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Orthonormal systems of polynomials in the divergence theorems 
for double orthogonal series 

F. MÓRICZ* 

1. Introduction. Let (X, !F, fx) be a positive measure space and /, k= 
=0 ,1 , . . . } an orthonormal system (in abbreviation: ONS) defined on X. We will 
consider the double orthogonal series 

(1.1) 2 2 alk<PiÁx) i=0k=0 

where {ajt} is a double sequence of real numbers for which 

(1.2) ¿ ¿ a ? * < ~ . 
i=0»=0 

The rectangular partial sums and (C, a, /?)-means of series (1.1) are defined by 

m n 
*»»(*)= 2 2aik<pik(x) i=0k=0 

and 

<Ax) = (1 IA'mAS) 2 2 A'-JiAttsxix), 
i=o*=o 

respectively, where 

A'" = {mma) {«^-hP^-U m,n = 0,l, ...). 

2. Preliminary results: Convergence theorems. The extension of the Radema-
cher—MenSov theorem proved by a number of authors (see, e.g. [1], [5, Corollary 2], 
etc.) reads as follows. 
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Theorem A .If 

(2.1) 2 2 flatDog 0+2)]2 [log (k+2)]2 < 
i=ot=o 

then series (1.1) regularly converges a.e. 

In this paper the logarithms are to the base 2. 
The convergence behavior improves when considering <f%,(x) with a s O and 

/?s0 instead of Jmn(x). The following two extensions of the MenSov—Kaczmarz 
(a= 1) and Zygmund (a>0) theorems were proved in [7]. 

Theorem B. If a > 0 and 

(2.2) 2 ia? t[loglog(i+4)]2[log(fe+2)]2<oo, 

i=0k=0 

then series (1.1) is regularly (C, a, 0)-sammable a.e. 

Theorem C. If a>0, )5>0, and 

(2.3) 2 ¿a?*[loglog(i+4)]2[loglog(fc+4)]2<«>, 
(=0*=0 

then series (1.1) is regularly (C, a, fi)-summable a.e. 

The next three theorems give information on the order of magnitude of ^ ( x ) 
and respectively, in the more general setting of (1.2). 

Theorem D [6, Corollary 2]. If condition (1.2) is satisfied, then 

(2.4) SmnC*) = ^{^ (»1+2) log ( / i+2 )} a.e. as max(m,ri) — 

Theorem E [9, Theorem 1]. If a > 0 and condition (1.2) is satisfied, then 

(2.5) <T n̂(x) = ox {log log (m+4) log («+2)} a.e. as max (m, n) — 

Theorem F [9, Theorem 2]. If a>0, ^>0 , and condition (1.2) is satisfied, then 

(2.6) (x) = ox {log log (m+4) log log (n+4)} a.e. as max (m, h) — 

3. Preliminary results: Divergence theorems. The conditions (2.1)—(2.3) and 
statements (2.4)—(2.6) are the best possible. 

To see this, from here on let (X, OF, ¡i) be the unit square X=[0,1]X[0,1] in 
R2, J5" the ff-algebra of the Borel measurable subsets, and n the Lebesgue measure, 
in the sequel, the unit interval [0,1] will be denoted by./, the unit square / X / by S, 
and the plane Lebesgue measure by | • |. 
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T h e o r e m A' [10, Theorem 4]. If {aik} is a double sequence of numbers for which 

(3.1) |a t t | S max { k + 1 > t | , |a i>k+1 |} (i, fe = 0, 1, ...) 

and 
oo oo 

12 (3.2) 2 2 <Vog(i+2)f\log{k+2)] 
i=0k=0 

then there exists a uniformly bounded double ONS {<pik(x1, x2)} of step functions on S 
such that 

(3.3) lim sup |smn(xl5 a.e. as min (m, n) — . 

A function <p is said to be a step function on S if S can be represented as a finite 
union of disjoint rectangles with sides parallel to the coordinate axes, and <p is con-
stant on each of these rectangles. 

