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"~ Canonical namber systems in 0(12)

S. KORMENDI

. L Let us given an algebraic number field @(y) defined as a simple extension of
the rational number field determined by 7. Let S[y] denote the ring of the integers m
o).

- We shall say that an algebraic integer o€ S[y] is the base of a full rad1x represen-
tation in S[y), if every o€ S[y] can be written in the form

an. oo '.a=§m&

where the dlglts a, are nonnegatlve integers such that 0=a,<N=|Norm (g)|.

The largest set that we could hope to represent in the form (1.1) i is the ring Z [o],
ise..the polynomials in ¢ ‘with rational integer coefficients. The reason that the norm
N yields the correct number of digits is due to the fact that the quotient ring Z{ol/¢
is isomorphic to Zy by the map which takes a polynomial in g to its constant term
modulo N.

Any'such radix representation is unique. Let P(X) denote the minimum polyno-
mial of g. Since ¢ is an integer in S[y], therefore the coefficients of P(X) are rational
integers, the. constant. term of P(X)is +N. Suppose A(X), B(X)cZ[X] are poly-
nomials whose coeﬂiments are mtegers in the range from 0 to N—1. If 4(g) and B(g)
represent the same element of Z lol, then A (X)—B(X) is in the ideal generated by
P(X) in Z[X]. Since the coefficients of A(X)—B(X) are in the interval
[-N+1, N—1] and the constant term of P(X) is +N, therefore A(X)—B(X)
must be the zero polynomial, i.e."4(X) and B(X) have the same coefficients.

. I KAra1 and J. SzaB6 {1 proved that the only. numbers which are suitable
bases for all the Gausaan integets, using 0, 1, ..., N—1 as digits, are —nzki where
n is a positive integer, N=n?+1 is the norm of -——n:tz Their work was generalized
by 1. KATA1 and B. KovAcs [2], [3], namely they determined all the bases for quad-
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ratic number fields, using natural numbers as digits. Similar results have been achie-
ved by W. GiLBerT [4], independently.

B. KovAcs [5] gave a necessary and sufficient condition for the existence of
number base in algebraic number fields. Namely he proved: If Q(y) is an extension of
degree n of Q, then there exists a number base in S[y] if and only if there exists a
9¢ Sfy] such that {1, 9, ..., 9"~} is an integer-base in S[y].

However, the determination of all the number bases in algebraic number fields
seems to be a quite hard problem. Our purpose in this paper is to determine all the

3

number bases in Q[2]. This is the simplest case that has not been considered until
now. We hope to extend our investigation for all cubic fields.

2. Let 6= ﬁ and let K(X)= X3—2 be the n'li‘nirnum.;-)'dlyn'(:):tr}:i_ztl:e'f:d. We shall
use some lemmas. ' o ‘ N
B Lemma.l. Let a=a+bo+ca? with a,b,ccQ, and let ‘E,=—3a, E,=
=3(a®—2bc), E,=—(a®+2b3+4c®—6abc). - Then a is a:root-of -the: polynomial
T(X)=X*+E, X*+ E, X+ E,.

Proof. Let &é=exp (2mi/3) be one of the cubic roots of unity, and let o, =2,
day=a+bfo+ct%? ay=a+bt% +c(E%)? be the conjugates of a. Expandmg the
product (X = ozl) (X —op) (X —a,) we get 1mmed1ately that this i 1s T(X ) ’

Lemma 2. {1, o, 6%} is an integer base, i.e. oz-a+b0' +ca2 isan mteger in Q(a)
ifandonlyifa, b, c are rational integers. S

Proof. This is well known.

Lemma 3. Let ac S[o] {1, o, a%} is.an mteger basis tfand only gf az—M:l:a, or
a=M :t(a+02) with. a rational integer M. : . -

Proof. Let ‘a=a+bo+ca®. Then ' az-—(a2+4bc) +(2ab +2c’)o' +(2ac +b2)o"
The matrle of the basis transformation [1, 0, 681, o, a’] has the form

1 0 .0
A= a . b - c 1.
a?+4-4bc 2ab+2c® 2ac+b?

det A=+1 if and only 5°—2c3= 1. Itis well known, see e. g [6], that all the solu-
tions of thls Dlophantme equation are: .

QD . (b9 =(,0), (=1,0), a 1) (—1 Do ot
Let B denote the set of the number bases in Q(0).

