Canonical number systems in $Q(\sqrt[3]{2})$

S. KÖRMENDI

1. Let us given an algebraic number field $Q(\gamma)$ defined as a simple extension of the rational number field determined by γ. Let $S[\gamma]$ denote the ring of the integers in $Q(\gamma)$.

We shall say that an algebraic integer $\varrho \in S[\gamma]$ is the base of a full radix representation in $S[\gamma]$, if every $\alpha \in S[\gamma]$ can be written in the form

$$
\begin{equation*}
\alpha=\sum_{k=0}^{m} a_{k} \varrho^{k}, \tag{1.1}
\end{equation*}
$$

where the digits a_{k} are nonnegative integers such that $0 \leqq a_{k}<N=\mid$ Norm ($\left.\varrho\right) \mid$.
The largest set that we could hope to represent in the form (1.1) is the ring $Z[\varrho]$, i.e. the polynomials in ϱ with rational integer coefficients. The reason that the norm N yields the correct number of digits is due to the fact that the quotient ring $Z[\rho] / \varrho$ is isomorphic to Z_{N} by the map which takes a polynomial in ϱ to its constant term modulo N.

Any such radix representation is unique. Let $P(X)$ denote the minimum polynomial of ϱ. Since ϱ is an integer in $S[\gamma]$, therefore the coefficients of $P(X)$ are rational integers, the constant term of $P(X)$ is $\pm N$. Suppose $A(X), B(X) \in Z[X]$ are polynomials whose coefficients are integers in the range from 0 to $N-1$. If $A(\rho)$ and $B(\varrho)$ represent the same element of $Z[\varrho]$, then $A(X)-B(X)$ is in the ideal generated by $P(X)$ in $Z[X]$. Since the coefficients of $A(X)-B(X)$ are in the interval $[-N+1, N-1]$ and the constant term of $P(X)$ is $\pm N$, therefore $A(X)-B(X)$ must be the zero polynomial, i.e. $A(X)$ and $B(X)$ have the same coefficients.
I. Kátar and J. Szabó [1] proved that the only numbers which are suitable bases for all the Gaussian integers, using $0,1, \ldots, N-1$ as digits, are $-n \pm i$ where n is a positive integer, $N=n^{2}+1$ is the norm of $-n \pm i$. Their work was generalized by I. Kátai and B. KovÁcs [2], [3], namely they determined all the bases for quad-

Received April 20, 1984.
ratic number fields, using natural numbers as digits. Similar results have been achieved by W. Gilbert [4], independently.
B. Kovács [5] gave a necessary and sufficient condition for the existence of number base in algebraic number fields. Namely he proved: If $Q(\gamma)$ is an extension of degree n of Q, then there exists a number base in $S[\gamma]$ if and only if there exists a $\vartheta \in S[\gamma]$ such that $\left\{1, \vartheta, \ldots, \vartheta^{n-1}\right\}$ is an integer-base in $S[\gamma]$.

However, the determination of all the number bases in algebraic number fields seems to be a quite hard problem. Our purpose in this paper is to determine all the number bases in $Q[\sqrt[3]{2}]$. This is the simplest case that has not been considered until now. We hope to extend our investigation for all cubic fields.
2. Let $\sigma=\sqrt[3]{2}$, and let $K(X)=X^{3}-2$ be the minimum polynomial of σ. We shall use some lemmas.

1) Lemma. 1. Let $\alpha=a+b \sigma+c \sigma^{2}$. with $a, b, c \in Q$, and let $E_{1}=-3 a, \therefore E_{2}=$ $=3\left(a^{2}-2 b c\right), \quad E_{3}=-\left(a^{3}+2 b^{3}+4 c^{3}-6 a b c\right)$. Then α is a root of the polynomial $T(X)=X^{3}+E_{1} X^{2}+E_{2} X+E_{3}$.

Proof. Let $\xi=\exp (2 \pi i / 3)$ be one of the cubic roots of unity, and let $\alpha_{1}=\alpha$, $\alpha_{2}=a+b \xi \sigma+c \xi^{2} \sigma^{2}, \alpha_{3}=a+b \xi^{2} \sigma+c\left(\xi^{2} \sigma\right)^{2}$ be the conjugates of α. Expanding the product $\left(X-\alpha_{1}\right)\left(X-\alpha_{2}\right)\left(X-\alpha_{3}\right)$ we get immediately that this is $T(X)$.