R e m a r k 1. As a matter of fact, (3.3) was proved in [10] under (3.1) and the 
stronger condition that for all pairs of i0 and k0 

(3.20 2 2 <4[log(i+2)]2[log(fc+2)]2 = «,. 
i=i0k=k0 

Assume (3.2') is not satisfied for a certain pair of /„ and k0, but (3.2) is. Then 
either 

¿ ' S 1 « & D o g ( i + 2 ) ] » = « » 
1=0k=0 

or 

S 1 i « i D o g ( f c + 2 ) ] » = c o . 
i=o t=0 

Now, it is a routine to construct an ONS {«¡»»(xj, x2)} such that 

(3.3') lim sups)mi(jc1, x^) a.e. as and n — k0—1, or 

m = ¿o — 1 and n—<=°. 

On the other hand, since (3.2') is not satisfied, by Theorem A the truncated series 

0 0 0 0 

(1.10 2 2 a
ik
<Pik(.x1, *a) i=i0*=fc0 

regularly converges a.e. Consequently, the divergence expressed in (3.3') cannot be 
spoilt as min (/«,«)->• 00 and this is (3.3) to be shown. 

R e m a r k 2. In particular, it follows from Theorem A' that log («+2) cannot 
be replaced in condition (2.1) by any sequence g(n) tending to °° slower than 
log(n+2) as n—co. Similar observation pertains to Theorems B' and C ' below. 
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Theorem B' [11, Theorem 2]. Set 

A-2,k = M , A-lik = | a u | , Apk = { V£ alfl* (p, k = 0,1, ...). 
I=2"+1 

If 
4Pk = max {A„+lik,APik+1} (p = - 2 , - 1 , 0, ...; k = 0, 1,...) 

and 
2 2 a?*[loglog(i+4)]2[log(fc+2)]2 = ~ , 
j = 0 k = 0 

then there exists a double ONS {cpik(xA'2)} of step functions on S such that 

lim sup Iff^C*!, x^l a.e. as min (m, n) — ' 

Making the convention that for p— —2 and — 1 by 2" we mean — 1 and 0, re-
spectively, the definition of the Apk can be unified as 

= { *Z <4} 1 / 2 (P = - 2 » - • • • ; k = •••)• 
/=2»+l 

T h e o r e m C' [12, Theorem 1]. Set 

A*pq = { *2 <4}1/2 0», 9 = -2, -1,0, ...)• 
i=2* + lfc=2«+l 

If 
A*pk^maK{A*p+1,k,A*p,k+1} (p = - 2 , - 1 , 0 , . . . ; fc = 0, 1, ...) 

and 

2 2 «fJ'og log (i +4)]»Qog log (/c+4)]2 = 
i = 0 k=0 

then there exists a double ONS {(p^^, x2)} of step functions on S such that 

lim sup \o%n(?cl, x2)| = °° a.e. as min (m, n) — 00. 

The divergence theorems corresponding to Theorems D, E and F will be stated 
in Section 5. 

4. Main results. Following the arguments due to ME№>ov[4]andLEiNDLER[3], we 
can conclude an approximation theorem for double ONS of L2-functions by double 
orthonormal systems of polynomials (in abbreviation: ONSP) in xt and xz. This 
theorem can be considered an extension of [3, Theorem 1] from single to double ONS. 

