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Some sufficient conditions for hereditarily finitely 
based varieties of semigroups 

G. POLLÂK 

Introduction 

The proofs of most theorems saying that one or another variety is hereditarily 
finitely based are very similar to each other (in so far as syntactic proofs are concerned). 
The general scheme of such proofs has been described in [6] (see also Theorem 2.5 
of the present paper); however, this description does not help much more in future 
proofs as finger-posts do in alpinism. The essential difficulty usually lies in proving 
that the objects and relations in the scheme are what they ought to be (sometimes it is 
not even easy to construct.them). We think therefore that every unification which 
renders possible to claim that a more or less broad class of varieties is h.f.b. is of 
interest. 

In the present paper we give sufficient conditions of the following two types: 
a) if J is a fully invariant ideal of the countably generated free semigroup F, and a 
certain quasi-ordered set (connected with F\J) is well-quasi-ordered then the vari-
ety SG (J) defined by all identities u=v, u, v£J is h.f.b.; b) if V is a variety, MczF 
is a standard form for elements of J (i.e. every w£/ equals to some w* iM), and M 
itself, as well as the "process of standardization" are subject to certain conditions, 
then every variety in the lattice interval [V, V(~)SG(J)] is finitely based over V. 
Furthermore, we show that certain concrete subsets of F satisfy these conditions. As 
an application, we find all h.f.b. identities in one of the four classes of "candidates" 
to such identities (see [3]; class (d)). This result accomplishes, in a certain sense, the 
investigations concerning such identities; namely, classes (c) and (d), as well as balan-
ced h.f.b. equations are completely described now (see [1], [4], [6]), homotypical and 
some other equations of class (b) are settled in [5], and it looks likely that presently 
known syntactic methods cannot help us much further. 
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Part L General sufficient conditions 

1. Preliminary. We need rather a lot of not generally known concepts and 
of notations running through this paper; so we have collected most of them here. 

By the free semigroup F we always mean the countably generated free semigroup 
F(X) on the set of generators X— {jq, x2, ...}• As we need also the free monoid F°, 
we shall call the elements of F terms, the elements of F° words (i.e. a word can be 
empty, a term cannot). The coincidence of words will be denoted by u=v; the for-
mula u=v is an identity which holds in some subvariety V of the variety of all semi-
groups SG. The empty word, as well as the empty set, we denote by 0; this will not 
lead to confusion. 

The set of all variables (letters) which occur in u will be denoted by X(u). Fur-
thermore, \u] denotes the length of u, and \u\t the number of occurrences of xt in u. 
The words w(i), t /° are the prefix and the suffix of length / of the word u (of length 
S / ) , resp.: 

(1.1) u = ua)u' = u"u"\ |«(I)| = |«(,)| = /. 

A third kind of denoting equality is defined by 
def —r^ 

(1.2) u =! utu2 o u = uxu2 and X(u{) Pi X(u^ = 0. 

Notethat u=! uxu% implies \X(u)\ = ^(MJ)! + ^(u^. I f a word has no decompo-
sition of the form (1.2), it is said to be irreducible. Every word has a unique irredu-
cible decomposition: 

r drf r 

(1.3) u =!! JJ utou=l JJ u,, u{ irreducible for i = 1, . . . , r. 
1=1 t=I 

We call the components w, the irreducible factors of u. The word u is said to be 
semiirreducible if |«,| > 1 for every / (in particular, 0 is semiirreducible). The decompo-
sition 

s 
(1.4) u = ! w0 i7*c(i)wi> Wj semiirreducible 

]=i 
will be called the semiirreducible factorization of u, and w>„,..., M>s its semiirreducible 
factors. A word is said to be simple if its semiirreducible factors are empty (i.e. if no 
letter occurs in it more than once). Besides (1.4), we shall also make use of the reduced 
semiirreducible factorization 

(1.5) 
* 

w=!w 0 IJaiWi> semiirreducible, a, simple, wt, a{ £ 0 for i = 1, ...,s— 1 . 
i=1 

Clearly, both (1.4) and (1.5) are unique. 
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By F(n) we denote the set of all words having only semiirreducible factors of length 
In particular, F ( 0 )=F ( 1 ) consists of all simple words. Obviously, F(N)C.F(n+1) 

for every n £ l , and F°\F(n)=J(n) is a fully invariant ideal in F. Let Mc.F°. Set 

(1.6) = {u: u = a0 ]J «¡a,, |a0...a,| S m, fi =! G^.M^M}, 
¡=i 

(1.7) M ( m ) = {«; u£Mlm\ X(a0...a,)nX(G) = 0}. 

It is easy to see that 

L e m m a 1.1. F$QF$n+1» if n^ 1. 
Indeed, if «€ F j f f , then at most m factors of the factorization (1.4) of u can con-

tain some element of X(a0...at) (as \X(a0...a^\=in), and every such factor is of 
length ^ n . Put 

f 

¡=i 

where every a\ is equal to a factor of (1.4) which contains a letter of a0...a,. Clearly, 

\a'0...a't-\ ^ (n+l )m, and x(a'0...a't.)nx(u[...t4.) = 0. 
Two words u, u' are said to be of the same type if there is an automorphism 

agAut F° which maps u into u': ua=u'. The set of all words of the same type 
(an orbit of Aut F°) is called a type. E.g. X and 0 = {0} are types. The type of u will be 
denoted by T(u). If u is irreducible, simple etc., the same is said about T(u). 

An endomorphism <p€End F" is said to be disjoint if X(xt <p) fl X(xj <p)=0 
provided 1V7. The endomorphism <p is finite if <p| > 1 for at most finitely many 
Xi's. The number 

y(<p)= 2(1*^1-1) 
i = 1 

is called the growth of <p. The set of all disjoint endomorphisms will be denoted by 
Dend F°, that of all finite disjoint endomorphisms by Fde F°. 

The proof of the following facts is straightforward (see also [4]). 

L e m m a 1.2. If u^X is (semi)irreducible and <p£Dend F°, then uq> is (semi)-
irreducible. 

m m 
Lemma 1.3. If M=! JJwiand <p£Dend F0 then uq> = \ IJwt<p. 

i=l 1=1 
Let r(u) ( = r ) , s(u)(—s) be the number of factors in (1.3) and (1.4), respec-

tively. 
Lemma 1.4. If <p£Fde F° then r(u)Sr(u(p)Sr(u)+y((p), s(u)^s(u<p)S 

^s(u)+y(q>), and the image of an irreducible factor X of u is an irreducible factor 
of u<p. 
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We have to deal with several order and quasi-order relations. The most important 
order relation will be the lexicographical order of words defined by 

def . . . 
u < Iex vov = uv, v £F or u = wx.u , v = wXjV , i < ; . 

The lexicographical order is not a well-order on F°, however, it is a well-order on 
F°\Fn (the set of words of length <«). 

Let Fbe a variety of semigroups, and F(V) the free semigroup in F on the infi-
nite set of generators {^v, x2v, ...}, where v: F—F(V) is the canonical homo-
morphism. A fully invariant ideal J is said to be a V-ideal i f / i s the full inverse image 
of Jv. In particular, 

/(V)={u£F: there is a v£F such that v^u, F t=«=»} 
is a F-ideal. 

Let a be a set of identities. By F(CT) we denote the subvariety of F consisting of 
those algebras which satisfy a. If / is a fully invariant ideal then 

V(J) = V(T) where x ={u = v:u,v£J} 

(i.e. V(J) is generated by the algebra' F(V)/J). 
Following Petrich, we term an identity u=v homotypical if X(u)=X(v) and 

heterotypical else. The ideal 
J0(V)={u£F: there is a v£F such that X(u)^X(v), Vt=u=v} 

is a F-ideal, too. Obviously, J0(V)QJ(V), and J0(V)v is the kernel of F(V). 
Two systems of identities cr2 are said to be V-equivalent if 

V N <=> as. 

Similarly, a system a is V-finite, V-independent etc., if it is F-equivalent to a finite 
system, not F-equivalent to any proper subsystem of itself etc. Furthermore, V'( Q V) 
is said to be finitely based over V if V = V(a), a finite (or, equivalently, F-finite). 
The interval [V, V) of the lattice of varieties is finitely based if every element of [V, V) 
is finitely based over V. If F i s finitely based, too, then we say that [V, F] is finitely 
based. 

We say that the system of identities a (or, also, the identity u=v in the case 
a— {u=v}) is hereditarily finitely based (h.f.b. for short) if the variety SG(o) is, where 
SG is the variety of all semigroups (which, by definition, means that every subvariety 
of SG(o) is finitely based). 

Let J be a fully invariant ideal in F. A subset M<ZF is termed a standard form 
for Vin J (or, for short, M is standard for V in J) if for every u£J there is a u*£M 
such that Ft= u—u* (neither uniqueness nor the existence of an algorithm for find-
ing it* is demanded). Clearly, if M is a standard form, then so is every M' M. 
Moreover, if / is a F-ideal, u£J and u=u* imply u*iJ. Thus, JC\M is also a 
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standard form for V in J. However, sometimes it is more convenient to work with 
larger standard forms. If J=F we simply say that M is a standard form for V. 
Usually we state oiir theorems for standard forms in an arbitrary J because the more 
elegant special case of standard forms for V does not suffice in the applications. 

Finally, if o={us=vs} then by c we denote the system cU {ws=«s}. 

2. Well-qnasî orders and h.f.b. varieties. A quasi-order relation «< is said to 
be a well-quasi-order (wqo for short) if there are neither infinite (strictly) descending 
-<-chains nor infinite <-antichains or, equivalently, if every infinite sequence contains 
an infinite (not necessarily strictly) ascending subsequence ([2]). The following quasi-
orderings on subsets MQF° will occur: 

wok ' iff = uq>- w2 for some (¡»^End-F0, u l3 u2£F°, 

u<iyu' iff V N u' = • u(p • w2 for some cpdEndF0, wl9 M2€F°, 

u<ihu' iff u' = uip for some <p£End F°, 

u u' iff u' = ucp for some (p£FdeF°. 