Lemma 2. $\left\{1, \sigma, \sigma^{2}\right\}$ is an integer base, i.e. $\alpha=a+b \sigma+c \sigma^{2}$ is an integer in $Q(\sigma)$ if and only if a, b, c are rational integers.

Proof. This is well known.
Lemma 3. Let $\alpha \in S[\sigma]\left\{1, \alpha, \alpha^{2}\right\}$ is an integer basis if and only if $\alpha=M \pm \sigma$, or $\alpha=M \pm\left(\sigma+\sigma^{2}\right)$ with a rational integer M.

Proof. Let $\alpha=a+b \sigma+c \sigma^{2}$. Then $\alpha^{2}=\left(a^{2}+4 b c\right)+\left(2 a b+2 c^{2}\right) \sigma+\left(2 a c+b^{2}\right) \sigma^{2}$. The matrix A of the basis transformation $\left[1, \sigma, \sigma^{2}\right] \rightarrow\left[1, \alpha, \alpha^{2}\right]$ has the form

$$
A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
a & b & c \\
a^{2}+4 b c & 2 a b+2 c^{2} & 2 a c+b^{2}
\end{array}\right]
$$

$\operatorname{det} A= \pm 1$ if and only $b^{3}-2 c^{3}= \pm 1$. It is well known, see e.g. [6], that all the solutions of this Diophantine equation are:

$$
\begin{equation*}
(b, c)=(1,0),(-1,0),(1,1),(-1,1) \tag{2.1}
\end{equation*}
$$

Let B denote the set of the number bases in $Q(\sigma)$.
Lemma 4. If $\alpha \in B$, then $\left\{1, \alpha, \alpha^{2}\right\}$ is an integer base.

Proof. Obvious.

Lemma 5. Let $\vartheta \in S[\sigma]$ be such that $\left\{1, \vartheta, \vartheta^{2}\right\}$ is an integer basis. Let the minimum polynomial $T(X)=X^{3}+E_{1} X^{2}+E_{2} X+E_{3}$ of ϑ satisfy the conditions $1 \leqq E_{1} \leqq E_{2} \leqq E_{3}$, $E_{3} \geqq 2$. Then $\vartheta \in B$.

Proof. See [4].
Lemma 6. If $\vartheta \geqq-1, \vartheta \in S[\sigma]$, ihen $\vartheta ₫ B$.
Proof. Let H_{3} denote the set of those numbers α that can be written in the form

$$
\alpha=a_{0}+a_{1} \vartheta+\ldots+a_{k} \vartheta^{k}
$$

with suitable digits $a_{j} \in[0,|N(\vartheta)|-1]$. If $\vartheta \geqq 0$, then $H_{s} \subseteq[0, \infty)$, and so -1 cannot be represented. If $\vartheta=-1$, then $|N(\vartheta)|=1, a_{j}=0$, and so $H_{s}=\{0\}$. If $|\vartheta|<1$ and $\alpha \in H_{3}$, then

$$
|\alpha| \leqq a_{0}+a_{1}|\vartheta|+\ldots+a_{k}|\vartheta|^{k} \leqq(|N(\vartheta)|-1)|\vartheta| /(|\vartheta|-1),
$$

consequently H_{3} is a bounded subset of the real numbers. Since $Z[\vartheta]$ is not bounded, the proof is finished.

Lemma 7. Let $T(X)=X^{3}+E_{1} X^{2} E_{2} X+E_{3}$ be the minimum polinomial of α, and let $\gamma=\left(E_{2}+E_{1}+1\right)+\left(E_{1}+1\right)+\alpha^{2}$. Then $(1-\alpha) \gamma=T(1)$. Consequently, if $|T(1)|<$ <1, then γ or $-\gamma$ cannot be represented in the form $r_{0}+r_{1} \alpha+\ldots+r_{k} \alpha^{k}, r_{i} \in\{0,1, \ldots$, $\ldots,|N(\alpha)|-1\}$, i.e. $\alpha \notin B$.