Theo rem 1. Let x2): '\k=0, 1, ...} be a double ONS on S, 
r, s= 1, 2, ...} a double sequence of positive numbers, {Mr: r= 1 ,2, . . .} and 

{Ns: s= 1, 2, ...} two strictly increasing sequences of nonnegative integers. Then there 
exist a double ONSP { P ^ ^ , x2): i, k=Q, 1, ...} on S and a double sequence 
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{E„: r, J=1 , 2, ...} of measurable subsets of S such that the following properties are 
satisfied: 

(i) | £ „ | s e „ ( r , j = l , 2 , . . . ) ; 
(ii) For every (xl5 x2)€S\Ers, and for every M,.1<i§Mr and 

(4.1) | * 2 ) - ( - L Y - ^ A T F R I , XJ\ =§ £„ 

(r,s = 1 ,2 , . . . ; M0 = N0 = - l ) . 

where _/„(xl5 x2) equals 0 or 1 depending on r, s, and x2, but not depending on i 
and k\ 

(iii) If the functions <p,k are (not necessarily uniformly) bounded on S, then 

max li^Ct!, xj\ ^ 2{ sup l ^ f o , x^l +1} (i, k = 0,1, ...). 

R e m a r k 3. If the (pik are bounded, in particular, step functions on S, then it 
suffices to require that the functions q>ik are orthonormal only in each block A/ r_1< 
< / s ¥ , and (r, j = l , 2, ...), but not altogether. 

R e m a r k 4. If in each block and the cpA can be 
represented in a product form, i.e. 

(4.2) <pik(Xl, x,) = (xd<pi2-s) (x2) 

where both {<p?' r\xj: M r _ x < i ^ M r ) and {(pf's)(x2): N ^ ^ k ^ N , } are bounded 
orthonormal functions on I (r, s— 1, 2, ...), then the resulting Pik can also be taken in 
the product form 
(4.3) Pik(xlf x2) = P i 1 - ' ) (xJPj?^ (x2) 

in each block M r _ 1 < i ^ M r and N ^ ^ k ^ N , , where both {P f
( 1 , r )(^: 

^M,} and {Pf ,s)(x2): are orthonormal polynomials on I (r,s= 
= 1,2,.. .). 

The above approximation theorem enables us to strengthen Theorems A', B', 
and C' in the same sense as it was done by LEINDLER [3, Theorems A and G] in the case 
of single ONS. Namely, if there exists a double ONS for which such and such a series 
or sequence diverges a.e., then there exists a double ONSP which exhibits this diver-
gence phenomenon. 

Theorem 2. In each of Theorems A', B' and C' the double ONS {(pik(xi,x2)} can 
be replaced by a double ONSP {P t t(*i, x2)} of the form (4.3). 

5. Immediate consequences of Leindler's results. Here we cite the main lemma 
of LEINDLER [3, Lemma 3] in the form of the following 

Theorem G. Let {er: r = l , 2, ...} be a sequence of positive numbers, 
{Mr: r= 1,2, . . .} a strictly increasing sequence of nonnegative integers, and 
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{(pi (xj: /=0, 1,...} a system of boundedfunctions such that the (p
{
 are orthonormal on 

I in each block ( r = l , 2 , . . . ; A f 0 = - 1 ) . Then there exist an ONSP 
{P,(xi): / = 0 , 1, ...} on I and a sequence {E

r
: r= 1, 2, ...} of measurable subsets of I 

such that the following properties are satisfied: 

(i) \E
r
\^e

r
 (r—1,2,...; here | • | means the linear Lebesgue measure); 

(ii) For every x
1
£l\E

r
 and for every M

r
_
1
<i^M

r
, 

\<p,(?cd--(-ly^^i^i)! S i , (r = 1,2, . . . ) , 

where j
r
(xequals 0 or 1 depending on r andx

x
, but not on i; 

(Hi) max|J»,(*,)| s 2{sup |<z>;(*i)l + 1 } (i = 0 ,1 , . . . ) . 