Note that in the last case it is sufficient to find a <p'£Dend F° such that u'=ucp': 
this can be always modified so as to obtain a <p€Fde F°. 

Let, furthermore, P denote the set of positive integers and I the symmetric group 
on P. For every. k£P we define two quasi-orders, one on Mxl and one on M2XZ 
as follows: 

(u, JI) <Kk («', 7zr) iff 3<p£Fde F°(I«p = u\ xin<p = xin, for 1 s j g k), 

(w, v; n) <4. ("'> v';n) iff 3<p€Fde F° (u<p = u', xincp = xin, 

for 1 ^ i S k, v<p£M). 

The remark made above about <p is valid here, too. Also, it is worth noting that in the 
definition of <sc2 the word v' does not play any role, and that « is a wqo if <sck is. 

In proving varieties to be h.f.b., often it is crucial to know that one or the other 
of these quasi-orders is a wqo for some standard form M. As for the second one, this 
is even indispensable: 

Lemma 2.1. If Vis h.fb., then visa wqo on F°. ^ 

Proof . Obviously, no infinite descending -chain can exist. If «i ,«2 , ... 
were an infinite <aK-antichain, then consider the system or={«2t-i:=:"2t: k = l , 2, ...}. 
We are going to show that V(a) is not finitely based, moreover, if ak=o\{u2k_1—u2k} 
then V(<rk)¥=u2k-1=u2k. Indeed, suppose there exist (u2k-i = )vi^ •••ivi( = u2k) such 
that vt=v\ • Wi<Pi -v", • w'^i-v" for / = 1,...,/— 1, where <?>,•€ End F, 
v\, v"€F° and either FNw—w- or w—w'^^. If it is always the first instance 
that prevails then FN u2k =u2 k , which is not the case. Let i be the minimal index such 

4* 
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that V&v~vi+1, and, say, w^u^^, w\ = u2r, r^k. Then Vt=u2t_1=vi= 
=*>' • u2r_lq>i • v", contrary to the assumption. 

Clearly, if <sct is a wqo (for some fixed M) then <sz, for 0 is a wqo, too. 
However, already the condition that « 1 is a wqo on some MXE is rather restrictive 
as the following lemma shows. 

Lemma 2.2. If <scL is a wqo on MX Z then there is a natural number p such that 
\u\^p for every u£M and /6P. 

Proof . Put p(u)=max \u\h and suppose p(u1)~zp(u2)<..., \Uj\kU)=p(uj). 
Then we obtain an infinite «vantichain (Uj,nj ) , j= 1 ,2 , . . . by putting itj= 
=(1 k(J)): if cp is disjoint and xk(J)<p=xm, j^i, then 
whence UjCp^Ui. 

Let Gn>fc={(a1,..., iJr)£(F°)r: \av..ar\^.n, \X(ai...ar)\^k}. The following 
proposition enables a more flexible handling of 

P r o p o s i t i o n 2.3. (MXE, <zk) is wqo i f f MxGn k is wqo for every n under 

Proof . The sufficiency is obvious because (u, n)<s:k(u', n') is equivalent to 
(u; xu, ...,***)-<(«'; xw, ...,xkx.). Now let <ck be a wqo, and let x ^ , ...,xs(q) be 
the variables of av..ar (in the order of their first occurrence). Set 

and put (u;ax, . . . , a r X 0 ( « ' ; a i , ...,0^) iff r=r', T(al...ar)=*T(£T(a,)= 
= T(a'i) for i = l , . . . , r , (u, it)<s:q(u', n'). Now -<0 is a wqo because q^k and r, 
T(ax...ar), T(as) can take only a finite number of different "values". Furthermore, 
(u; alt ..., ar)<0(u'; a[, ..., a',) implies (u; ax,..., ar)-<(«'; a[, ...,ar) because the 
very endomorphism <p which satisfies u<p=u\ xsu)(p=xs'u) maps a, on a\. Hence 
-< is a wqo. 

The following proposition shows that the conditions that <sck is a wqo for diffe-
rent numbers k are not very far from each other. 

P r o p o s i t i o n 2.4. If M<zF°, and there is a natural number q such that uv£M 
implies \X(u)C\X(v)\ =q, furthermore, <s:29+1 is a wqo on M, then <sct is a wqo on Mfor 
every k. 

Proof . For k^2q+\ (in particular, for k= 1) the assertion is obvious. So 
suppose it holds for some k. For (u, n)£MXZ consider the decomposition 

(2.1) 
(u; ...,«,)-<(«'; ai, ...,a'r.) i f f r = r' and 

3(p£Fde F°(u<p = «', = a't for i = 1, ..., r). 

r 
" = "o nxun"i, h k, X(ut)N{*!«,..., = 0, f=i 
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and put 
r 

« = 77*/,=» « = «o-"r> "i = «0—«i-i. «i = 1=1 

^(«) = (z(iii)nz(«i))\{x№+1)lt}, J(«)= u *,(u), X(ud =x(u)nx(ui). i=1 

It is easy to see that r^kp where p is the bound from Lemma 2.2, |X(u) |^rg, and 
X(«¡)^Xj(u)iJXl+1 (u), whence qi=\X(u^)\^2q. Choose permutations n0,...,nr 

such that ljr,=(Ar+l)jr, x 2 ) t j , . . . , *(9(+1)i t | are the different elements of X(u t) 
(e.g. in the order of their first occurrence in «,), and define 

(«, it) -< («', n") iff («, n) (u\ n'), 
(2.2) 

r ®,+l r « i + l 
( « ¡ , « 2 9 + ! ( " , ' , 0 for i = i , . . . , r , and T(77 77 x№() = T(N 77 *<*;)• i=0 t=l i=o r=i 

As (w, n)<ak(u', 7t') implies T(u)=T(u'), r is the same for («, 7t) and for (u\ n'), 
and the definition makes sense. Furthermore, (2.2) implies that qi=q'i for 0 ^ / S r , 
because l7t (=(fc+l)jr, IN'I=(K+1)TC' for every /; in particular, x ( i + 1 ) „and jc(fc+1)n. 
are the first letters of the corresponding products, and this fixes the length of the inner 
products. 

From the assumptions it follows that -< is a wqo on M X I , so it is sufficient to 
show that -< is weaker than <£ t + 1 , i.e. if (2.2) holds then there is a q> €Fde F° such 
that u<p=u', x,„(p=x,„. for t^k+l. By (2.2), there are disjoint endomorphisms 

<p0, ...,<pr such that 

mj/ = u', xtv\p = xtK, for 1 s t s k, 

u,(Pi = x,„t(pi = x,n\ for I S i S qt+1, i= 1, ..., r . 
Put 

v m = \x*Vt xs£X(Ui), 
if x£X(u). 

Then <p is well-defined: if xseX(ui)DX(uj), i<j, then s=ini=t'itj for some 
i ^ q t + 1 , t ' ^ q j + l, however, then, the third condition in (2.2) guarantees that 
tn\=t 'n ' j , i.e. xs(pi = x8(pj. Also, it is not difficult to see that <p is disjoint. Further-
more, uij/=u' whence u'=nxt{g, (in general, the sequence . . . , tT depends on 
(«, 7i)). Thus, u(p = u', xtK<p=x,n. for t=l,..., k+l. 

In [6], the generally used syntactic method of proving varieties to be h.f.b. is 
formulated in Proposition 2.1. Here we give a slightly different version. Let MczF0, 
V a variety, and J a fully invariant ideal of F. We say that M is a good standard form 

for V in J (or a good standard form for V if J— F) if there exist a linear order relation 
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< on M and a quasi-order relation -< on M*={(u,v): w > » } c M 2 such that the 
following conditions are fulfilled: 

C) For every u£J there is a u*£M such that Vt=u=u*; 
O) (M, < ) is a well-ordered set; 
Q) (M*, < ) is a wqo set; 
A) If.(«, v), («', v')£M*, (u, v)-<(u', v') then there is a wÇA/ such that w-=u' 

and Vt=(ii=v=>u'=w). 

If one replaces Fr by / in the first part of the proof of Proposition 2.1 in [6], .one-
obtains • 

P r o p o s i t i o n 2.5. If there is a good standard form for V in J then the interval 
[V(J), V) is finitely based. 

It is easy to see that if M is a good standard form for Via J then it is a good stand-
ard form in the minimal F-ideal JY which contains J. Thus, JVC\ M is a standard 
form for F in / (even in Jv). 

In order to obtain a sufficient condition for F to be h.f.b., we need the following 

P r o p o s i t i o n 2.6. Let V be a variety and J a V-ideal. If the interval [V(J), V) 
is finitely based and V(J) is h.f. b. over V then every subvariety of V is finitely based 
over V. 

The proof is based on 

L e m m a 2.7. Let V be a variety, J a fully invariant ideal in F, and F ' = V(J). 
Let, furthermore, a be a system of identities and u£F such that V(a)Y=u=v for any 
v£J. Then V'(a)\=u=u' implies (u'$J and) V(a)(=«=«'. 

Proof . Let («=) v1,v2,...,vl (=« ' ) be a sequence of terms such that Vj= 
=vj-wj(pj-vj,.vj+1=v'j-wj(pj-wj for 7=1 , / - 1 , where v), v'JeF0, q>j£End F, 
and either Wj, w'j£J or V\= Wj=Wj or (Wj=Wj)Ç.â. Suppose/0 is the least index for 
which wlo, w'i^J- Then V(o)t= u=v,jcJ, contrary to the assumption. Hence 
vfiJ ( y = l , . . . , / ) and v1, ...,vl yields a proof of u=u' in F(cr). 

