And Alexander of

en an an an an an Arran an Arraightean an Ar

Canonical number systems in $Q(\sqrt{2})$

S. KÖRMENDI

1. Let us given an algebraic number field Q(y) defined as a simple extension of the rational number field determined by y. Let S[y] denote the ring of the integers in Q(y).

We shall say that an algebraic integer $\varrho \in S[\gamma]$ is the base of a full radix representation in $S[\gamma]$, if every $\alpha \in S[\gamma]$ can be written in the form

$$(1.1) \qquad \qquad \alpha = \sum_{k=0}^{m} a_k \varrho^k,$$

where the digits a_k are nonnegative integers such that $0 \le a_k < N = |\text{Norm}(\varrho)|$.

The largest set that we could hope to represent in the form (1.1) is the ring $Z[\varrho]$, i.e. the polynomials in ϱ with rational integer coefficients. The reason that the norm N yields the correct number of digits is due to the fact that the quotient ring $Z[\varrho]/\varrho$ is isomorphic to Z_N by the map which takes a polynomial in ϱ to its constant term modulo N.

Any such radix representation is unique. Let P(X) denote the minimum polynomial of ϱ . Since ϱ is an integer in $S[\gamma]$, therefore the coefficients of P(X) are rational integers, the constant term of P(X) is $\pm N$. Suppose A(X), $B(X) \in Z[X]$ are polynomials whose coefficients are integers in the range from 0 to N-1. If $A(\varrho)$ and $B(\varrho)$ represent the same element of $Z[\varrho]$, then A(X) - B(X) is in the ideal generated by P(X) in Z[X]. Since the coefficients of A(X) - B(X) are in the interval [-N+1, N-1] and the constant term of P(X) is $\pm N$, therefore A(X) - B(X) must be the zero polynomial, i.e. A(X) and B(X) have the same coefficients.

I. KATAI and J. SZABÓ [1] proved that the only numbers which are suitable bases for all the Gaussian integers, using 0, 1, ..., N-1 as digits, are $-n\pm i$ where *n* is a positive integer, $N=n^2+1$ is the norm of $-n\pm i$. Their work was generalized by I. KATAI and B. KOVACS [2], [3], namely they determined all the bases for quad-

Received April 20, 1984.

7*

ratic number fields, using natural numbers as digits. Similar results have been achieved by W. GILBERT [4], independently.

B. Kovács [5] gave a necessary and sufficient condition for the existence of number base in algebraic number fields. Namely he proved: If $Q(\gamma)$ is an extension of degree *n* of *Q*, then there exists a number base in $S[\gamma]$ if and only if there exists a $\vartheta \in S[\gamma]$ such that $\{1, \vartheta, ..., \vartheta^{n-1}\}$ is an integer-base in $S[\gamma]$.

However, the determination of all the number bases in algebraic number fields seems to be a quite hard problem. Our purpose in this paper is to determine all the number bases in $Q[\sqrt[3]{2}]$. This is the simplest case that has not been considered until now. We hope to extend our investigation for all cubic fields.

2. Let $\sigma = \sqrt[3]{2}$, and let $K(X) = X^3 - 2$ be the minimum polynomial of σ . We shall use some lemmas.

E Lemma 1. Let $\alpha = a + b\sigma + c\sigma^2$ with $a, b, c \in Q$, and let $E_1 = -3a$, $E_2 = -3(a^2 - 2bc)$, $E_3 = -(a^3 + 2b^3 + 4c^3 - 6abc)$. Then α is a root of the polynomial $T(X) = X^3 + E_1 X^2 + E_2 X + E_3$.

Proof. Let $\xi = \exp(2\pi i/3)$ be one of the cubic roots of unity, and let $\alpha_1 = \alpha'_1$, $\alpha_2 = a + b\xi\sigma + c\xi^2\sigma^2$, $\alpha_3 = a + b\xi^2\sigma + c(\xi^2\sigma)^2$ be the conjugates of α . Expanding the product $(X-\alpha_1)(X-\alpha_2)(X-\alpha_3)$ we get immediately that this is T(X).