Proof. The assertion $T(1)=(1-\alpha) \gamma$ is obvious. Let $c=\operatorname{sgn} T(1)$. Then

$$
c \gamma=c T(1)+(c \gamma) \alpha, \quad c T(1) \in\{0, \ldots,|N(\alpha)|-1\} .
$$

Let us assume in contrary that c has a representation in the form

$$
c \gamma=r_{0}+r_{1} \alpha+\ldots+r_{k} \alpha^{k}
$$

Then $r_{0}=c T(1), c y=r_{1}+r_{2} \alpha+\ldots+r_{k} \alpha^{k-1}$. Repeating this procedure we get that $c T(1)=r_{0}=r_{1} \ldots=r_{k}, c \gamma=0$, which does not hold.
3. From Lemmas 3 and 4 it follows that if $\alpha \in B$, then $\alpha=M \pm \sigma$ or $\alpha=$ $=M \pm\left(\sigma+\sigma^{2}\right)$. Let $T(X)=X^{3}+E_{1} X^{2}+E_{2} X+E_{8}$ be the minimum polynomial of α. Let us consider the table below.

α	E_{1}	E_{2}	E_{3}	Conditions of Lemma 5 are satisfied if
$M+\sigma$	$-3 M$	$3 M^{2}$	$M^{2}+2$	M
$M-\sigma$	$-3 M$	$3 M^{2}$	$M^{2}-2$	$M \leqq-3$ or $M=-1$
$M+\sigma+\sigma^{2}$	$-3 M$	$3\left(M^{2}-2\right)$	$M^{3}-6 M+6$	$M \leqq-5$
$M-\sigma-\sigma^{2}$	$-3 M$	$3\left(M^{2}-2\right)$	$M^{3}-6 M-6$	$M \leqq-4$

The numbers α satisfying the conditions stated in the last column belong to B.

From Lemma 7 we get that $\alpha \notin B$ if $\alpha \geqq-1$, i.e. if

$$
\begin{array}{ll}
\alpha=M+\sigma & \text { and } M \geqq-2, \\
\alpha=M-\sigma & \text { and } M \geqq 1, \\
\alpha=M+\sigma+\sigma^{2} & \text { and } M \geqq-3, \\
\alpha=M-\sigma-\sigma^{2} & \text { and } M \geqq 2 .
\end{array}
$$

It remains to consider the following set of integers $\alpha_{1}, \ldots, \alpha_{0}$, the minimum polynomials of which are denoted by $T_{1}(X), \ldots, T_{9}(X)$, resp.

Lemma 8. We have $\alpha_{6}, \alpha_{7}, \alpha_{8}, \alpha_{9} \notin B$.
Proof. The conditions of Lemma 7 hold for $\alpha_{6}, \alpha_{8}, \alpha_{9} \alpha_{7}$ is a unit, the set of the digits contains only one element, the zero, so $\alpha_{7} ₫ B$.

Lemma 9. $\alpha_{3}=-\sigma \in B$.
Proof. The set of the allowable digits are $\{0,1\}$. Let $\alpha_{3}=\alpha$. First we observe that $-1=1+\alpha^{3}, \quad 2=\alpha^{3}+\alpha^{6}$. The general form of the integers in $Q(\sigma)$ is $Z=$ $=X_{0}+X_{1} \alpha+X_{2} \alpha^{2}, X_{i} \in Z$. By the relation $-1=1+\alpha^{3}$, each Z can be written in the form

$$
\begin{equation*}
Z=Y_{0}+Y_{1} \alpha+\cdots+Y_{5} \alpha^{5} \tag{3.1}
\end{equation*}
$$

with nonnegative integers Y_{0}, \ldots, Y_{5}.
Let now $Z^{0} \neq 0$ be an arbitrary integer, written in the form (3.1). We shall define the following algorithm:

$$
\begin{gathered}
t\left(Z^{0}\right):=Y_{0}+Y_{1}+\ldots+Y_{5} ; h=\left[Y_{0} / 2\right], \quad l=Y_{0}-2\left[Y_{0} / 2\right] \in\{0,1\} . \\
Z^{(1)}=Y_{1}+Y_{2} \alpha+\left(Y_{3}+h\right) \alpha^{2}+Y_{4} \alpha^{3}+Y_{5} \alpha^{4}+h \alpha^{5}
\end{gathered}
$$