Lemma 4. If acB, then {1, a,a®} isan integer base. - : 1. - i~
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Proof. Obvious.

Lemma 5. Let 3€S[o] be such that {1, 9, 9%} is an integer basis. Let the minimum
polynomial T(X)=X3+E, X*+E,X+E, of 3 satisfy the conditions | =E,=E,=E,,
Ey;=2. Then 9€B.

Proof. See [4].
' Lemma6 If.92—l SES[a], then SQB

Proof Let Hs denote: the set of those numbers a that can be wrltten in the form
o= ao+a1l9+ +ak\9‘k )
with suitable digits a;€[0, IN(®)|—1]. If 9=0, then H3E[0, ), and so —1 can-
not be represented. If §=—1, then |N(9)|=1, 4;=0, and so Hy={0}. If [9|<1
and a€ Hy, then
lol = ag+ay |9]+... +a, |9/ = (NI -1)191/(19] - D),

consequently H, is a bounded subset of the real numbers. Since Z[9] is not bounded,
the proof is finished.

Lemma 7. Let T(X)=X*+E,X2E,X+E; be the minimum polinbmial of «a,
andlet y=(E;+E,+1)+(E,+1)+0o® Then (1—a)y=T(1). Consequently, if |T(1)|<
<1, then y or —y cannot be represented in the form ro+ria+...+ro%, r€{0,1, ...,

. IN(@)|—1)}, ie agB.
Proof. The assertion T(1)=(1—a)y is obvious. Let c=sgn T(1). Then
¢y = cT()+(cp)a, cT(1)E{0, ..., IN@)| -1}
Let us assume in contrary that ¢ has a representation in the form
cy =rp+na+t.. +r,‘a
Then ro—cT(l), cy= ry+rad+...+r0*=1 Repeating this procedure we get that
cT(l) =ry=ry...=r, cy=0, which does not hold.

3. From Lemmas 3 and 4 it follows that if x€B, then a=M+o or a=
=M=+(c+0?). Let T(X)=X3+E,X?*+E,X+E; be the minimum polynomial of o.
Let us consider the table below.

. ‘ : R ' ' Conditions of Lemma 5 are
« B E, E, satisfied if
M+o | -3M M M3+42 M=-4
M-o -3M. . 3MEF M3=2 M=-3 or M=-1
M+ig+a® | —-3M 3(M*-2) M?®—6M+6 M=-5
M—-g—c* | —3M 3(M*-2) M?—6M—6 . M=24

The numbers a satisfying the conditions stated in the last column belong to B.
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From Lemma 7 we get that a¢ B if a=—1, ie.if
o=M+o and M=-2,"
a=M—g¢ and ‘M=1,
e=M+o+6* and M =-3,
a=M—-c—0® and M =2.

It remains to consider the following set of i‘ntegérs. 0y, ..,_a,,“ thé 'minimum
polynomials of which are denoted by Ty(X), ..., To(X), resp. ~ = =

-3 . T(X) . i N(@)

1 —3+o ' X349X2+27X+25 . 25
2 -2-0 X +6X*+12X+10 S 10
3 R . X342 - S 2
4 ~4+o+a? . X*412X2+42X+34 . .- .. 34
5 -3—c—0® XP+9X:421X+1S . . 15
6 -2-0-a* X 46Xt —6X+2 co 2
7. -1-0—0o* X0 43X2-3X+1-- . 1
8 —oc—0® . X*-6X+6 . L6
.9 "1-o—o? X3-3xi-3x+11 11

v

Lemma 8. We have oy, o5, 0g, 0ty§ B.

Proof. The conditions 6f Lemma 7 hold for g, g, ag ‘ayisa unit, the set of the
digits contains only one element, the zero, so «,¢ B.