Assume we have two sequences {e®: r = 1 ,2 , . . . } and {e<2): J = 1 , 2, ...} of 
positive numbers, two strictly increasing sequences {Mr: r= 1 ,2 , . . .} and 
{N

s
: s=l, 2, ...} of nonnegative integers, and two systems { ^ ( x j : / = 0 , 1, ...} 

and {(pf\x
2
): k=0,1, ...} of bounded functions on I with bounds B (p and 

respectively, such that the (pf^ are orthonormal on I in each block 
(/•=1,2, ...; M0=— 1) and the <p£2) are orthonormal on / in each block iV s_i< 
cArSiV, ( J = 1 , 2 , . . . ; N

0
= — 1). Applying Theorem G separately to both cases 

yields two ONSP { P ^ f o ) : /=0 , 1, ...} and {Pf'(x2): k=0, 1, ...}, two sequences 
{/¿r

(1): r = l , 2, ...} and {£j2): s= 1, 2, ...} of measurable subsets of / s o that proper-
ties (i)—(iii) are satisfied, respectively. 

It is not hard to verify that the product ONSP given by 

x
2
) = PVixJPPixz) (i, k = 0, 1, ...) 

provides an approximation to the product ONS {i>№(x1, x2)=(pj
i )

(x
1
)(pf\x

2
): 

i,k=0, 1, ...} with the following properties: 
(T) Setting E

rs
=(E^XI)U(lXE^), 

(5.1) ( r , s = 1 ,2 , . . . ) ; 

(ii) For every (x l5 x2)£S\Ers, and for every M r _ 1 < i S A f r and 

(5.2) | ( X M
2 )

 (*.) • - ( - lyP'WPWpf»(Xj)Pi2) (xj\ S 

- (N# max ^ B i ^ + s ^ a™ (r, s = 1, 2, ...), 

where both jr
(1)(^i) and j®\x

2
) equal 0 or 1; 

(iii) max I P p ' i x O P r i x ^ s 

S 4{sup (Xj)| +1} {sup \<pfp(Xa)| + 1 } (i, fc = 0,1, ...). 
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Relation (5.2) immediately follows via the identity 
(pWfpW-^ !),<«>+7"»pU)p(2) = ç,(2)|yi)_(_ 1)/"p(l)] + ç,(l)[ç)(2)_(_ iy<»/X*>] _ 

The main trouble is that the right-hand sides in (5.1) and (5.2) are of 
O {e^+fi®} and thus do not tend to 0 as max (r, In spite of this disadvan-
tage, the approximation result just obtained is enough to state, for instance, that the 
double ONS can be replaced by double ONSP in the divergence theorems showing the 
exactness of Theorems D, E, and F. This is due to the fact that in these cases r and s 
can be chosen so as to depend on a single parameter /, say: r = r , and s=st, while 
both rt—00 and s ^ c o as /-*-

However, we can proceed another way. Starting with the strengthened versions 
of [3, Theorems D and E], the following three theorems can be deduced simply by 
forming the product system of two appropriate single ONSP as well as the product 
system {aik=cfpc^: i, k=0, 1, ...} of the corresponding single sequences {a^} 
and {Û£2)} of coefficients. 

T h e o r e m s D'. If (g(w): w=0,1, ...} is a nondecreasing sequence of positive 
numbers for which 
(5.3) Q(n) = o{log (n+2)} as 

then there exist a double ONSP {Pik(x1 ,x2)=P[i:>(xJP^(x2): i, k=0,1, ...} on S 
and a double sequence {aik} of coefficients such that condition (1.2) is satisfied and 

(5.4) lim sup I S ^ f e , X^)\/Q(m) e (") = 00 a.e. as min (m, m) 
where 

m n 
S M N F A , X

2
) = 2 2 <*ikPik(X1, X

2
) (m, n = 0,1, ...). 

i=0k=0 

Using a double ONS , x2)=(pf\x1)(pf\x2)} in the counterexample,, 
this theorem was proved in [11, Theorem 2]. 