P r o o f of P r o p o s i t i o n 2.6. A system of identities a can be supposed, without 
loss of generality, to consist of three parts o}={{u=u')£a: u, u'ÇJ}, a'j= 
= {(u—u')da: u, u'^J) and <r0={(u=u')£a: u€ J, u'$J}. Using Lemma 2.1, we can 
replace all but finitely many members of <r0 by identities of type o f . if («=« ' ) , 
(V=V')£G

0
 and u'<I

VW
V' then V(J)T=V'=u1 • u'<p • u2 . (uu u2£F°, <p£End F); 

however, v'fyJ whence V\f= v'=ux- u'(p • w2 and therefore {u=u\ v=v'} is F-equi-
yalent to {«=«', v=u1- u'cp • w2}. Thus, one can assume that <t0 is finite. The same 
holds for aj because V(J)(a'j) is finitely based by assumption, whence o'j is F( / ) -
equivalent to some finite system o*, but then Lemma 2.7 implies also V(o'j)= F(CT+). 
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Finally, V(<jj)£[V(J), V] and therefore is finitely based over V. This completes the 
proof. 

Putting together Propositions 2.5 and 2.6, we obtain a condition which can be 
used in proving varieties to be h.f.b. In these applications, the following lemma will 
be referred to several times. 

Lemma 2.8. Let Vbe a variety, J a fully invariant ideal in F, and M a standard 
form for V in J subject to the condition 

(i) for every u£j there is a u*£M such that V\=u=u* and |X(H*)|^|X(M)|. 

If u,v£ J, X{u) ^ X{v) then for every <p£Dend F with \X(u(p)\?£\ there is a w£M 
such that \X(w)\<\X(uq>)\ and V)=u—v=>u=w. 

Proof . Choose an arbitrary y£X(v(p)C\X(u(p) if X(vq>)r\X(u<p)^0 and put 
y = xx else. Define i/^End F by 

, =fx<P if x£X(u), 
y if * < № ) . 

Then wi/ = uq>, and X(v\jj)=X{vcp)C\X(u<p) if X(vq>)C[X(ucp)9i0, X(v\]/)={y} 
else. Now X(v)C\X(u)c:X(u); hence X(v<p) fl X(uq>) a X(ucp) because q> is disjoint. 
Thus, \X(v\j/)\<\X(uq>)\, and, in virtue of (i), the term w=(v\p)* meets the require-
ments. 

Now we give a sufficient condition, which may seem rather sophisticated at first 
glance, however, can be applied to reasonable classes of varieties. By (u, v) we denote 
the greatest common prefix of u and v, i.e. the longest subword w such that u=wu, 
V = wv. • -

Theorem 2.9. Let V be a variety of semigroups, J a fully invariant ideal in F, 
lifiQF0 for i=l, ...,/, and let 

M = {u = Mj...«;: u^Mi, and u = uu=> X(U)flX(u) < g} 

be a standard form for V in J with some natural number g. Suppose, moreover, that the 
following conditions are fulfilled with some natural numbers n and k^n +(l— l)g+2:; 
conditional)from Lemma2.7, furthermore, 

(ii) (AfjXl, « J is a wqo set for / = 1 , . . . , / ; 
(iii) i/" » = v ^ v ^ . - v j ^ v j , Vj=VjVj, (p£Fde F°, and vq> is a 

prefix of some v'..vx^M such that v'i=vt for /<j, furthermore, 
\v(n)cp\ =n, then (i) 'is satisfied for vcp with some (vq>)* s. th. either (vq>)* = 
= vt(pfor i= 1, . . . , j f - l , \(vj(p, (vcp)*)\^\vj(p\-n or, for some h^j, (vcp)* = 
= Vi(p for /</?, (vq>)l is a proper prefix of vhq> (of Vj(p, if h=j). 

Then [V(J), V) is finitely based. 
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Proof . Fix a factorization u=ux...ui, ufcM^ for every u£M. Define < on 
M by 

v < u iff either < \X(u)\, 

or |A"(c)| = |JT(«)i, v, = u, for i = 1 j-1, Vj<.,tlUj. 

Furthermore, for (u,v)£M* set ut=v, if /<=/', Uj^vj, and 
U = WXeU, W = ^...Uj^Vj, Vj = (Uj, Vj>, 

{Vj or _ (wv or 

VjXjVVj, \v\ = n or |£| < tl, Vj = 0, — 1 wxdvv. 
If Vj=Vj, we put d—e, ¿3=0. Let u0 denote the product of all different variables of 

U n*(«„))= (J -",)nz(wi+1..M,)) (which shows that |w 0 | s ( / - l ) g ) 
i<h »=1 
in the order of their first occurrence in u, say. Suppose that x c ( 1 ) , . . . , xc ( r ) is the 
sequence of all different letters of a=xdxe(wxdv)wu0; clearly, r s | a | s ( / — l ) g + 
+n+2=k. Choose n£Z such that tn=c(t) for t^r, and for (u, v), (u,v) (¿M* put 

(u,v)<(u',v') iff (u„7t)<£k(u'„ 1ir) for i = 1 I, 

r = r\ j = j \ \w\e=\w'\e„ T(xdxev) = T(xd.xe.v 0, 

|AT(m)| = |ir(®)| -o- \X(if)\ = \X(o% w = vow' = v', vj = vj *>v'j = v'} 

(letters with' denote objects which belong to («', «'))• 
Lemma 2.2 implies that (M, < ) is a well-ordered set, because \u\^p\X(u)\ 

with some constant p. Furthermore, as r,j, \w\e and \xdxev\ are bounded, and the 
equivalences decompose M* in eight -<-independent classes, the qo-set (M*, -<) is 
wqo in virtue of (ii). Thus, it remains to prove that (A) is satisfied. 

If («,»)-<(«',»') then there are disjoint endomorphisms (pi, ...,(pl such that 
«,<¡»1=« ,̂ xelt)q>i=xc.it) for t=\,...,r and / = 1 , . . . , / ; in particular, (pi and cph 

coincide on Xiu^OXiu,,). Hence the endomorphism <p given by 

___ = fxs<pt if xs€X(u/), 
Xs(p-\xs(Pl if x£X(u) 

is well-defined and disjoint. We have ut(p=u't, ucp=u'. Hence V$=u'=(v(p)*, and 
all we have to show is (wp)*<t/'. Clearly, we can suppose |xs<p| = l for xs$X(u); 
hence, by (i), 

| j r («0H*((^)*) | ^ \X(u<p)\-\X(v<p)\ S |Z(«)|-|Z(t>)| S 0. 

This proves the assertion for the case \X(v)\< |A^(M)| (in virtue of Lemma 2.8, even for 
X(v)*X(u) if \X(u')\*\). So let \X{v)\ = \X{u)\, = Then we have 
also \X(u')\=\X(v')\. Next note that fw|e=jvf'|e. and xecp=xe. (as e=2n, e'=2n') 
guarantee w<p=w'. If, moreover, Vj=Vj then v'j=v'j, i.e. vt(p=v\ for the first / 
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components of Hence, according to (iii), either (vcp)*=v[, .••,(v<p)^_1=v'h_lr 

(vcp)% is a proper prefix of v'h for some h^j or (vcp)f=v', for /=1 , ...,j. In the first 
case (vcp)*<v'<u', in the second one (vcp)*<u\ too, because u'j. If, on the 
other hand, vj=vjxdvvj, then vj=v'jxi.v'vj, d<e, d'<e' (because v<u, «'<«')» 
and T(xd xe v)=T(xd. xe.v) implies, in particular, \v\ — \i>'\. Now either |t3|<«, then 
we have vj=vjxd,v'=(vjxdv)cp=vjcp, and the same argument as for the case Vj=vj 
prevails (only V'J<UJ follows now from <f'<e'); or |<5|=n, and, again by (iii), 
either there is an h^j such that (vq>)*=.vi(p=v,

i for I</J, (vcp)l is a proper prefix of 
v'h (of v'jXfV' if h=j) whence (vcp)*<v\ or (vcp)*=v't for /=1 , ...,j—l, 
\{v'jy(vcp)*)\^\vjxd.v'\, i.e. (vcp)*=v'jXd.Wj<lexu'j, which yields the proof for 
this case, the last one. 

In the special case / = 1 Condition (iii) reads somewhat simpler: 

Coro l l a ry 2.10. Let V be a variety of semigroups, J a fully invariant ideal in F, 
and Mc. F° standardfor VinJ. Suppose that (M, <sck) is a wqo set for some k^ 2, (i) 
holds, and for some n^k—2 we have 

(iii') if v=vv£ M, <p£Fde F°, vcp is a prefix of some v'dM, and \v{n)cp\=n, 
then (i) satisfied for some standard form (vcp)* of vcp such that either (vcp)* 
is a prefix of vcp or \(vcp, (vcp)*) | ^\vcp\ —n. 

Then [V(J), V) is finitely based. 

Remark 1. If Vis homotypical (i) is fulfilled. 

Remark 2. It is not difficult to distil from the proof that (iii) can be weakened in 
the following manner. Instead of v£M we consider pairs (v, Q ) € M X Z , and we re-
quire (iii) only for those <p£Fde F° such that 1x^1 = 1 for 1 ^i^k—n—2. This 
enables us to dispose not only of the elements of X(xdxe(wxd€){n)u0) but of some 
more variables, too, provided k is sufficiently large. It is precisely in this form that 
Theorem 2.9 will be applied at the end of the paper. 

The next two theorems are devoted to special cases where the conditions can be 
weakened. 

Theorem 2.11. Let I be a fully invariant ideal of F. If ((F\I)XE, <K2) is a 
wqo set then SG(I) is h.fb. 

Proof . Choose an a£l, and set M = ( F \ / ) U {a}. Define v<u iff either 
v=a, u£F\I or v,u£F\I and «<,exw. By Lemma 2.2, < is a well-order. 

For (u,v)£M* put 
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if v^w. Define 

(u, v) -< («', t/) iff either u <szu\ v = a, or u <sc u', v = w, 

or (M, it) <c2 («', TIO, »' ^ a, W. 

