

xy if t=<l,

%9 = g X)W - wo - (... X34y if =1,
T | axiae X)X if t=1+1,
XX if t=>1+1.

Wehave
: w=w-ud -ws=w,-03.-w; = ax,bx,a’€L;,

because la|=|wy|=n*+n, |@'|=|wsl=n®+n, |bl=|x, X4y-141),9]=2. This comple-
tes the proof.

Lemma 6.2 and Proposition 3.10 immediately yield.
Proposition 6.3. If (T') holds and v is not of the form (**) then SG(J) is hfb_

Proof. Set T= U T(x1 x?), and let I(T) be the set of all we F° every
semiirreducible factor of which is contained in T. Put
(6.3) - My = {w: wyWww®, eI} {w: |w| < 2n},
(6.3) My = {w: w,sww®, we IMIU {w: |w| < 4n2},

M;= {W: Wit smy WHBWOHER, 7] =
(6.35) '
= n, w = wywe IM(y¢ X(WM)}U {w: |w| < 2n2+2n}.

Lemma 6.2 implies that FNJS M, (j=1, 2, 3), if either (*) is heterotypical or (x)
is homotypical and e(k)=2 for some k¢ {in~%, (/+1)n~1} or (*) is homotypical,
e(k)=2 iff kre{i,i+1}, and ms£1, w=( i+1), respectively. Indeed, if w¢ M, then.
w is long enough to be written in the form given in the first bracket of (6.3 j) but with
W having a semiirreducible factor w;¢ I(T). Then either x;x;,1x;<a® or xi..x2<aWw
and, consequently, if w’ is a suffix of length n of w,), Wg,s, OF Wi, ., Tesp., and,

similarly, w” a prefix of length n of w™, w®9, or w"'*" we have u<aw’Www” or
v<aw'ww” (even v<aw). As the latter case can be reduced to the first one, both imply
weJ by Lemma 6.2. Hence the assertion of the proposition follows by Propositiom

3.10, since M, S Fiyd, M,S Fnl, M,C Fin+el,
In order to obtain a standard form in J, we prove first
Lemma 6.4. If (T) holds and we€J then there is a weJ such that
() w=Ww=wxw, x.cEX.

Proof. If (x) is heterotypical the assertion is obvious; so let (*) be homotypicar.
There is a k=n which satisfies e(k)=2, krn=i+1. We are going to show that for
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-every triple r, 5, I of natural numbers there is an x,€X and a term w siuch that w=
=Ww=w, j]]a’w,, Iwjl=! for j=0, ..., s; this is somewhat more than stated. First

consider the case r=1. Let |[X(w)|=21. As w=w’ implies now X(w)=X(w’), we
only have to take a sufficiently long word w, say, |w|=2/+A(s—1)(I+1), in order to
obtain a factorization of the required form. Now suppose the assertion holds for
some r=0 and arbitrary s, /. In the same way as above, one can find a w'=w such
that the same subword x,xx, occurs in w” a sufficiently large number of times and at
a sufficiently large distance from each other (this is necessary in order to cover the
cases where kn=i—1 or kn=i+2; c,d,f need not be different). Say, w'=

3s .
Ewt,}]Jlx,,x'cx,wj, [w;/=n+1. One can define endomorphisms @, ..., ¢, such that
X=X, for j=1,...,s and w=w, ﬁugo,-w;, Iwjl=l Applying (), wehave

w=w} ]]v, wi=wy ]]x”’wj with some wj, [w]|=|wjl. Thls completes the proof.

Proposition 6.5. If (T) holds and v is not of the form (4.1) then [V(J), V] is
Sfinitely based.

Proof. Let weJ; wecan suppose that w= w’xﬁ_‘"zw” by Lemma 6.4. First let the
assumptions of both Lemma 5.2 and its dual (or those of Lemma 5.3 and its dual) be
fulfilled. In virtue of (5.9) (or (5.11)) and its dual, and by Corollary 5.8, we have

(6.4) w= w(,,_z).‘?f',,'mxc(l)...xc(,)x}+2w("‘2) = W*
' (c(j) # c(k) if j # k).