T h e o r e m E'. If {g(/j): n=0 , 1, ...} and {r(m): m=0, 1,...} are two non-
decreasing sequences of positive numbers, Q satisfying (5.3) and r satisfying 

(5.5) T (m) = o {log log (m+4)} as m 

then there exist a double ONSP {/^(xj , xJ^P^Xx^P^Xxz)} on S and a double 
sequence {att} of coefficients such that (1.2) is satisfied and for every a > 0 

lim sup \Zm„ (x1, x^l/z (m) q (m) = °° a.e. as min (m, n) 
where 

1, *2> = (MAI) 2 2 AÏT-iSidx!, X2) (m, n = 0,1,...). 
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Theorem F'. If [x(m)} is a nondecreasing sequence of positive numbers satisfy-
ing (5.5), then there exist a double ONSP {P^x^ x2)=PIi1)(x1)Pi2)(x2)} and a double 
sequence {att} of coefficients such that (1.2) is satisfied and for every a > 0 and /?>0 

{5.6) lim sup x2)\/x(m)x(n) = <=o a.e. as min (m, ri) 
where 

*2) = MUT) 2 2 X,) (m, n = 0,l,...). 1=0 (¡=0 

Using double ONS { p ^ f o , x 2 ) = y ^ f a ) ( p <
k \ x 2 ) } in the counterexamples, 

Theorems E' and F ' were included in [8, Section 5]. 

Remark 5. Examining the structure of the counterexamples in Theorems D ' 
and F', the following slightly sharper result can be concluded: Estimates (5.4) and 
(5.6) remain true if g(m)g(«) and x(m)x(n) in the denominators are replaced by 
e2(min (m, n)) and x2(min (m, n)), respectively, provided 

6(2n) S Cg(n) (n = 0, 1, ...) and x(m2) S Cx(m) (m = 0, 1, ...), 

where C is a positive constant. 

Remark 6. A couple of other divergence theorems can be strengthened by insert-
ing double ONSP in the above way. For example, the corresponding two-dimensio-
nal versions of [3, Theorems B, C, and F | hold also true. 

6. Proof of Theorem 1. It relies on the basic ideas of MENSOV [4] and LEINDLER 
[3]. Here we reformulate four lemmas of their papers for the two-dimensional case. 
These lemmas were stated and proved in the one-dimensional case. However, the 
proofs of the two-dimensional reformulations closely follow the original proofs. 
Where is needed, we indicate the necessary modifications. 

Lemma 1. Let { f ( x x , x2): l^i^N} be continuous functions, while 
{gj(x1, x2): I s j ' s W } step functions on S and let e^O. Then there exist functions 
{Gy(xls x2): 1 ^j^N'} and a measurable subset E of S with the following properties: 

(a) The functions Gj are continuous on S; 
(b) 
(c) For every (x l5 x2)dS\E and for every l^j^N', 

Gj(xls x2) = ( - l y t ' W g / X i , x2) 

where j(x1,x2) equals 0 or 1 depending on (xl5 x2) but not on j; 

(d) max |GJ(X15 x^l S max k ^ f o , x2)| ( l s j s N'); 
(*I.*T)€S J C*I.*S)€S 

1 1 
(e) | / / f (*i,Xa)Gj(x,, xjdXldx2\^e (1 S i == N, 1 S j N% 

o o 
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This auxiliary result is the restatement of [4, Lemma 2, pp. 30—32] with a simi-
lar proof. The only thing to explain is that if g is a step function on S, then for every 
£>0 there exists a continuous function G on S such that 

(6.1) | { fo , Xa): G Ox, Xa) ^ g(x1, Xa)>| S e 
and 
(6.2) max |G(x l5 xj\ == max |g(x l t x2)\. 