Then $Z^{(0)}=l+\alpha Z^{(1)}$, furthermore

$$
\begin{equation*}
t\left(Z^{(1)}\right)=Y_{1}+Y_{2}+\left(Y_{3}+h\right)+Y_{4}+Y_{5}+h=t\left(Z^{(0)}\right)-l_{0} \tag{3.2}
\end{equation*}
$$

Let us continue this procedure with $Z^{(1)}$ instead of $Z^{(0)}$, and so on. We get a sequence $Z^{(1)}, Z^{(2)}, \ldots$ We say that the procedure terminates if $Z^{(N)}=0$ for a suitable N. It is obvious that $\alpha \in B$, if the procedure terminates for every Z. Let us assume in contrary that there exists a Z for which it does not terminate. Since the sequence $t\left(Z^{(v)}\right)$ the values of the members of which are positive integers, is monotonically decreasing, we get that $t\left(Z^{(N)}\right)=t\left(Z^{(N+1)}\right)=\ldots=m>0$. From (3.2) we get that $\alpha Z^{(N+j+1)}=$ $=Z^{(N+j)}(j=0,1 ; 2, \ldots)$, i.e. α^{k} divides $Z^{(N)}$ for every positive integer k, which implies that $Z^{(N)}=0$, contrary to our assumption.
4. It remains to consider the cases $\alpha_{1}, \alpha_{2}, \alpha_{4}, \alpha_{5}$. We shall prove that the question whether they belong to B can be decided by a finite amount of computations.

Let $\alpha \in Q[\sigma], \alpha=a+b \sigma+c \sigma^{2}, A=\{0,1, \ldots,|N(\alpha)|-1\}$. For $\gamma \in Q[\sigma]$ the algorithm

$$
\begin{equation*}
\gamma_{i}=\alpha \gamma_{i+1}+r_{i}, \quad r_{i} \in A, \quad \gamma_{0}=\gamma \tag{4.1}
\end{equation*}
$$

is well defined. Let

$$
\gamma_{i}=\xi^{(i)}+\eta^{(i)} \sigma+\zeta^{(i)} \sigma^{2}, \quad \Gamma_{i}=\left[\begin{array}{l}
\xi^{(i)} \\
\eta^{(i)} \\
\zeta^{(i)}
\end{array}\right], \quad \mathrm{e}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] .
$$

Let A denote the matrix that describes the multiplication by α in the base $1, \sigma, \sigma^{2}$, i.e. for which

$$
\begin{equation*}
\Gamma_{i}=A \Gamma_{i+1}+r_{i} \mathbf{e} \tag{4.2}
\end{equation*}
$$

holds.
From (4.2) we get that

$$
\begin{equation*}
\Gamma_{i+1}=A^{-1} \Gamma_{i}-r_{i} A^{-1} \mathbf{e} \quad(i=0,1 ; 2, \ldots) \tag{4.3}
\end{equation*}
$$

where A^{-1} has the following explicit form:

$$
A^{-1}=\frac{1}{N(\alpha)}\left[\begin{array}{ccc}
a^{2}-2 b c & 2 b^{2}-2 a c & 4 c^{2}-2 a b \tag{4.4}\\
2 c^{2}-a b & a^{2}-2 b c & 2 b^{2}-2 a c \\
b^{2}-a c & 2 c^{2}-a b & a^{2}-2 b c
\end{array}\right]
$$

The algorithm $\gamma_{i \rightarrow i} \gamma_{i+1}$ terminates if $\gamma_{N}=0$ for a suitable N, i.e. if $\Gamma_{\dot{N}}=0$ in (4.3). Let $\|\cdot\|$ be a vector norm for which, with the corresponding matrix norm,

$$
\begin{equation*}
\left\|A^{-1}\right\|=x<1 \tag{4.5}
\end{equation*}
$$

is satisfied. From (4.3) we get that

$$
\begin{equation*}
\Gamma_{i+N}=\left(A^{-1}\right)^{N} \Gamma_{i}-\sum_{k=0}^{N-1} r_{i+k}\left(A^{-1}\right)^{N-k+1}\left(A^{-1} \mathbf{e}\right) \tag{4.6}
\end{equation*}
$$

and hence that

$$
\begin{equation*}
\left\|\Gamma_{i+N}\right\| \leqq x^{N}\left\|\Gamma_{i}\right\|+(|N(\alpha)|-1)\left\|A^{-1} \mathbf{e}\right\|(x /(1-x)) \tag{4.7}
\end{equation*}
$$