Clearly, -< is a wqo relation on M*. Note that u, u'^a and if v=w then also v^a. 
Anyway, there is a <p£Fde F such that u'=uq>. If |Ar(«)|<|A'(«)| then we can 

suppose that \X(v<p)\<\X(uq>)\ whence vqxucp. Now let \X(v)\=\X(u)\. If u«u', 
v=a then u'=ucp=(v(p)*=a<u'. If u<zu', v=w, then u'=uq>=wq> • (xeu)(p 
>w<p=v(p. If v, v'${a, W}, («, 7T)<S:2(M', n'), then u'=u<p, xd.=xd(p, xe.=xe<p, d'< 
<e ' . Hence u(p=wcp- xe. • ucp, v(p=wcp- xd. • v<p, and either v<p£l, (vcp)*=a<u', 
or v(p£F\I, v(p<lexu' whence vqxu'. This completes the proof. 

Theorem 2.12. If V, J, Mare as in Corollary 2.10, (i) holds, and <M
2

XS, <<
2

> 

is wqo, then[V(J),V) is finitely based. 

Proof . Define •< by 

v •<• u iff either |Z(i;)| < |Z(«)| or |X(t>)| = |JT(«)|, V < l ex u. 

For (u,v)£M* set w=(u,v), u = wxeu, v=w or v=wxdv, d^e, and put d= 1 + 
+max {/: x£X(u)\JX(v)}, v=& if v=w. Let 

(u,v)<(u',v') iff (u,v,7i)«l(u', v';n), \w\e = \w'\e., 

X(v) = X(u) <=> X(v') = X(u'), v = wov' = w'. 

Obviously, < is a well-order on M and -< is a wqo on M*. If X(v)^X(u) and 
\X(u')\7i\ then (A) follows from Lemma 2.8. If \X(u')\ = \ then |Z(u)| = l by w « u ' 
and \X(v')\ = \X(v)\ = \ by / < « ' , «<«. If, besides, X(v)^X(u) then X(v')^ 
7±X(u'); hence v=x%, u'=x^, v'=x%,, d<e, d'<e', m\m', and putting 
xe(p=x£lm, xdcp=xd., we have u'=u<p, vq>=(v<p)*<u'. Finally, let X(v)=X(u). 
Then X(v')—X(u'), and there is a <p£Fde F° such that uq>=u', xdq>=xd., xe<p=. 
=xe>, vcpdM. Now \w\e=\w'\e- implies iwpHw', and either vsw, vq> = wq>= 
= w'=v'cu' or v = wxdv, vq> = w'xd- -vqxu' because d'<e'. This completes the 
proof. 

Remark . Of course, (M
2

XL, is wqo if and only if {M*XI, <K2) is. 
Hence we could have defined in advance and replaced M2 by M* in the text of the 
theorem. This will be our way in the next section (Lemma 3.7). 

and define 
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3. Standard forms and h.f.b. varieties. In this section we show some (com-
paratively large) particular subsets of F° to be good standard forms whenever they are 
standard and part of the conditions (i)—(iii) (or (iii')) is satisfied. 

T h e o r e m 3.1. If is standard for V in J and (i), (iii') hold (with some n^O), 
then [V(J), V) is finitely based. 

| P r o o f . By Corollary 2.10, it is sufficient to show that ( F $ X E , <szk) is a wqo 
set for every k. The proof will be accomplished through a succession of lemmas. 

L e m m a 3.2. F(n) is wqo tinder <sc. 

P roo f . Denote by T„ the set of all semiireducible types of length SM, and define 
the quasi-order relation -< on P x T „ by 

(k,T)<(k',Tr) iff k < k', T = T'. 

As Tn is finite, PXT„ is a wqo set under -<, and, according to [2], so is the set V of 
vectors (<*!,..., a(), a(CPxT„, of arbitrary length under the relation 

(«,, ..., a,) -< ( f t , . . . , /?m) if there is a sequence i ( 1) «=...< i(i) = m 

such that ocj -< f}iU) 

(the additional condition i(l)=m accepted here obviously does not change the situa-
tion). Assign to F(n) the vector a(w)=(a1? ..., as) where a,=(|a,|, T(wt)) 
(see (1.5)), and put 

u<u' iff a (u) < a («') and T(>v0) = T(w'0). 

This relation is a wqo, too, because FXT„ T(iv0))) is a strict ho-
momorphism of (F£n), -<) onto a wqo set. On the other hand, if «-<«' then we can 
construct a <p€Fde F° such that uq> = u': there exist endomorphisms (pjdFde F°, 
j=0,...,s, with (tfj-vvj)cpj = a'i(J)w.(J) (where /(0)=0, ao = a'o = 0). Denote the first 
letter of a j by xrU), and put 

x,cp 

xtq>j if xt£X(ajWj), t ^ r ( j ) , 
> U ) - i 

( II a'kw'k)-xrU)(pj if t = r ( j ) , 
k=iU-1)+1 

xt+N if x,iX(u), 

where N= max i. It is easy to see that (p fits for our aim. *i€X(u') 
Lemma 3.3. If M is closed for subwords, « is a wqo on M, and the length of 

the irreducible elements of M is bounded then <sk is a wqo on MxS for every k^O. 

Proof . Let (u,n)£MXZ and suppose that Hf(1), ..., wi(l) ( /(1)<.. .</(/)) 
are those irreducible factors of u which contain some xm, s^k. Put. un=uuiy.. 
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...u,(l) and suppose that xm occurs in ux for the first time at the m4-th place (i.e. 
u, = u„x„uB, x„$X(un), | u j = m s - l ) ; if x„$X(u) put /ws==°. d e a r l y , 

i 
u=! v0 JJ uiU)Vj. Assign to (u, n) the vector 

b(u, n) = (mj, . . . , mk; I; T(u l (1)),..., T(ui(l)); v0,..., vt) 
and set 

b ( K ) n ) < b ( « ' , 7 0 iff ms = m's, l = V, T(ui(0) = T(u'iin), 

v j ^ v ' j for l S s ^ k , 1 S r ^ /, 0 S j ^ Z. 

Then (u,n)-<(u',n')ob(u,n)-<.b(u',7i') defines a wqo on MXl. Indeed, (u, 7t)i—-
>-»-b(t/, ;t) is then a strict homomorphism between quasi-ordered sets, and the set 
of the vectors b is wqo under -< because if N is an upper bound of |«| for irreducible 
u£M then l^k, msS\u„\^kN, and T(ul(r)) can take also only a finite number of 
different values and the assertion follows from Lemma 3.2. Furthermore, if (w, 7r)-< 
«<(«', n') then we can define <p€Fde F° so that vj(p = v'j, ui(r)<p = u'm, and then 
\uK\=\i/ms=m's guarantees also xsx(p = xm. for s = l , . . . , k, i.e. (u, k)<szk(u', n'). 

As an immediate consequence of Lemmas 3.2 and 3.3 we get 

C o r o l l a r y 3.4. F(n)XZ is wqo under <zkfor every ¿ > 0 . 

Note, however, that Lemma 3.3 is only seemingly more general than Corollary 
3.4 because it is not difficult to see that if the conditions of the lemma are fulfilled 
then MQF ( n ) for some«. 

Finally we prove 

L e m m a 3.5. F$XZ is a wqo set under <nk for every 0. 

P roo f . For ( u , n ) £ F $ X Z let s ^ . - . ^ s ^ k be those indices for which xSJt€ 
£X(a0...at) (see (1.6)), and suppose that occurs in a0...at for the first time at the 
mrth place. Assign to (M, n) the vector 

c{ju,n) = Q(l,f,s1, ntx,..., m,; T(a0), ...,T(at), T(a0...at); ...,Gt) 

and put 

c(u, n) -< c(u',nr) if the first 21+t+4 components of both 

vectors coincide and (Gj, TC) <sct (fij, n') for j = 1 , . . . , t. 

Define (w, 7I)-<(M', n')oc(u, n)-<c(u', n'). As in the proof of Lemma 3.4, we can see 
that F $ X Z is a wqo set under -<. Furthermore, if (u, TZ)<(U', 7t') then we can de-
fine <p0£Fde F° such that (a0...at)<p0=a'0...a't which guarantees also x^tp0= 
=xs^, ar<p0=a'r for / = 1 , . . . , / ; r=0,...,t, and <py6Fde F° such that Gj(pj = Gjy 

x^cpj^x^.. Putting together <p0,..., <pj (which is possible in virtue of (1.6)—(1.7)), 
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we obtain a <p£Fde F° with u<p = u', x„q>=x„. for s= 1, ..., k. This proves the 
lemma and also the theorem. 

In some special cases one can omit condition (iii'). We give here one theorem of 
this kind. 

Theo rem 3.6. If F$ is standard for Vin J and (i) holds then [V(J), V) is fini-
tely based. 

In virtue of Theorem 2.12, it suffices to prove 

Lemma 3.7. Fffi*XE is a wqo set under «j* for every k^l. 

Proof . Let (u, v; n)£F$*XZ, v=b0 TT vfii be the decomposition of v indi-
i=i 

cated in (1.6). By Lemma 3.5 and Proposition 2.3, F$XG2 p+k tk is w ( l 0 under -< 
defined in (2.1). Put 

/ \ / / /\ 
(m, V; %) < (w , v ; % ) *> 

def , 
•<=>• (u\ Xin)..., xkn, ao,..., a,, b0,..., br) (u'\ x-w>..., xkn>, a0,..., av, b0,..., br.), 

t = f , r = r\ |a,-| = \a[\, \bj\ = \b'j\. 

Clearly -< is a wqo on F$*XI, and there is a <p€Fde F° such that u<p = u', at<p = 
=a'n bj(p = b'j. Moreover, we can suppose that xtq> is simple for every xt£X 

(for xt£X(u) this holds automatically, as ùcp = û', and |x,ç>| = l for .xl€X(a1...ar)). 

Thus, v(p=b'0 TT vt(p-bj£F$, because Vi<p€.Fa), I/7A'I—/>• This proves the 
i=l ¿=0 1 

lemma. 