(Xj.XsKS (xl,xi)€S 

This is clear if g (xx, x2)=gm (xjg™ (x2) even with some G (xx, x2)=G(1) (x^G^ (x2). 
In the general case, it is enough to consider the characteristic function g(x l 5 x2)= 

= X r ( X I > X2) of a rectangle R inside S given by R=(a1, a2> X (fix, /?2>, where <al5 a2) 
denotes one of the intervals (a 1 ,a2) , [al5 a2), (a l5 a2], [a ls a j and </?i/?2) has a 
similar meaning. Setting 

8 = min {e/4, («,-«0/2, 032-ft)/2} 

we define G(x l5 x2) to be G 0 ^ ) G(2H*2) where 

1 for ax+5 S jq ^ a2 —<5, 
G(1)(x!) = 0 for 0 S Xi ^ ax and a2 X l 1, 

linear for < < ax+8 and a2—£> < xx < a2 

in such a way that G(1) is continuous on I; and G(2) is defined in an analogous manner. 
It is easy to check that this G meets the conditions (6.1) and (6.2) . 

Remark 7. If N'=N^N2 and the functions ft and g} are given in the forms 

f,(x1, *2) =/i(1)(*i)/i(2)(*2) (1 ^ i ^ N) 
and 

gjiixi, x2) = gfHxdg^ixJ ( l s j g N{, l s / s Ni), 

then the functions Gj can be also represented in the form 

(6.3) G j ^ , x2) = Gj" (Xl) G/2) (x2) (1 —j = Ni, 1 = 1^ N£). 

In order to see this, apply the original Mensov's lemma [4, Lemma 2] separately 
to the following two systems {/,(1)(xi), ^ ' (x, . ) : l ^ i ^ N , lSy'SiV^} and 
{f?\x2), g?\x2): l^i^N, l=s/=§JVa'} with £ ( 1 W 2 ) =e /2 instead of £>0. As a 
result, we obtain two systems {Gf\Xl): l ^ N ; } and {G?\x2)\ l^l^N'J with 
corresponding sets Em and is(2), and corresponding exponents c2) and y'(2)(x2). 
Letting (6.3), 

£ = (£'1»X./)U(/X£ ( a )), and j(xl, x j = j ^ W + j ^ W , 

properties (a), (b), (c), and (e) are obviously satisfied (in case (e) provided e ^ 1). 
To verify the fulfillment of (d), we have to take into account that the extreme values of 
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the step functions g^'and gf> are not altered during the linearization process. Thus, 
for every (x l5 x2)6 S there exists a pair (xj, x£)6 S such that 

IG^OcOl s |Gj»(xOI = |*j»(*D| 
and 

|G,(2)(*2)I ^ \Gi2Hxd\ = |gP(x0|. 

Consequently, (d) is also satisfied. 

Lemma 2. Let 0 < r < r ' , {77^^, jca): l S / S r } and {Qk(Xl, x2): r<k^r'} 
be nonidentically vanishing polynomials in xx and x2, 

v = max №(*i> *«)l., max ie*(*i> *i)l}. 

I X i i 

j< = mTn{J J lPi(x1,x^)dx1dx2, f f Qk(x1,x2)dx1dx2}, 
0 0 0 0 

1 1 
a = max{f f Iliix^ x^Qk(xlt x2) dx^ dx2, f f Qk(x^ x^Q^, x^ dxx dx2}, 

0 0 

y = max {4r's v, 1/x}, and A = 

If the polynomials {Il^Xi, x2): lS/Sr} are orthogonal on Sand < T A < 1 , then there 
exist polynomials {nk(xlt x2): in xx and x2 such that the following proper-
ties are satisfied: 

(a) The polynomials {77i(x1,x2): l S / S r ' } are orthogonal on S; 

(b) max \Qk(x1} x^-n^x^ x^l ^ ok (r < k S r'). 

The proof is essentially a repetition of the proof of the corresponding result of 
MENSOV [ 4 , Lemma 3 , pp. 3 2 — 3 6 ] . 