Lemma 2. $\{1, \sigma, \sigma^2\}$ is an integer base, i.e. $\alpha = a + b\sigma + c\sigma^2$ is an integer in $Q(\sigma)$ if and only if a, b, c are rational integers.

Proof. This is well known.

Lemma 3. Let $\alpha \in S[\sigma]$ {1, α , α^2 } is an integer basis if and only if $\alpha = M \pm \sigma$, or $\alpha = M \pm (\sigma + \sigma^2)$ with a rational integer M.

Proof. Let $\alpha = a + b\sigma + c\sigma^2$. Then $\alpha^2 = (a^2 + 4bc) + (2ab + 2c^2)\sigma + (2ac + b^2)\sigma^2$. The matrix A of the basis transformation $[1, \sigma, \sigma^2] \rightarrow [1, \alpha, \alpha^2]$ has the form

$$A = \begin{bmatrix} 1 & 0 & 0 \\ a & b & c \\ a^2 + 4bc & 2ab + 2c^2 & 2ac + b^2 \end{bmatrix}.$$

det $A = \pm 1$ if and only $b^3 - 2c^3 = \pm 1$. It is well known, see e.g. [6], that all the solutions of this Diophantine equation are: (2.1) (b, c) = (1, 0), (-1, 0), (1, 1), (-1, 1).

Let B denote the set of the number bases in $Q(\sigma)$.

Lemma 4. If $\alpha \in B$, then $\{1, \alpha, \alpha^2\}$ is an integer base. The state level of α

Proof. Obvious.

Lemma 5. Let $\vartheta \in S[\sigma]$ be such that $\{1, \vartheta, \vartheta^2\}$ is an integer basis. Let the minimum polynomial $T(X) = X^3 + E_1 X^2 + E_2 X + E_3$ of ϑ satisfy the conditions $1 \leq E_1 \leq E_2 \leq E_3$, $E_3 \geq 2$. Then $\vartheta \in B$.

Proof. See [4].

Lemma 6. If $\vartheta \ge -1$, $\vartheta \in S[\sigma]$, then $\vartheta \notin B$.

Proof. Let H_a denote the set of those numbers α that can be written in the form

$$\alpha = a_0 + a_1 \vartheta + \ldots + a_k \vartheta^k$$

with suitable digits $a_j \in [0, |N(\vartheta)| - 1]$. If $\vartheta \ge 0$, then $H_{\vartheta} \subseteq [0, \infty)$, and so -1 cannot be represented. If $\vartheta = -1$, then $|N(\vartheta)| = 1$, $a_j = 0$, and so $H_{\vartheta} = \{0\}$. If $|\vartheta| < 1$ and $\alpha \in H_{\vartheta}$, then

$$|\alpha| \leq a_0 + a_1 |\vartheta| + \ldots + a_k |\vartheta|^k \leq (|N(\vartheta)| - 1) |\vartheta|/(|\vartheta| - 1),$$

consequently H_{ϑ} is a bounded subset of the real numbers. Since $Z[\vartheta]$ is not bounded, the proof is finished.

Lemma 7. Let $T(X)=X^3+E_1X^2E_2X+E_3$ be the minimum polynomial of α , and let $\gamma = (E_2+E_1+1)+(E_1+1)+\alpha^2$. Then $(1-\alpha)\gamma = T(1)$. Consequently, if |T(1)| < < 1, then γ or $-\gamma$ cannot be represented in the form $r_0+r_1\alpha+\ldots+r_k\alpha^k$, $r_i \in \{0, 1, \ldots, \ldots, |N(\alpha)|-1\}$, i.e. $\alpha \notin B$.