T h e o r e m 3.8. Let for i=l,...,l. If 

M={u = u£M„ |X(M,.)nZ(Mj)| S q for i * j ) 

is standard for V in J and (i), (iii) hold (with some n^O), then \V(J), F) is finitely 
based. 

Proof . It is easy to see that if UÛÇ.M then | A ' ( f i ) P i Z ( H ) | p ) / 2 + P q / 4 . 
Now the assertion follows from Lemma 3.5 and Theorem 2.9. 

We mention two more special cases. 

Theo rem 3.9. If F^n) is a standardform for Vand (i) holds then Vis h.fb. 

Proof . The theorem becomes a special case of Theorem 3.1 (with J=F) if we 
s 

show that (iii') holds (with « + 1 instead of n). So let v=vv€F(n), v=v0 ]J xcmvt 
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its semiirreducible factorization, ¡«¡I S/z, 

1-1 a 

V =! v0 ¡1 xcWvt • xcWV,, v = \v IJ Xc(i)Vi, V,V, = V, 
/=1 i=l+l 

and <p£FdeF°, 
r 

v(p=\v'0 IIxi0)v'j, 
.7=1 

\v'j\^n (i.e. v(p£Fw), |»{B+1Vl=» + L As we have |xc(i)<p| = l . Further-
more, by Lemma 1.3, v(p—\w-xcm(p-w. Hence w • xc(l)cp • since it can be 
obviously achieved that X(w• xcm<p)f)X(iv*)=0. This proves the assertion, as 
\v<p\ = \v\^n. 

P r o p o s i t i o n 3.10. Let J— . The variety SG(J) is h.f.b. 

Proof . Follows from Theorem 2.11 and Lemma 3.5. 

Part II. Application: a class of h.f.b. identities 

The aim of this part is to prove the following 

Theorem A. A non-balanced identity of the form 

(*) u = x1...xixi+1xixi+i...xn = = v (n€Z, e(j) s 2) 

is h.f.b. if and only if v is not of the form 

(* *) v = x1...xi^1x2
nx2

i+1)nxi+2---X„ (7t=(i i +1) or identical, n > 2). 

The assertion will be broken up into several propositions. From know on V 
denotes SG(*). 

4. Two special cases. To start with, we settle the negative part of the assertion. 
Of course, here one cannot utilize the results of Part I. 

P r o p o s i t i o n 4.1. The identity 

(T) XiXi+1XiXi+2...xn = x1...xi-ixfx2
+1xi+2...x„ 

is h.f.b. i f f n=2. 

Proof . The fact that xyx=x2y2 is h.f.b. has been proved in [5]. So let n > 2 
and, say, i>1. Consider the identity 

(O tyztx\...x\m = tyztx\...x\m^x\mx\m_x 
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and the infinite systems (a) = {am: m = 1, ...}, (<r*)= {<rm: m ^ k ) . We claim that the 
system <TU {T} is independent. Clearly T does not follow from a, so we have to prove 
that A * U { T } ( / «"IT• To see this, we show that if <T*U (T}I-tyztx\...x%k=w then 

W =! (tyzt) • ( t Pj), Pfi T(xyx) U T(x*), 
j=i 

(4-1) 
i 

Pi = X2k OI" Pi — X2k-lX2kX2k-ll U Pj) = {•*!, • • 
J = i 

whence w^tyztx%...x%k_sx%kz%k_1. Indeed, let w9(=tyzt x\...x\^, ..., wr( = w) 
be a sequence of terms such that, for every s=\,...,r, there exist M/, w'^F0, 
cps£End F, and ( M S = V S ) € C T * U {T} which satisfy ws_1 = w's-us(ps-w", VVS=H^ • 
•vscps- w", Suppose, furthermore, that ws_1 is of the form (4.1) for some i S r (this 

certainly is the case for s= 1). First let us=vs£ok; by symmetry, we can assume that 
us = tyztxl...xlm. Sure enough, m<k because tyztx\...x^,-={a ws_ t for m>k. Mo-
reover, the only subword of ws_1 which is an endomorphic image of tyzt is tyzt 
itself, and the only subwords which are squares are those of the form xj . Hence 
us<p£T(us) and 

i i i 
yfs-!=\us(ps ¡1 Pj = tyztx}n...x}2m)K IJ Pj, ws = ! vs(ps- J[ Pj, 

j=2m+l y = 2 m + l / '=2m+l 

n£X2m, / s 2 w + 2 , whence also ws is of the form (4.1). If 
us — X1...Xi-1XiJ$+iXi+2---X„, Vs = Xi...XiXi+1XiXi + 2...Xn 

then (x?xf+1)<ps£T(x2y2) by the same reason as above, i.e. (x?x*+1 )<Ps=Pj-iPj for 
some y's/, and ws differs from only in these factors which are replaced by 
some p'j£T(xyx); thus, ws again is of the form (4.1) because if j=l (which, by the 
way, can occur only if / + l=w) then x^-i-xL is replaced by x2k-1x2kx2k-1. Fi-
nally, if us = x1...xixi+1xixi+2...xn then (XiXi+1Xi)<ps€T(xyx) because the only 
subwords of ws_1 which are endomorphic images of xyx are those of the form xqxrxq 

(=pj for some j) and tyzt, but this latter one is out of consideration because if 
(XiXi+jXj)cps£tyzt then us<p = u'styxtu" with since />1 , which is impossible. 
Therefore this case is similar to the previous one. 

If / = 1 then n >/ '+1 and we can consider the identities 
( f f ' J x\.. .x\m tyzt = xlx\x%.. ,x\m tyzt 

instead of <rm, and dualize the above reasoning (with the only — unessential — diffe-
rence that here Pi=x\ or x1x2x1 which is not dual to pt=x2k_ix^x^-i). This 
completes the proof. 

Next we deal with a special case. 
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L e m m a 4.2. The identity 

<4.2) (u =) xl...xixi+lxi...xB = v) (TI£Z) 
Js h.f.b. 

Proof . First suppose that the symmetrical difference X(u)X(v)= {x j . By 
repeated applications of (4.2), any word w of Fn+1 can be brought to the form w* = 
=wa-i)x$iy"*e№)w*° ,~'_1)» d(J)—2; besides, the number of variables either does 
not change or decreases by 1 at every step. Furthermore, applying (4.2) twice, using 
the endomorphisms 

f*2i if j = h i _ 

respectively, we obtain 

xi+J if 
x2i+J if j > i+2, 
Xa,-...^;-! if ./ = ¿ + 1, 

+ + 2 if J = '+2, 

2 _ 
* l " - * 2 i - l * 2 i * 2 i + lit " • * 2 i + ( l l - l )! l*2I + ll + l •••*2n + f - l — 

2 2 
= XJ ...Xzi-lXzi • V<p •*2/+n + l •••x2n + i + l ' X1 • • • •*2>-l*2i • • * 2 i + n + l " - * 2 n + i - l ~ 

— Xx ... X2i-lX2iX2i + l • • • X3i^iX2iX3i + lX2iX3i + 2 . . . X2„ + i-l = 

= XI ...Xi • Ulj/ •X2i+„+i---X2n + i-i — Xx-.-Xi • V\jl • X2;+N+L • • • X^FI+J—I -

= x1...xiwx2iw'x2iw"x2i+n+1...x2n+i-1, w' £ 0, 
and a third application of (4.2) relieves us from x2i. Hence F|=w*=w** = 
= ^ i - i ) * / ( i ) " xf(r)w** (2n- , -2)€i^y"1" i -31 and Z(w^)CZ(w+)gA-(vv). Thus, 
by Lemma 1.1 and Theorem 3.6 [V(F2n+i~% V) is finitely based, whence the assertion 
follows obviously. 

If (4.2) is heterotypical, and X(u) + X(v)?i {x^, we can assume that h > n for 
some k ^ m (i.e. x ^ X(u)). Indeed, if this is not the case, then there is a y'Sn, j ^ i , 
such that (i.e. xy does not occur on the right side). First let 1, say 
7> / '+ l , and let j be maximal. Executing in (4.2) the substitution Xji-—XjXn+1 on 
the one hand, and xJ+1y-*xB+1, xJ+2>—Xj+1, ..., x„>-»x„_1 on the other, we obtain 

U = XI-..XJXI+1XI...XN = X1 . . .XJX;+IX I . . . (X;X I I +I)XJ+ 1 . . .X I I = *IE...X(,,+X)C 

where g=n-(n+l n...j+l), and x n + 1 occurs on the right side. Furthermore, if 
•/+1${1, ..., m) then 

and by means of the substitution x ^ i - o r ^ x ^ xt>-*xi+3, xi+1»->-x,xj+2, xt+t>— 
*-*xi+t+2 (2^t^n) we can bring about that x i + 2 did not figure on the right side 
-which is the previous case. 
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Now if xk„$X(ii), kSLm then (4.2) implies 

Xx • • • Xm = Xi... Xk-i(XfcJCjtO • • - xm 

and every term is equal to one of length S m in the variety V=SG(u=xlK...xmn) 
whence V is h.f.b. 

Now let (4.2) be homotypical. Next we show that (4.2) implies either 

(4.3) x1...xkxk+1xk... Xi = Xi-.-Xi 

for some k^i, l^n or the dual of (4.3) — the latter if 7t=(j"/+l). In this case, as 
well as if n = i (identical), the assertion is obvious. In the opposite case there is an 
r S n , {/', / + 1}, m^r. Let e.g. r < i and minimal. Then 

(4.4) x0...x„ = Xq ... xr-1xrK-i... Xia-iX(i+1)„-iXi„-i... xm-i = 

= X0...Xr-2Xr...(Xr-1Xnt-i)...Xn. 