R e m a r k 8. If r'^r'^ and the polynomials J7f and Qk are given in the forms 

nt(xlt X2) = (xJIlW (X2) (1 S i S r ) 
and 

Qu(x1, X2) = QP (Xl) g / » ( x j ( r < / c s r i , r r'2), 

then the polynomials n k can also be represented in the form 

(6.4) n k l ( X l , x,) = I i p ( x j n p ( x j ( r < f c S r i , r 
Indeed, apply the original Mensov's lemma [4, Lemma 3] separately to the systems 

W f o ) , fif}(*i): l^ter^teiQ and {n™(x2), Qf\x2): with 
the corresponding notations v(1), x(1), y(1), A(1) and v(2), ..., A(2). If 
and u(2)A(2)<l, then we can obtain polynomials IJ^3 for r < k ^ r [ and 77j2) for 
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such that the systems { i l f f e ) : and {nf\x2): l s / s r ^ } are 
orthonormal on I, respectively, and 

(r < fc ^ ri) 
and 

Now letting (6.4), the fulfillment of (a) is clear, while a slightly modified ver-
sion of (b) follows via the elementary estimate 

max | Q P C x J Q P C x J - i i P M n l o C x J l * 

=5 v<2> max \Qp ( x j - l i p (xJI+v(1> max [&(2) (xj-ll™ (x2)\ S 

V ( 2 ) < T ( 1 ) A ( 1 ) + V ( 1 ) <7 ( 2 ) A ( 2 > . 

This form is still enough during the proof of Lemma 4 below (cf. [3, p. 26, formula 
(3.4)]). 

Lemma 3. Let {?>a(xi, x2): i, k=0, 1, ...} be a double ONS on S, 
{£„: r, s=l, 2, ...} a double sequence of positive numbers, {Mr:r= 1,2, ...} and 
{Ns: s= 1,2, ...} two strictly increasing sequences of nonnegative integers. Then there 
exist a double system x2): i, k=0,1,...} of bounded functions on S and a 
double sequence {Ers: r,s= 1 ,2, . . .} of measurable subsets of S such that the following 
properties are satisfied: 

(a) The functions \J/ik are orthonormal on S in each block and 
N.-^teN. (r, j=l,2,...; M0=N0=-l); 

(P) \EJ^srs ( r , j = l , 2 , . . . ) ; 

(y) For every (x l5 x2)£ S\Ers, and for every Mr_1^i^Mr and 

I<Pik(Xi, xj-tikix,., s= fi„ (r, s = 1,2,...). 
This lemma is a straightforward. extension of a lemma due to LEINDLER [3, 

Lemma 4, pp. 33—36]. The original proof works in the two-dimensional setting, since 
the blocks {(pik(Xl, x2): Mr_1^i^Mr and and the corresponding ers 

(r, s~ 1,2,. . .) can be treated in an arrangement similar to the Cantor diagonal pro-
cess, i.e. in the following succession: e u , s12, e21, s^, s22, e14, ... and the blocks are 
taken accordingly. 

Lemma 4. Let (e„: r,s=1,2,...} be a double sequence of positive numbers, 
{M r : r = l , 2, ...} and {Ns: J=1 , 2, ...} two strictly increasing sequences of nonne-
gative integers, and {t/iit(xl5 x2): i, k=0, 1, ...} a double system of bounded functions 
such that the \¡/a are orthonormal on S in each block and 
(r, s= l j 2 , . . . ; M0=N0= -1). Then there exist a double ONSP {¿V*!» x2): i, k= 
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= 0 , 1 , . . . } on S and a double sequence {Ers: r, s= 1 ,2 , . . .} of measurable subsets of 
S with the following properties: 

(ot) |£„|S£„ (r,s= 1,2, ...); 

(/?) For every (x l5 x2)£S\E„, and for every Mr_x<i^MT and J V j . ^ i ^ J V , , 

x j - i - iy-<'"»»>Ptt(xi, *2)l S e„ (r, s = 1 ,2 , . . . ) 

where x2) equals 0 or 1; 

(?) , max I P t t f o , * ^ s 2 { sup IM*i ,*2) l + l} (*, fc = 0 ,1 , . . . ) . 