Lemma9. a;=—0o€B. : L T e

Proof. The set of the allowable digits are {0, 1}. Let az=a. First we observe
that —1=1+a3, 2=0o®+ab. The general form of the integers in Q(o) is - Z—
=X, +Xja+X,02, X€Z. By the relation --1=1+a?, each’Z can be written in the
form .- . ol
(3 l) . o Z= Y0+Y1a+ +Y5a \ .

with nonnegatxve mtegers Yy, .5 Y. : SR - ‘
Letnow Z°#0 bean arbltrary mteger wntten m the form (3. 1) We shall define
the following algorithm: :

HZ% —Y0+Y1+ +Y5, ) =[Yo/2], I—Y0 2[Yo/2}€{0 l}
o ZW = Y1+Y2a+(Y3+h)a2+Y4_a3+Y5a +ha
Then Z‘°)-I+aZ(1) furthermore
3.2 S HZD) =Y # Y (Yt D) F Y+ Y+ o= ((ZO) g 0 Y
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Let us continue this procedure with Z™ instead of Z®, and so on. We get a sequence
zZM™, Z®, ... We say that the procedure terminates if Z™=0 for a suitable N. It is
obvious that a€ B, if the procedure terminates for every Z. Let us assume in contrary
that there exists a Z for which it does not terminate. Since the sequence ¢(Z™) the
values of the members of which are positive mtegers, is. monotomcally decreasing,
we get that {(Z™)=¢(ZN+Y)=..=m>0. From (3.2) we get that aZW+HI+D =
=ZWN+D (j=0,1,2,...), i.e. oF divides Z™ for every positive integer k, WhJCh
implies that ZM=0, contrary to our assumptlon

4. It remains to consider the cases ay, oaz, oy, ots. We shall prove that the ques-
tion whether they belong to B can be decided by a finite amount of computations.
Let acQlo], a=a+bo+ca®, A={0,1, ..., |[N(a)|—1}. For y€Qlg] the al-
gorithm ’ : L
4.0 Vi = 0Pt T EA Yo = T
is well defined. Let o

é(i) .
ﬂy — 5(‘)_'_"(!)0-_*.{(') 0-2 I'i “) ;
C(i)

Let A denote the matrix that describes the multlphcatlon by o in the base l a', o?,
i.e. for which o

4.2 I'y=Al;4,+1
holds. S . : S
From (4.2) we get that

4.3) IMyw=A"T—rde (i=0,1,2,..),
where A1 has the following explicit form:
Lo T I a®—2bc 2b%*—2ac. 4c¢*—~2ab| - ... . .
(4.9) AT = —— el 2c2—ab a®—2bc 2b*—2ac].
E b*—ac 2¢*—ab az—2bc Sy

The algorithm y;—~y;:y terminates if -yy=0for a suitable N, i.e. if Tz=0 in. (4 3).
Let [| - | be a vector norm for which, with the corresponding matrix norm,

4.5) 4~ =% <1 AT
is satisfied. From (4.3) we get that

4.6) Tisn = (A—l)"ri—:f Fe (AR (4 1),
: =0
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and hence that
CN)) ITsenll = 2" [T +(IN (@) —1) [ 472 e] (2/(1 — ).

From (4.7) we get immediately that the sequence Iy, I'y, ... is bounded for every I',.
Let us assume that there exists a y which cannot be represented in the base a.

Then (4.3) does not terminate. Since any bounded domain contains only a finite

number of vectors with integer entries, we get that (4.3) is cyclic. From (4.7) we get

that

4.9) fim sup | sl = (IN()| —1)[4~2e] (¢/(1 ).

Furthermore, the integer yy corresponding to I'y cannot be represented in the base «.
So we have proved the following assertion. Let £>0, and let S, be the set of
those y for which
IT) = (IN@I - 1) 47 €]l (/(1 —2))+¢& =: L+¢,

I'=I(y) holds. If «4B, then there exists a y€K, which cannot be written in the
base a.

Furthermore, if |I}]=L/(1—%), then |y, =L/(1—x), whichis an obvious
consequence of (4.7). This implies that the number of arithmetical operations that
needs to be executed to determine the whole periodic sequence Iy, I'y, ... is finite.

By using the spectral norm for the matrices 4, corresponding to «;, we get by an
easy computation that

47 s ~ 0,63, [4z%s =~ 0,75, [47's ~ 0,97, [l45Ys ~ 0,75,
i.e. the condition (4.5) holds.
5. So we have proved the following

Theorem. The question whether the integers o;= —30, ay=—2—0, ty=—4+
+0+02 az=—3—0—02 do or do not belong to B can be decided by executing a finite
number of arithmetical operations. All the remaining elements of B are the following
integers:

(a a=M+o, M= -4

() a=M-o, M=-3 or M=—1 or M=0,

©) a=M+o+0?, M=-5,

(d a=M-0-0%, M=-4.
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