‘Thus, w GF([;‘;", and the assertion follows by Theorem 3.6, because (i) automatically
holds if (%) is homotypical, and if it is not, then, starting from an arbitrary w'=w
with a minimal number of variables in X(w”), we can transform it to the form (6.4) by
steps of the following two types: 1) first, the insertion of the (n+2)" power of some
variable — however, doing so it is not necessary to introduce new variables, and 2)
a sequence of applications of (5.10), (5.11) and (5.14) or (5.14); besides, (5.10) is
always used for reducing the power of the elements, and the other three transforma-
tions do not change the set of the variables involved.

For the rest we can suppose, according to the Remark made on p. 321, that the
assumptions dual to those of Lemma 5.2 or 5.3 hold, but the assumptions of these
lemmata do not, i.e., @) v=x,...x;_,xv" if () is heterotypical,.and f) v=x;...
X1 X5,0 OF §) 0=Xp..x;x7,,9 if (%) is homotypical. Let w=w_y, Wit Xcqy-..
< Xyw"™®, and write W in the form

w=x3...x58, d@)=d@+1).
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Suppose that w is chosen in such a way (from the class of all w’=w of the same
form), that the vector v=v(w)=(| X (w)l, D, l) is mmunal in the lexicographical
ordering. We claim that .

(6.5) ' - XN {Xoys -5 Xeg-1y} = 0.
Indeed, let d(q)=c(r), r<I, and set '
W(i-1) x}g; . ..x}g:i; = Wy, x}fgi}; . .x}g; = Wg,

Xe(r) o Xe(r—1) = W3, Xegra1y -+ XeyW D = w,.

If my=i, put :
x38 if t=i,

X @ = ywexaliws if t=1i+1,

' X3 E if t=i+1,

(... XD =wy.
We have by the dual of (5.11),

(6.6) w = w, x}{8 wzxzz,fwsxﬁ’(';f Wy =

Wlxd(qg) de(q)l Uy if in= i,
= uep - xﬁ';;')l Wy = 0Q - xd(q)W4 = Wl(szg(a)Ws)z'Uz if in= i+ 1,
W1X30g) Us if in=i+1

with some W, v, v, 23€ F®, and in the first case by iteration also
. . ~ N
w=w xd(q) Uy

We have a contradiction with the choice of w in all cases.
If my=i+1, set '

X ;={x,(p if t=i+1,
'(D - xci(,.g.l) if t>i+1.

As in this case (%) - x"2=x"*3 we can make use of the dual of (5.9). Hence

w

I,

W1x48W2x'£(o)W3xd§ x:(r+1)xc(r+2) xc(t)W(" -» =

= u(p°x:(r+l)xc(r+2)"' c(t)W(" D=

vp- XEER 1) Xegr a2y Xey W™D =

Tt "W1xd(23 (wa X283 wa)? J"'c(r+1)xc(r+2) c(l)w("_z) =
6.7
= Wy X38  we X3 - XnEIwa e woxZdS - WA EX o 40y Xy WD =

1

Wy x;'tfq} sz'c&‘f . (x222§ wg)?wit xc(r+1)' <Xe() w2 =
= Wi—1) WX{o) WaXc(r +1)+-Xe(t) w2 = '

= Wg-1) Wx"c(*;?xca)- e Xe(r-1)Xe(r 1)+ Xe(l) wi—),
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if r=0 and
—_— — 2
(6.8)  w=wx}Bwexitiwg = wixIB wixilEiw, =...= w, x}B w3t xS w,

if r=0. In the first case we have reduced / by 1; in the second, w,x}3w;*2€J and
we can create the (n+2)*? power of a variable in this part of the word by Lemma 5.10.
This proves (6.5). '

Furthermore, w;_;,w¢J by the same lemma and (6.5). Let w;_y,w be the long-
est one of all words it equals to. Then u<|:1 Wu—1,W (else we could replace its subword
of the form u by the longer word vy), and x3...X3 X, 4 -+ -Xpm4n-3-1 W) W- Indeed,
if e(k)=2, kn>i+1 for some k then let