Thus, (4.3) implies a permutative identity 

Xi---X„+2 = x1...xr-1xre...xsexs+1...x„+i, rg r, SQ ^ s, 

and, according to [7], for sufficiently large / we have 

XI-.-X/ = X
1
...X

R
-
1
X
R<T
...X(

S+
I-„-

1
)
<T
X
S+L
-
N
...XI 

for every permutation a of the symbols r,..., s+l—n — l whence, in particular, 
(4.3) follows. 

Using (4.3), an arbitrary word w can be easily transformed to the form w = 
= w(k-1)w'w(f~k~1>, xyx^iw' , i.e. the irreducible factors of w' are contained in 
XU T(x2). However, (4.3) implies also 

X
1
...X

K
X
K+1
X
K+2
...XI = X

1
...X

K
X
K+1
X
K
X
K+1
...X

T
 = 

= X
1
. . . X

K
X

K + 1
X

K
X

K +
2 ...X

T
 = XX.-.XI 

whence w=w ( t )>v'V- f c-1 ) , w"£F m . Thus, w* = w ( k )w"w ( l- k- 1>eI$ )-VgF$- 2 \ 
and (i) holds as (4.4) is homotypical. Hence the assertion of the lemma follows by 
Theorem 3.6 (here J=F). 

5. Some auxiliary identities. From now on we can suppose, in virtue of 
Lemma 4.2 and the results of [6], that 

(5.1) e(k) = 2 for some k^m, kn~x ^ i. 

We proceed by some identities which follow from (*) and (5.1). Note that 

(5.2) ( * ) I- x"+a = 

5 
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as (*) is supposed to be non-balanced. Hence (x®")v is an idempotent in F(V). 
Moreover, if (*) is homotypical then 

(5.3) ( * ) 1- x"+2 = x"+3 

and already (x"+2)v is idempotent. 

Lemma 5.1. Suppose that (5.1) holds. If (5.3) holds, too, then 

(5.4) ( * ) b- V z " + 2 = JC"+2J2"+2 for q fe 1. 

If(*) is heterotypical (in particular, if (5.3) does not hold) then 

(5.5) (* ) 1- jC" + 2_jj24+1z" + 2
 = xn+2yzn+z, x"+:2/«zn+2 = JC" + V + 2 for 0. 

P roo f . If (5.3) holds and (*) is heterotypical then [5], Lemma 2 yields even 
x"+2yz"+2=x"+2z"+2. So let (*) be homotypical, and first suppose n^i, n^ 
(ii+1). There is a k${i, / + 1} such that kn^k; let e.g. k<i and choose k to be 
minimal. Furthermore, there is an Ij^i such that e(l)—2, as (*) is non-balanced. 
Now put k=sit and 

x,cp = 
x"+2 if t ^ k , e(s) . . . lye{s> if t = ln, 
y if t = k, Xt* = Y 2 
z"+2 if / > f c ; e l s e > 

2 if i = fc, w = \ y 2 , 
l x,q> else. 

We have in virtue of (*) 
x?+2yzT+2 = X"+2 • uq> • z"+2 = JC"+2 • vip • z"+2 = 

_ _ j^+2^+2 . ^ . ¿1 + 2 _ 

_ ^ + 2 ^ + 2 . ^ . ^ + 2 _ ^ + 2 ^ + 2^ (5 )^ + 2 _ 

= JC"+2 • vcp' • f+2 = • U(p' • z"+2 = xr+2y2z"+2, 

which implies (5.4). If, on the other hand, then the substitution of 

if / < / , 
x,X = \y if ' = 

z"+2 if / > Z , 
in (*) yields (5.4) immediately. 

If (*) is heterotypical, we can confine ourselves, by the remark made above, to the 
case where (5.3) does not hold. According to [5], Lemma 2, it suffices to prove 
x2ny2nx2n_x2n However, in our case there is a k<m with e(k)=2, kn>n. The 
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substitution 

- . J / ' ^ ' = 
l*2" else 

in (*) yields the required identity. 

Define 
mi = min {j: jn ¿¿j}, m2 = min { j : e(j) = 2}; 

if Wj^min (m, n ^ m a x (m, n), we put n=(m+l m+2), » i r = m + l , and if mx> 
>max(m,ri), let n = i , m ^ «>. 

Lemma 5.2. Jf (* ) | -x" + 2 =x" + 3 and either m1on2 or w2(J {/,/+1} or mx= 
= w 2 = / + l then 

(5-6) (* ) ^ xx...xn-xyn+* = xx...xn-2xl-xy»+\ 

Proof . First consider the case w 1 <w 2 . Choose i^£End F such that 

x,9 = 
x, 
xu. 

y + 2 else; 

In virtue of (*) and Lemma 5.1 we have 

if t < m1 ' " ' ^ " l l f x2 if t 
: if t = mxn, xtil/ = { mi , 
™U p k p . W else. 

= mxn, 

8 = 

2 if m^ = i, \ 
0 if m x i i > n , I. 
1 else / 

Hence (5.6) follows. 
Next let m2Smin (i — 1, mx), and put 

Then 

if t ^ m2, 
y + 2 if i > m2. 

— nra . v"+ 2 — IX1---X">2-1 ^maJ'" 

In the second case we define i^gEnd F by 

, _ J * i , if t 
lx, else 

,n+ 2 _ ) / / n _ ij" + 2 _ 

+ 2 if m 2 < m1; 

XX"-Xmsy = 

* i - * n , 2 - i J ' n + 1 * ^ ) } ' ' i + 2 if M
I
 = M

L
 = STT. 

= m2 

5» 
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and obtain 
*!•• = x1...xmil-1yn+2x%(s)yn+i = 

= ^ . y»+2 = uty.y«** = X1...Xm^1^miyB+t. 

In both cases (5.6) follows. 
If i+ we get, by obvious substitutions in (*), 

xi...xi+1yn+2 = x1.'..x,xl+1x,y"+2 = X1...XiXn.1XiXi+1y"+2 = ... 

Finally, if m1=m2=i+l, put 

if if i > i + l ; if 

Applying (*) and Lemma 5.1, we obtain 

x1...xiyn+2 = = w<p.;y"+2 = x1...xiyn+2xiyn+2 = 

= x1...x,yM+'*l+*y"+a = t4-x!l+2yn+2 = = Xi...Xi-iOe?+V+2)2 = 

= JCi... *|_1 • tlx • yn+% = X!... • VX • y"+i = X!... x i _ 1 x? + ! V" 2 = xt... xi^xf yn+*. 

This completes the proof. 

Lemma 5.3. If (*) is heterotypical and either m^m^ or m2^i, then 

(5.7) (*) 1- xl...xa-lJr+i = x1...xn.1x2
nyn+i. 

Proof . If m1S/n2 then set 

v = i f
 y ,/, = / ** ! * t = min>-X t ( p - \ f if X,w - \xtq> else. 

By (*) and Lemma 5.1, we have (taking in account that «(wJ^O as m^m^Sm) 
> 

xi...xm.1yn+2 = vcp-yn+2 = U<p-yn+2 = i4 • y^x^l^ yn+i = 

= vxlf.y"+!t = x1...xmi-1x2
miyn+\ 

which implies (5.7). 
If iVmgC/Mi then (*)h-xn + 1=x"+ 2 and in consequence of Lemma 5.2 and 

Lemma 5.1 we have even 

x1...x„-1yn+1 = x1...xn.2x2-1yn+1 = x1...x„-2X£\y"+1 = 

= *1...xn_2*S±i*S+V+1 = x1...xn.1^n
+1y+1 = xi...xaf+1. 

Clearly, both (5.6) and (5.7) imply 

(5.8) xi...xn-iy
n+2 = x1...xn_2x®_1/'+2. 
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Furthermore, it is easy to see that 

(5.9) (5.6) H ^...x.y** = x1...xa.ix2
n.1xny''+2 = xl...x„-t3Ztlxmy'+\ 

(5.10) (5.7) 1- x1...x„yn+2 = xl...xn-ix%+1xnyn+z, 

(5.11) (5.8) y- xl-..:xmjT+t = x1...xn_2xn
3_1xn j n + 2 = xi...xn_2x^xnyn+2, 

(5.12) (5.6)A(5.7) hXl...xHy»+* = x^.x^y"*2 = x1...xn^x„y^. 

Remark . The only cases when neither the conditions of the Lemmas 5.2, 5.3, 
nor those of their duals are fulfilled, are given by (**) and 

(5.13) v = x1...x^1xUi+i-X„. 
Lemma 5.4. (*)y-(x2"y2a)2=x2ny2n. 

Proof . If (*) is heterotypical the assertion follows from Lemma 5.1. So let (*) 
be homotypical. We indicate the substitutions in (*) which yield the required iden-
tity. 

If n = i , substitute 
fx2" if i s i, 

X , ~ \ y2» if i > i . 

If kn^k for some {/,/+1} (suppose e.g. k<i), choose A: to be minimal 
and set 

fx2" if t ^ k, 
W - X y 2 » if i > f c . 

The remaining case n = ( i /+1) is dual to n = i . 

Lemma 5.5. If n^i, i+1) then 
. ( * ) h- Xi+1yzj£+* = 

P roof . If (*) is heterotypical and ( * ) | - x n + 2 = x n + s then xn
1
+2yzxn

2
+2=x^+2x^+2= 

=xn
1
+2zyxl+2. If ((*) is heterotypical and) (*)\-xn+1=xn+s then, by (5.10), 

xi+V*3+2 = xn
1
+2(yz)2n+1xn

2+2 = xr1
+z^y2"(yz)2n+1^+2 = 

= jtr1
+2z2ny2n+1z^+2 = Xx+2z*ny2n+1z2n+1xZ+2. 

Put 

Then 

z if t = i, 
x,(p = \y2n+1 if t = i +1, 

z2n else. 

xj+2z2nj2"+1z2n+1JcS+2 = xZ+zz2n+1 • uq> • z^x3+2 = 
= ¿I+228«+1. ^ . 23»^+2 = xn+2z2n+ly2n+lz2nxn+2 

and, by symmetry, x?+2z1*+1y*n+1z2"x"2
+!1=xl+*zyx"2

+!!. 
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If (*) is homotypical then k n ^ k for some {/, /+1}; say,= Set 

x,<l> = x,<p = 

x j + 2 if / < nix—l, 
y if t = m1—1, 
z if t = m l5 

*S+2 if t > mx; 

JCJ+2 if t < m i , 
yxS+s if t = mu 

z*5+a if t = piiit, 
x%+2 else. 