Proof. The assertion $T(1)=(1-\alpha)y$ is obvious. Let $c=\operatorname{sgn} T(1)$. Then

$$cy = cT(1) + (cy)\alpha, \quad cT(1) \in \{0, ..., |N(\alpha)| - 1\}.$$

Let us assume in contrary that c has a representation in the form

$$c\gamma = r_0 + r_1\alpha + \ldots + r_k\alpha^k.$$

Then $r_0 = cT(1)$, $c\gamma = r_1 + r_2\alpha + \ldots + r_k\alpha^{k-1}$. Repeating this procedure we get that $cT(1) = r_0 = r_1 \ldots = r_k$, $c\gamma = 0$, which does not hold.

3. From Lemmas 3 and 4 it follows that if $\alpha \in B$, then $\alpha = M \pm \sigma$ or $\alpha = M \pm (\sigma + \sigma^2)$. Let $T(X) = X^3 + E_1 X^2 + E_2 X + E_3$ be the minimum polynomial of α . Let us consider the table below.

α	E1	E ₃	E _s	Conditions of Lemma 5 are satisfied if
<i>M</i> +σ	-3M	3 <i>M</i> ²	M [*] +2	<i>M</i> ≤ −4
$M-\sigma$	-3M	. 3M ² .	<i>M</i> ³−2	$M \leq -3$ or $M = -1$
$M + \sigma + \sigma^{a}$	-3M	$3(M^2-2)$	$M^{3}-6M+6$	<i>M</i> ≤ −5
$M - \sigma - o^2$	-3M	3(M ² -2)	$M^{3}-6M-6$	<i>M</i> ≤ −4

The numbers α satisfying the conditions stated in the last column belong to B.

From Lemma 7 we get that $\alpha \notin B$ if $\alpha \ge -1$, i.e. if

 $\alpha = M + \sigma \qquad \text{and} \quad M \geq -2,$ $\alpha = M - \sigma$ and $M \ge 1$, $\alpha = M + \sigma + \sigma^2$ and $M \ge -3$, $\alpha = M - \sigma - \sigma^2$ and $M \ge 2$.

It remains to consider the following set of integers $\alpha_1, \ldots, \alpha_9$, the minimum polynomials of which are denoted by $T_1(X), \ldots, T_n(X)$, resp.

	α	T(X)	Ν(α)
-	1	the second s	· · · ·
1	$-3+\sigma$	$X^3 + 9X^2 + 27X + 25$	25
2	$-2-\sigma$	$X^3 + 6X^2 + 12X + 10$	10
3	-σ	X ³ +2	2
4	$-4+\sigma+\sigma^2$	$X^{3} + 12X^{2} + 42X + 34$. 34
5	$-3-\sigma-\sigma^2$	$X^3 + 9X^2 + 21X + 15$. 15 .
6	$-2-\sigma-\sigma^2$	$X^3 + 6X^2 - 6X + 2$	2
7.	$-1-\sigma-\sigma^2$	$X^{3}+3X^{2}-3X+1$	· . 1
8	$-\sigma - \sigma^2$	$X^{*}-6X+6$. 6.
9	$1-\sigma-\sigma^2$	$X^3 - 3X^2 - 3X + 11$	11
.			\$
Lemn	a 8 Wahawan n n n	¢ R	· · · ·

Lemma 8. We have
$$\alpha_6, \alpha_7, \alpha_8, \alpha_9 \notin B$$
.

Proof. The conditions of Lemma 7 hold for α_6 , α_8 , α_9 , α_7 is a unit, the set of the digits contains only one element, the zero, so $\alpha_7 \notin B$.

Lemma 9.
$$\alpha_3 = -\sigma \in B$$
.

Proof. The set of the allowable digits are $\{0, 1\}$. Let $\alpha_3 = \alpha$. First we observe that $-1=1+\alpha^3$, $2=\alpha^3+\alpha^6$. The general form of the integers in $Q(\sigma)$ is Z= $=X_0+X_1\alpha+X_2\alpha^2$, $X_i\in \mathbb{Z}$. By the relation $-1=1+\alpha^3$, each \mathbb{Z} can be written in the form $Z = Y_0 + Y_1 \alpha + \ldots + Y_5 \alpha^5$ (3.1) en de la facta de la composition

with nonnegative integers Y_0, \ldots, Y_5 .