R e m a r k 9. If in each block M r _ 1 < i ^ M r and N ^ ^ k ^ N , the functions 
lpit can be represented in a product form analogous to (4.2): 

where both {ipf-r)(x,): M^^i^M,} and tyf's)(x2): N s ^ k ^ N s ) are 
bounded orthonormal functions on / (r, i = l , 2, . . .) , then the Pik can be 
also represented in the product form (4.3) where both 

and 

are orthonormal polynomials on / (r, s= 1 ,2, . . . ) . 
The proof of Lemma 4 can be modelled on that of Leindler's basic lemma 

[3, Lemma 3, pp. 26—33]. We only note that both the Egorov theorem and the Wei-
erstrass approximation theorem are valid in two-dimensional setting, as well. 

The former one states that if tK*i> x2) is a bounded measurable function on S, 
then for every e > 0 there exist a measurable step function <p(xlt x2) on S and a 
measurable subset E of S such that 

(1) \E\T~T; 

(2) № (*!, Xjj)-<p (*! for (*x, S\E; 
(3) , max I<p(jca, *a)| S sup l ^ f o , x^l ; (x^xJZS (xltX|)€S 
(4) If Xj) = i/'<1)(x1)i/i(2)(x2), then <p can be chosen in the form of 

(p(x1, Xa) = <p(1)(*i)9>(a)(Xj|). 

Concerning the two-dimensional version of the Weierstrass theorem, we refer 
to [2, pp. 89—90]. Choosing T= S and 91 to be the set of the polynomials P(xlt x2) 
in xx and x2 , properties (i)—(iv) in the cited paper are obviously satisfied, thereby 
ensuring the uniform approximation of continuous functions on S by the elements 
of 21. 

Finally, the validity of Remark 9 can be verified by means of Remarks 7 and 8. 
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7. Proof of Theorem 2. We will present only the proof of the sharpening of 
Theorem A'. The sharpenings of Theorem B' and C' can be proved similarly. 

So, assume the fulfillment of (3.1) and (3.2). In the proof of [10, Theorem 4] 
a double ONS {<PTT (JCx , x2)- i, k=0,l,...} of step functions on S and a double sequen-
ce {H„: r, s= —1,0,1, ...} of measurable subsets of S were constructed with the 
following properties: 

(i) |//] = 1 where / f= l im sup Hrs as max (r, s)->-°°; 
(ii) For every , x2)€ 

(7.1) 
m n 

max max Z Z aikVikixt, xj s C^mM(r>s) (r ,s = - 1 , 0 , 1 , . . . ) 
S r - > < n S ! r 2*-1-<nS2* l / = 2 r - , + l fc=2'-,+l 

where C is a positive constant and {tjr: r= — 1, 0,1, ...} is an increasing sequence of 
positive numbers tending to oo as 

(iii) In each block 2 r - 1 < / s 2 r and 2 s - 1 < & s 2 s the functions (p^ can be repre-
sented in the product form (4.2). 

Given any 5>0, on the basis of Theorem 1 we can construct a double ONSP 
{Ptkixi, x2)} and a double sequence {fl„} of measurable subsets of S such that 

(i) |H| = 1 where J7=lim sup Hrs as max (r, .?)—«=; 
(ii) For every (x l 5x2)€ff„ 

(7.2) 
m n 

max max Z Z, a<*A*(*i,*2) ^ (C-5)f/max(r,s) (r,s = -1 ,0 ,1 , . . . ) 

(cf. [3, Theorem 2, p. 21 and its proof on pp. 38—39]); 
(Hi) In each block 2 r ~ 1 <i^2 r and 2S"1<&;§2S the polynomials can be 

represented in the product form (4.3). 
Relation (7.2) implies the a.e. divergence of the double series 

e o 0 0 

Z Z a*Pik(x!, Xg) 
i = 0 k=0 

in the same way as (7.1) implies the a. e. divergence of the double series (1.1). 
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