We obtain (using also (5.4) and Lemma 5.4 if m1n=i) 

xZ+iV*S+2 = • uq> - x£+a = x!+a • v<p • = ; 

= JC!+2>'*S+V(s)*a+a = = . 

= x?+2 -¡4 • *s+2 = x?+2 • # • xs+2 = * i + 2 ^ + 2 ) e ( m . ) 0 ' jcS + 2 ) e ( s ) = Jtf+azx2+8j>*s+8, 

where sn=m1 and 

{2 if w^rt = i, 
1 else. 

By symmetry, xni+2zxZ+2yxZ+2=x"i+2zyxn
2

+*. 

Coro l l a ry 5.6. Either (*)<r-xn
1
+2yzyxn

2
+2=xn

1
+!1y2zxn

2
+2 or:(*)\-^l+2yzyx"2

+2^ 
=xZ+2zy2x"2

+2. 

Proof . If JI^I, n?£(ii+l) then both identities hold by Lemma 4.8. If n=i 
then xn

1
+2yzyxn

2
+2=xn

1
+2y^zx"2

+2=xn
1
+2y2zxn

2
+2 by Lemma 5.1. The case n= 

= ( / / + 1 ) is dual. 

(5.9), (5.10) and Corollary 5.6 imply 

C o r o l l a r y 5.7. If either the assumptions of Lemma 5.2 or those of Lemma 5.3 are 
fulfilled then either 

(5.14) (* ) (— x1...xn-1ztzx„ytt+2 = xi...x„-iz2txny"+t 

or 

(5.140 ( * ) H xx:..xn-iztzxny^2 = xx...xn_itz2xnyn±2. 

Furthermore, applying (5.9), (5.10), (5.14), (5.14'), we obtain 
C o r o l l a r y 5.8. If either the assumptions of Lemma 5.2 or those ofLemma 5.3 are 

fulfilled then 
(5-15) ( * ) h w ^ + a = w(n)xc(1)...xc(0y"+a, 

c(j\ 7* c(k), if j * k, {xc (1 ) , . . . , xc ( 0} g X(w) 

for every w£F". 
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6. Standard forms. Now we are able to construct standard forms for V in the 
F-ideal J defined by 

J= {w: there are arbitrarily long terms which equal to w in V}, 

and for V(J). Although the considerations below could be performed in the same 
generality as till now, some special cases, in particular .the one where (*) is homotyp-
ical and e(k)=2 only if k=(i+l)n~1, would demand a separate consideration. 
Therefore we continue the investigation of (*) accepting in what follows the further 
restriction 
(T) e(k)=2 for at least two different values of k. 

This suffices for the proof of Theorem A, since the case when e(k)=2 for exactly one 
k has been settled in [6]. 

Lemma 6.1. If (*) is homotypical, (T) holds, and 1|wj| —n for j—1,2, 3 
then w=h^u^h^/. 

Proof . There is a k such that e(k)=2, kn^i. let e.g. kn>i. First we show 
that if \uj\ Sn for j— 1 ,2 ,3 then there exist vx, v2, vaZF such that 

u0 = u1ulus = v14vs~v0, u2 = u'2v2, • ' ' 

Kl s >l"o l s for x£X(vJ, \vj\^\uj\-n+2 for j = 1,2,3. 
Indeed, put ux="i.u2=xct,)xc(i+1y..xc(k^ii, w8=xc(tat+1)...xc(ll)w3. 
Then 

"o = uixc(l)---xc(i)(xc(i + l)--xc(kii)fi)xc(i)xc(i+l)--- • 
( * ) 

v • Xc(kn-1) i.xc(kn) ft) Xc(kx+1) • • • Xc(n) u3 = U1U1 (Xc(kx) US u3 
with some ux,u^£F°, and v2=xc(k„p v%=un

%u's meet all requirements of 
(6.1). 

If-w is as stated then (6.1) can be applied n times. The term w=iv1w^iv3 thus ob-
tained contains every variable of w2 at least n + 1 times. Now suppose some w£F 

B+l 
contains a letter xs at least « + 1 times. Then w is of the form w=u0 TT xsu, 

j=I 
where U £ F ° for j=0, . . . ,n + l. Put 

xt(p = 

Ut—lxs i f / < i , 

xs if t = i , 
UiXaUi + 1 i f t = i+1, 

xsut if * > i + l . 

Then w>=w<p, and |f^| s>|vf| s , i.e. we can obtain from u> a longer word 
of the same form, and therefore w£J. The same holds, then, for H> and hence also 
for w. . 
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L e m m a 6.2. Suppose (T) holds. If (*) is heterotypical then 

(6.2) J = {w: u < w or p < w } , 

If (*) is homotypicaland e(k)=2 for some k^{iK~\ (/ + l)n-1} then J contains the 
subset 

L= {w: w = w(ai..n)vw(to'-',), u -ci w}. 

If (*) is homotypical, e(k)=2 i f f kn£ {/, /+1}, 6M/ V is not of the form (4.1), then J 
contains the subset 

L' = {w: w = wln*+n)ww<n!+n\ wt$T(xyx)UT(x*)\JX 

for some irreducible factor w, of w}U 

U{w: w = w'xexdxew"xrxsxrwm; |w'|, s n2+2«, |w"| ^ n-2}. 

Proof . The first assertion is trivial. If (*) is homotypical, e(k)=2, kn${i, /+1} , 
say, kn>i+l, and w£L then w=w(2/ l!_n)w'• ucp• w"w(2n'~"'> with some q>£End F, 
and we can modify the mapping (p in such a way that xt(p'=x,<p if t^kn, |x4„</| =« a , 
|*,<Z>'| = 1 if t^kn, and w=w(2n,_n)w' • ucp' • wmw^nl~n). However, then 

w = W(2n»-n)H'' • vcp' • wmwini~"y = 

= ^ - „ y i X l ^ - ^ ) i)Cp' • (Xkn9y • ( ^ ' . . . ^ V ' ^ lV(»,-»>, 

and the assumptions of Lemma 6.1 are fulfilled. 
Now let ¿7t=/, k'n=i+l, e(k)=e(k')=2, e(J)^ 1 if j^k, k'. Suppose first 

that w is contained in the first component of L'. 
a) If » ^ ( „ . . „ J W " ' " ' 1 , |H ' | c>2 for some c£P (in particular, if | # | e >2) , 

then n consecutive applications of (*) with substituting each time <pj:x,t—xc, 
(pj\ xl+1>—bj, |6 , | e>0 gives us a word w* with |w*|c>n + l , and the second part of 
the proof of Lemma 6.1 verifies the assertion. 

b) If w=w(nt)K>H'(nt), xyxy<iw (in particular, if xyxyow), then w = 
~vj'xcax,aw", and choosing <p8€End F such that x,<p=a, xi+1<p=xc, wcp= 
=w(n,_n)iv• ucp • ww'"1-'0, we have \w• vq> • w\c>2, and this case can be reduced 
to a). 

c) If xyzx«aw, then w=w'xrbxrw", | 6 | s 2 . Putting x,cp=xr, xi+1<p=b, 
w=w-ucp • iv with |w|, |w|&«2, we have (*)(-w-ixp-w, which gives us case b ) 
as bz is a subword of v<p. 

It is easy to see that all possibilities are exhausted by a)—c). Finally, let w£L'v By 
assumption, J t^ i , iir*(ii+1), whence there is an l^i, / + 1 such that In ¿¿I; 
let e.g. / > / + 1 and maximal (then, clearly, ln<l). Set w=wx -wj/ -w2- ux < wa> 
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K l , \щ\^пг+п, х,ф=хе, х1+1ф=хл, x,x=xr, xl+1x=xs, and 

х,ф if t < /, 
x 9 = • w2 • (*i-*i+i)x if t = '» 

' (*i*i+2-*i+ik if t = l+l, 
x,x if i = - / + l . 

We have 
w = - uB • ws = - w3 = axrbxra'€L{, 

because М ^ и ^ ^ + л , \ a ' \ ^ \w s \ ^n 2 +n , This comple-
tes the proof. 

Lemma 6.2 and Proposition 3.10 immediately yield. 

P r o p o s i t i o n 6.3. Tf(T) holds and v is not of the form (**) then SG(J) is h.fb 

P r o o f . Set T="|J1 T(x\...x?), and let J(T) be the set of all w£F° every 
1=0 

semiirreducible factor of which is contained in T. Put 

(6.30 = {w: wwww<n\ vt>€/(T)}U{w: |w| < 2л}, 

(6.3a) Мг = {w: w ^ j i i w « , /(!")} U (w: |w| < 4л2}, 

= w(ni+„)wwww(",+n), |w>| =L (6.38) 
?sn,w = wyw£ I (J) (y i A'(wîv))} U {w : |w| < 2л2+2л}. 

Lemma 6.2 implies that F\JQMj ( j = 1, 2, 3), if either (*) is heterotypical or (*> 
is homotypical and e(k)=2 for some {in-1, ( / + 1 ) я - 1 } or (*) is homotypical,. 
e(k)=2 iff kn£{i, /+1}, and n^i, 7гИ(//+1), respectively. Indeed, if w $ M j then, 
w is long enough to be written in the form given in the first bracket of (6.3y) but with 
w having a semiirreducible factor н>Д/(T). Then either or х2...х2<]иг 
and, consequently, if w' is a suffix of length n of w(n), w(2n!), or w(n,+n), resp., and,, 
similarly, w" a prefix of length n of w(B), w12"^, or w{n'+"\ we have u<\w'ww" or 
î w w ' m " (even v<iw). As the latter case can be reduced to the first one, both imply 
V/Ç.J by Lemma 6.2. Hence the assertion of the proposition follows by Proposition! 
3.10, since M ^ F ™ , 

In order to obtain a standard form in J, we prove first 

L e m m a 6.4. If (Г) holds and w£J then there is a w£J such that 

(*) 1- w = w = Wj*;+2W2, Xc£X. 