Let now $Z^0 \neq 0$ be an arbitrary integer, written in the form (3.1). We shall define the following algorithm:

> $t(Z^0) := Y_0 + Y_1 + \dots + Y_5; \quad h = [Y_0/2], \quad l = Y_0 - 2[Y_0/2] \in \{0, 1\}.$ $Z^{(1)} = Y_1 + Y_2 \alpha + (Y_3 + h)\alpha^2 + Y_4 \alpha^3 + Y_5 \alpha^4 + h\alpha^5.$

Then $Z^{(0)} = l + \alpha Z^{(1)}$, furthermore (3.2) $t(Z^{(1)}) = Y_1 + Y_2 + (Y_3 + h) + Y_4 + Y_5 + h = t(Z^{(0)}) - h$ Canonical number systems in $Q(\sqrt{2})$

Let us continue this procedure with $Z^{(1)}$ instead of $Z^{(0)}$, and so on. We get a sequence $Z^{(1)}, Z^{(2)}, \dots$ We say that the procedure terminates if $Z^{(N)}=0$ for a suitable N. It is obvious that $\alpha \in B$, if the procedure terminates for every Z. Let us assume in contrary that there exists a Z for which it does not terminate. Since the sequence $t(Z^{(v)})$ the values of the members of which are positive integers, is monotonically decreasing, we get that $t(Z^{(N)}) = t(Z^{(N+1)}) = ... = m > 0$. From (3.2) we get that $\alpha Z^{(N+j+1)} = 1$ $=Z^{(N+j)}$ (j=0, 1, 2, ...), i.e. α^k divides $Z^{(N)}$ for every positive integer k, which implies that $Z^{(N)}=0$, contrary to our assumption.

4. It remains to consider the cases α_1 , α_2 , α_4 , α_5 . We shall prove that the question whether they belong to B can be decided by a finite amount of computations.

Let $\alpha \in Q[\sigma]$, $\alpha = a + b\sigma + c\sigma^2$, $A = \{0, 1, ..., |N(\alpha)| - 1\}$. For $\gamma \in Q[\sigma]$ the algorithm ч. н. н.

 $\gamma_i = \alpha \gamma_{i+1} + r_i, \quad r_i \in A, \quad \gamma_0 = \gamma$ (4.1) is well defined. Let

$$y_i = \xi^{(i)} + \eta^{(i)} \sigma + \zeta^{(i)} \sigma^2, \quad \Gamma_i = \begin{bmatrix} \xi^{(i)} \\ \eta^{(i)} \\ \zeta^{(i)} \end{bmatrix}, \quad \mathbf{e} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}.$$

Let A denote the matrix that describes the multiplication by α in the base 1, σ , σ^2 , i.e. for which

(4.2)

$$\Gamma_i = A\Gamma_{i+1} + r_i \mathbf{e}$$

holds.

From (4.2) we get that

(4.3)
$$\Gamma_{i+1} = A^{-1} \Gamma_i - r_i A^{-1} \mathbf{e} \quad (i = 0, 1, 2, ...),$$

where A^{-1} has the following explicit form:

(4.4)
$$A^{-1} = \frac{1}{N(\alpha)} \begin{bmatrix} a^2 - 2bc \ 2b^2 - 2ac \ 4c^2 - 2ab \\ 2c^2 - ab \ a^2 - 2bc \ 2b^2 - 2ac \\ b^2 - ac \ 2c^2 - ab \ a^2 - 2bc \end{bmatrix}.$$

The algorithm $\gamma_i \rightarrow \gamma_{i+1}$ terminates if $\gamma_N = 0$ for a suitable N, i.e. if $\Gamma_N = 0$ in (4.3). Let $\|\cdot\|$ be a vector norm for which, with the corresponding matrix norm, 2.0

$$\|A^{-1}\| = \varkappa < 1$$

is satisfied. From (4.3) we get that

(4.6)
$$\Gamma_{i+N} = (A^{-1})^N \Gamma_i - \sum_{k=0}^{N-1} r_{i+k} (A^{-1})^{N-k+1} (A^{-1}\mathbf{e}),$$

and hence that

(4.7)
$$\|\Gamma_{i+N}\| \leq \varkappa^{N} \|\Gamma_{i}\| + (|N(\alpha)|-1) \|A^{-1}e\|(\varkappa/(1-\varkappa)).$$

From (4.7) we get immediately that the sequence $\Gamma_0, \Gamma_1, \dots$ is bounded for every Γ_0 .