From (4.7) we get immediately that the sequence $\Gamma_{0}, \Gamma_{1}, \ldots$ is bounded for every Γ_{0}.
Let us assume that there exists a γ which cannot be represented in the base α. Then (4.3) does not terminate. Since any bounded domain contains only a finite number of vectors with integer entries, we get that (4.3) is cyclic. From (4.7) we get that

$$
\begin{equation*}
\lim _{N} \sup \left\|\Gamma_{N}\right\| \leqq(|N(\alpha)|-1)\left\|A^{-1} \mathrm{e}\right\|(x /(1-x)) \tag{4.8}
\end{equation*}
$$

Furthermore, the integer γ_{N} corresponding to Γ_{N} cannot be represented in the base α.
So we have proved the following assertion. Let $\varepsilon>0$, and let S_{ε} be the set of those γ for which

$$
\|\Gamma\| \leqq(|N(\alpha)|-1)\left\|A^{-1} \mathrm{e}\right\|(x /(1-x))+\varepsilon=: L+\varepsilon,
$$

$\Gamma=\Gamma(\gamma)$ holds. If $\alpha \notin B$, then there exists a $\gamma \in K_{z}$ which cannot be written in the base α.

Furthermore, if $\left\|\Gamma_{i}\right\| \leqq L /(1-x)$, then $\left\|\Gamma_{i+1}\right\| \leqq L /(1-x)$, which is an obvious consequence of (4.7). This implies that the number of arithmetical operations that needs to be executed to determine the whole periodic sequence $\Gamma_{0}, \Gamma_{1}, \ldots$ is finite.

By using the spectral norm for the matrices A_{i} corresponding to α_{i}, we get by an easy computation that

$$
\left\|A_{1}^{-1}\right\|_{s} \approx 0,63, \quad\left\|A_{2}^{-1}\right\|_{s} \approx 0,75, \quad\left\|A_{4}^{-1}\right\|_{s} \approx 0,97, \quad\left\|A_{5}^{-1}\right\|_{s} \approx 0,75
$$

i.e. the condition (4.5) holds.
5. So we have proved the following

Theorem. The question whether the integers $\alpha_{1}=-3 \sigma, \alpha_{2}=-2-\sigma, \alpha_{4}=-4+$ $+\sigma+\sigma^{2}, \alpha_{5}=-3-\sigma-\sigma^{2}$ do or do not belong to B can be decided by executing a finite number of arithmetical operations. All the remaining elements of B are the following integers:
(a) $\alpha=M+\sigma, \quad M \leqq-4$,
(b) $\alpha=M-\sigma, \quad M \leqq-3$ or $M=-1$ or $M=0$,
(c) $\alpha=M+\sigma+\sigma^{2}, \quad M \leqq-5$,
(d) $\alpha=M-\sigma-\sigma^{2}, \quad M \leqq-4$.

References

[1] I. Kátal, J. Szabó, Canonical number systems for complex integers, Acta Sci. Math., 37 (1975), 255-260.
[2] I. Kátal, B. Kovács, Canonical number systems in imaginary quadratic fields, Acta Math. Hung., 37 (1981), 159-164.
[3] I. Kátai, B. Kovács, Kanonische Zahlensysteme in der Theorie der quadratischen algebrischen Zahlen, Acta Sci. Math., 42 (1980), 99-107.
[4] B. Kovács, Canonical number systems in algebraic number fields, Acta Math. Hung., 37 (1981), 405-407.
[5] W. GIlbert, Radix representations of quadratic fields, J. Math. Anal. Appl., 83 (1981), 264-274.
[6] W. Sierpinski, Elementary theory of numbers (Warsawa, 1964).
DEPARTMENT OF COMPUTER SCIENCE
EOTVOOS LORAND UNIVERSITY
BOGDANFY UT 10/B
1117 BUDAPEST, HUNGARY