' w; for j < km,

X p=w, =YW, 2,, XY = W)= \WeViesr for j=km,
_ W;yz;y;41 for j=>kn
(y;=z; if |w;]=1). We have even
0P Ym+1 = (11—]; WiD) Vi = UP - Yma1 = Wi WiWi Wi W Yn =

= Wi.. W Wi Wi wh = w) = v = wit®  wiem,
and |vf|=lvp|4+2>v@ - yp+4l. If, on the other hand, e(k)=2 iff krc{i,i+1}

(this occurs only in case f) with in€{i,i+1}), then w1, m=(ii+1), whence
In+1#({+1)n for some Im=i+1. Put

W, if tefi,i+1,In},
xﬂll = WI“W?‘_',I if t= ln‘l"l,
w? else.

We have

3 ] — Wl 3 2 2 —_

Wl,,...w,,,,xl...x,,-;_.l - wl...Wi_lwiwi.'..lwlwi.'.z--.W"xl---x"_l'_l =5

= wf - Xp...X, = o - X5...X, = Wi Wi Wy W Xy X
= LeoeKp—i—1 1o Xp—i—1 = Wig...Wip e WnnXpee Xp—j=1.

Applying (*) to this latter word, we obtain some word w* which contains w2 and all
factors w} which do not enter W, as well as X, ..., X,_;—;. Hence [w*|>[wl....
W X Xy

As in the proof of Lemma 4.14, we can conclude now that

s m=1
W =lw, ]IZ;xIU)WJ’ w;€ ‘L_Jo T(x3...xD,

(69
w* = w(,_l)Ww("'l), w=! Wx:-(‘;‘;xc(l)...xca_l) (6 =1 or 2).
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Let M be the set of all words of the same form as w*:
M, = {w;: |wy| =i—1},

s m—1
My={w: w=twy [] X5 W€ Uo T(x3...xH},
j=1 t= .

My = {wg: |wg| = n—i—1}), M, =TE+HUT(x"+Y),
M; = F, M, = {Wsi [wel = n—l}a
M = {w;...wg: wEM;, X(w)NX(w)) =0 if i,je{2,4,5}, i #j}.

We have seen that M is a standard form for ¥ in J. Thus, by Theorem 2.9 and Lemma
3.5, the proof will be accomplished if we show that conditions (i) of Lemma 2.8 and
(iii) of Theorem 2.9 are fulfilled. Now (i) holds — if (*) is homotypical, by Remark 1
made after Corollary 2.10, and if (*) is heterotypical, by the fact that in assuming
that x7*2 is a subword of w, we could choose x, as well from the variables of the origi-
nal word which was to be transformed, and while transforming w to w* we never
needed to introduce a new variable. Furthermore, let w=WwweM, @€End F°, weo
a prefix of some w'eM, and |#*"~Vp|=2m—1. By Remark 2 (after Corollary
2.10), we can confine ourselves for such ¢ that

|x¢l=1 for x,EX(w1w3w4w6).

If |®W}=i—1, (iii) holds obviously. If W=w,w,5, then wop=wuuzu,-w’, w,cM,,
and we obtain (w¢)* by applying (several times) the dual of either 5.9 or 5.10, and that
of 5.14 or of 5.14’, not changing thereby Wo. Finally, if W=w_,W,0, W0 a prefix of
W, and either d=x;;X50) - X3¢_n¥awy» A=2, |w)=2¢; then, by assumption,
|xrny@l=xay @l = .. =Xy ®|=1, and X(W.¢) NX(wp) S X(wsp). Thus, we can
transform (Wg—1yWe X)) @Y~ P (x34)---¥ayW) to a standard form # without changing
either wy or wg; thereby we *“‘standardize” the whole word we, without changing
Wi-1yWeXsy))@- Or W, =0, |6|=2m—1, and the assertion is obvious once more.
This completes the proof. .

Theorem A follows now from [6], Proposition 4.1, Lemma 4.2, Propositions 6.3,
6.5 and 2.5.
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