P r o o f . If (*) is heterotypical the assertion is obvious; so let (*) be homotypical. 
There is а кшп which satisfies e(k)=2, kn^i+l. We are going to show that for 
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•every triple r, s, I of natural numbers there is an xc£X and a term w such that w= 
s 

= w=w0 JJx?cWj, f o r / = 0 , . . . , J; this is somewhat more than stated. First 

•consider the case r = 1. Let \X(w)\=L As w=w' implies now X(w)=X(w'), we 
only have to take a sufficiently long word w, say, |w| >2l+l(s—1)(/+1), in order to 
obtain a factorization of the required form. Now suppose the assertion holds for 
some r > 0 and arbitrary s, I. In the same way as above, one can find a w'=w such 
that the same subword x^pc j occurs in w' a sufficiently large number of times and at 
a sufficiently large distance from each other (this is necessary in order to cover the 
•cases where kn=i—\ or kn=i+2; c,d,f need not be different). Say, w' = 

as 
=w0 flxjx'cxjwj, \wj\^n+l. One can define endomorphisms <plt..., <ps such that 

s 
xkn(Pj=xr

c for 7=1 , . . . , s and w'=w'0 [[U(Pj-wp K I s / . Applying (*), we have 
s » 

w'=w'0 IJ Vj' wj=wo II with so"16 wj> \w"j\ — \w'jV This completes the proof. 

P ropos i t ion 6.5. If (T) holds and v is not of the form (4.1) then [V(J), V\ is 
finitely based. 

Proof . Let w£j; we can suppose that w=w'^ ,
c

+2w" by Lemma 6.4. First let the 
assumptions of both Lemma 5.2 and its dual (or those of Lemma 5.3 and its dual) be 
fulfilled. In virtue of (5.9) (or (5.11)) and its dual, and by Corollary 5.8, we have 

(6.4) w = w(n_2)x3+2xc(1)...xc(i)^+2w("-2> = w* 

(c(j) * C(k) if j * k). 

Thus, vi^eig4 , and the assertion follows by Theorem 3.6, because (i) automatically 
holds if (*) is homotypical, and if it is not, then, starting from an arbitrary w'=w 
with a minimal number of variables in X(w'), we can transform it to the form (6.4) by 
steps of the following two types: 1) first, the insertion of the (n +2)nd power of some 
variable — however, doing so it is not necessary to introduce new variables, and 2) 
a sequence of applications of (5.10), (5.11) and (5.14) or (5.14'); besides, (5.10) is 
always used for reducing the power of the elements, and the other three transforma-
tions do not change the set of the variables involved. 

For the rest we can suppose, according to the Remark made on p. 321, that the 
assumptions dual to those of Lemma 5.2 or 5.3 hold, but the assumptions of these 
lemmata do not, i.e., a) v=x1...x,-.1xfyf if (*) is heterotypical, and ft) v=xt... 
...x^iXf^v' or y) v^xx-.x^^v' if (*) is homotypical. Let w=M'(i_1)wjc^)

2jcc(X)... 
...XC(I)M»("-2), and write w in the form 
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Suppose that w is chosen in such a way (from the class of all w'=w of the same 
form), that the vector v=v(w)=(|X(ïv)|, p, I) is minimal in the lexicographical 
ordering. We claim that 

(6.5) ВДП{хс(0), ...,*,(,_!)} = 0. 

Indeed, let d(q)=c(r), and set 

If m2=i, put 

'*J|8 if t = u 
X,<p = if t = i+1, 

xf(q) if 7 > i+1 , 

We have by the dual of (5.11), 

(6.6) w = w1xy
i$w2x?c$w3x%t+)

1wi = 

¡w.x^fwxT^V! if in = i, 
= W • Xdfà1 wi = vq> • Xd(q)w4 = щ(w2^0

2
)w3)2v2 if in = i +1, 

WlXd(q)V3 if in > i + 1 

with some w, vr, v2, va£ F", and in the first case by iteration also 

w = ЩхХ) v4, 
We have a contradiction with the choice of w in all cases. 

If m2=i+l, set 
if +1, 

çc(r + l) if t > i + 1 . 

As in this case (*) l- x"+ 2=x"+ 3 , we can make use of the dual of (5.9). Hence 

W = w^SfêJ w2x"c(
+
0? w3x$> *S(

+
r
2
+1) xc( r+2y. .xc(l) w<"-2> = 

= U(p-^r
2
+1)xcir+2)...xcil)w^-z) = 

= V(p-j$lrl1)xcir+2y..xmwin-v = 

= Wi *2fêj щУ^сЫг) ХФ+2У--ХС(1) w<"-2> = 
(6.7) 

= • • W 3 • • ^ X c i r + D - X c O ^ - V = 

/ \xt(p 
X,<P = \ J 

I Xr(r + 
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if /->0 and 

(6.8) w = w^îjgw.affitfw« = w ^ l f â w l x » ^ = . . . = w1xl{$w»a+*xZ$wi 

if r=0 . In the first case we have reduced / by 1; in the second, and 
we can create the (n+2)nd power of a variable in this part of the word by Lemma 5.10. 
This proves (6.5). 

Furthermore, w ^ ^ w ^ J by the same lemma and (6.5). Let vf(i_i)W' be the long-
est one of all words it equals to. Then ««^aH^-^iv (else we could replace its subword 
of thé form wj/ by the longer word vty), and x(n+I...xm+II_,_1*JaM'(i_1)M'. Indeed, 
if e(k)=2, kn>i+1 for some k then let 

Wj for j < kn, 
Xj(p = Wj = yjWjZj, Xjlp = Wj = 

( y j = z j if |wy| = l). We have even 

wkxykx+1 for j = kn, 
9jzjyj+! for j =- kn 

v<P-ym+1 = (ijWjin)ym+i = u<P-ym+1 = w1...wiwi+1wl...w„ym+1 = 
y=i 

= wi...w'iwU1w'l...w'n = uxli = vxl> = wie„V...w'melm>, 

and 101^1=lwp|+2>|i><p-j'ni.(.1|. If, on the other hand, e(fc)=2 iff kn£{i, / + 1 } 
(this occurs only in case /?) with in£_{i, /+1}), then n^i, n?±(i i+1), whence 
ln+l?*(l+l)n for some / t t> /+1. Put 

We have 

wt if t£{i, i+l,In}, 
W/, w?,+1 if t = ln + l, 
w? else. 

wi«...w®,*1... = wf ...w?_1wiwi+1wiw?+2...wlx1...xn-i-1 = 

s wl/'xl...xn-t-i = w}'-x1...xa-,-1 = wi„:.wuww,„...wl„x1...x„-i-1. 

Applying (*) to this latter word, we obtain some word w* which contains w2 and all 
factors w* which do not enter iv, as well as x x , . . . , x , , - , ^ . Hence |W*|>|H'2

1I... 
•••^«^l-^n-i- l l -

As in the proof of Lemma 4.14, we can conclude now that 

w = wwl"-'-», w=\w0 ]]xfU)Wj, w / u T(xi...x?), 
j=i t=o 

(6.9) 
W* s w l i-1)ww i ' '-1\ w ='. (5 = 1 or 2). 
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Let M be the set of all words of the same form as w*: 

M l = {щ: = i - 1 } , 

M2 = {w: w=lw0 ПX/u)wJ> *A> T{x\...xf)}, 
j=1 f=o 

M3 = {w3: |w,| = n - i - l } , М4 = Г(хп + 2)иГ(У+1) , 

M5 = Fm, M6 = (we: |we| = n - l } , 

M = { w i . . .w, : vt£Mu *(и>()ГЩи>у) = 0 if i,j£{2,4, 5}, i 

We have seen that M i s a standard form for Vin J. Thus, by Theorem 2.9 and Lemma 
3.5, the proof will be accomplished if we show that conditions (i) of Lemma 2.8 and 
(iii) of Theorem 2.9 are fulfilled. Now (i) holds — if (*) is homotypical, by Remark 1 
made after Corollary 2.10, and if (*) is heterotypical, by the fact that in assuming 
that x"c

+2 is a subword of w, we could choose xc as well from the variables of the origi-
nal word which was to be transformed, and while transforming w to w* we never 
needed to introduce a new variable. Furthermore, let w=ww£M, <p£ End F°, wq> 
a prefix of some w'£M, and |й (2ш-1 )ф |=2/и —1. By Remark 2 (after Corollary 
2.10), we can confine ourselves for such q> that 

\x,(p\ = 1 for x(€Z(w1w3w4we). 

If 1, (iii) holds obviously. If w ^ w ^ v , then к с р — и ^ щ щ • w', u (£M t , 
and we obtain (wcp)* by applying (several times) the dual of either 5.9 or 5.10, and that 
of 5.14 or of 5.14', not changing thereby w<p. Finally, if vt>sw((_1)w2t;, w2v a prefix of 
ív, and either v = x f a ) x 2

i m . . . _ уХод, |wy|s2i; then, by assumption, 
\xfU)(p\ = \xda)(p\ = ... = \xd(t)(p\ = l, and X(w2<p)ПX(w<p)QX(w&cp). Thus, we can 
transform (w(i_1)wax/(y))?»('-:l)(xj(1)...xd(())v) to a standard form iv without changing 
either w0 or we; thereby we "standardize" the whole word w<p, without changing 
(wit-^WzXfy^tp. Or #2=0, \v\=2m—\, and the assertion is obvious once more. 
This completes the proof. 

Theorem A follows now from [6], Proposition 4.1, Lemma 4.2, Propositions 6.3, 
6.5 and 2.5. 
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