Let us assume that there exists a γ which cannot be represented in the base α . Then (4.3) does not terminate. Since any bounded domain contains only a finite number of vectors with integer entries, we get that (4.3) is cyclic. From (4.7) we get that

(4.8)
$$\limsup_{N} \left\| \Gamma_{N} \right\| \leq \left(|N(\alpha)| - 1 \right) \|A^{-1} \mathbf{e}\| \left(\varkappa / (1 - \varkappa) \right).$$

Furthermore, the integer γ_N corresponding to Γ_N cannot be represented in the base α .

So we have proved the following assertion. Let $\varepsilon > 0$, and let S_{ε} be the set of those γ for which

$$\|\Gamma\| \leq (|N(\alpha)|-1)\|A^{-1}\mathbf{e}\|(\varkappa/(1-\varkappa))+\varepsilon =: L+\varepsilon,$$

 $\Gamma = \Gamma(\gamma)$ holds. If $\alpha \notin B$, then there exists a $\gamma \in K_{\varepsilon}$ which cannot be written in the base α .

Furthermore, if $\|\Gamma_i\| \leq L/(1-\varkappa)$, then $\|\Gamma_{i+1}\| \leq L/(1-\varkappa)$, which is an obvious consequence of (4.7). This implies that the number of arithmetical operations that needs to be executed to determine the whole periodic sequence $\Gamma_0, \Gamma_1, \ldots$ is finite.

By using the spectral norm for the matrices A_i corresponding to α_i , we get by an easy computation that

$$||A_1^{-1}||_S \approx 0.63, ||A_2^{-1}||_S \approx 0.75, ||A_4^{-1}||_S \approx 0.97, ||A_5^{-1}||_S \approx 0.75,$$

i.e. the condition (4.5) holds.

5. So we have proved the following

Theorem. The question whether the integers $\alpha_1 = -3\sigma$, $\alpha_2 = -2-\sigma$, $\alpha_4 = -4 + +\sigma + \sigma^2$, $\alpha_5 = -3-\sigma - \sigma^2$ do or do not belong to B can be decided by executing a finite number of arithmetical operations. All the remaining elements of B are the following integers:

- (a) $\alpha = M + \sigma$, $M \leq -4$, (b) $\alpha = M - \sigma$, $M \leq -3$ or M = -1 or M = 0,
- (c) $\alpha = M + \sigma + \sigma^2$, $M \leq -5$,
- (d) $\alpha = M \sigma \sigma^2$, $M \leq -4$.

Canonical number systems in $Q(\sqrt{2})$

References

- I. KÁTAI, J. SZABÓ, Canonical number systems for complex integers, Acta Sci. Math., 37 (1975), 255-260.
- [2] I. KÁTAI, B. KOVÁCS, Canonical number systems in imaginary quadratic fields, Acta Math. Hung., 37 (1981), 159---164.
- [3] I. KÁTAI, B. KOVÁCS, Kanonische Zahlensysteme in der Theorie der quadratischen algebrischen Zahlen, Acta Sci. Math., 42 (1980), 99-107.
- [4] B. Kovács, Canonical number systems in algebraic number fields, Acta Math. Hung., 37 (1981), 405-407.

[5] W. GILBERT, Radix representations of quadratic fields, J. Math. Anal. Appl., 83 (1981), 264-274.

[6] W. SIERPINSKI, Elementary theory of numbers (Warsawa, 1964).

DEPARTMENT OF COMPUTER SCIENCE EÖTVÖS LORÁND UNIVERSITY BOGDÁNFY ÚT 10/B 1117 BUDAPEST, HUNGARY