Remarks on the strong summability of numerical and orthogonal series by some methods of Abel type

L. REMPULSKA

In this paper we shall prove that Leindler's theorems on the strong summability of orthogonal series, given in [2], are true for the methods $(A; B_n)$ of Abel type.

1. Let $C^{\infty}(0, 1)$ be the class of real functions defined in (0, 1) and having derivatives of all orders in (0, 1). Denote by $B_n = \{b_k(r; n)\}_{k=0}^n$ a sequence of functions of the class $C^{\infty}(0, 1)$ and such that

(1)
$$b_0(r; n) \equiv 1; \left(\frac{d^p}{dr^p} b_k(r; n)\right)_{r=1} = \begin{cases} 0 & \text{if } p \neq k, \\ (-1)^p & \text{if } p = k, \end{cases}$$

for k, p=0, 1, ..., n. As in [3] we write

$$R_k(r; B_n) = \sum_{p=0}^n b_p(r; n) \frac{d^p}{dr^p} r^k$$

and $\Delta R_k(r; B_n) = R_k(r; B_n) - R_{k+1}(r; B_n)$ for k=0, 1, ... and $r \in (0, 1)$. In [3] the following definition is given: A real numerical series

(2)
$$\sum_{k=0}^{\infty} u_k \qquad (S_k = u_0 + ... + u_k)$$

is summable to s by the method $(A; B_n)$ if the series $\sum_{k=0}^{\infty} r^k u_k$ is convergent in (0, 1) and if the function $L(B_n)$,

(3)
$$L(r; B_n) = \sum_{k=0}^{\infty} R_k(r; B_n) u_k \equiv \sum_{k=0}^{\infty} \Delta R_k(r; B_n) S_k$$

 $(r \in (0, 1))$ satisfies the condition $\lim_{r \to 1^-} L(r; B_n) = s$. The classical Abel method, i.e. $(A; B_0)$ method, will be denoted by (A). We shall write L(r) for $L(r; B_0)$.

Received May 22, 1984.

In [3] and [4] there were given fundamental properties of the methods $(A; B_n)$ of summability of numerical and orthogonal series, and some applications of those methods to the Dirichlet problem for some equations of Laplace type. In [3] and [4] it was proved that

Theorem A. Series (2) is summable to s by a method $(A; B_n)$ if and only if

$$\lim_{r\to 1^{-}} (1-r)^{p} \frac{d^{p}}{dr^{p}} L(r) = \begin{cases} s & \text{if } p=0, \\ 0 & \text{if } p=1, ..., n. \end{cases}$$

If the sequence B_n is defined as follows:

(4)
$$b_0(r; n) = 1, \quad b_n(r; n) = (r - r^2)^n / n!,$$

$$b_k(r; n) = b_k(r; n - 1) + \frac{r - r^2}{n} \left(b_{k-1}(r; n - 1) + \frac{d}{dr} b_k(r; n - 1) \right)$$

for k=1, ..., n-1 and n=0, 1, ..., then

$$L(r; B_n) = (1-r)^{n+1} \sum_{k=0}^{\infty} {k+n \choose n} r^k S_k$$

for n=0, 1, ... and $r \in (0, 1)$ ([3], [4]).

Moreover in [3] it was proved that

(5)
$$\Delta R_{k}(r; B_{n}) = \sum_{p=0}^{n} W_{p}(r; B_{n}) \frac{d^{p}}{dr^{p}} r^{k}$$

for $r \in (0, 1)$, k = 0, 1, ... and $n \ge 0$, if $W_p(B_n)$ are some functions of the class $C^{\infty}(0, 1)$ with

(6)
$$\left(\frac{d^q}{dr^q}W_p(r; B_n)\right)_{r=1} = 0 \text{ for } p, q = 0, 1, ..., n.$$

From (5)—(6) and from the Taylor formula for $W_p(B_n)$ we obtain

Lemma 1. Let $r_0 \in (0, 1)$. Then, for every sequence B_n , there exist positive constants $M_1(r_0)$ and $M_2(r_0)$ depending on r_0 such that

$$M_1(r_0)(1-r)^{n+1}(k+1)^n r^k \le |\Delta R_k(r; B_n)| \le M_2(r_0)(1-r)^{n+1}(k+1)^n r^k$$
 for $k=0,1,\ldots$ and $r \in \langle r_0,1\rangle$.

2. We shall say that series (2) is strongly $(A; B_n)$ -summable to s with exponent q>0 if the function $H(B_n, q)$,

(7)
$$H(r; B_n, q) = \sum_{k=0}^{\infty} |\Delta R_k(r; B_n)| |S_k - s|^q$$

 $(r \in (0, 1))$ satisfies the condition

(8)
$$\lim_{r \to 1^{-}} H(r; B_n, q) = 0.$$

By (7), (8) and Lemma 1, we obtain

Lemma 2. Series (2) is strongly $(A; B_n)$ -summable to s with exponent q>0 if and only if

(9)
$$\lim_{r\to 1^-} (1-r)^{n+1} \sum_{k=0}^{\infty} (k+1)^n r^k |S_k-s|^q = 0.$$

Lemma 2 implies

Corollary 1. For a fixed n, the methods $(A; B_n)$, for the strong summability of numerical series (2) are equivalent, i. e. if B_n and B_n^* are two sequences having properties (1), then $\lim_{n\to\infty} H(r; B_n, q)=0$ if and only if $\lim_{n\to\infty} H(r; B_n^*, q)=0$.

Corollary 2. If series (2) is strongly (A; B_n)-summable to s with exponent $q_1>0$, then it is strongly (A; B_n)-summable to s with every exponent $0 < q < q_1$.

The next statement is obvious:

Lemma 3. If series (2) is strongly (C, 1)-summable to s with exponent q>0, i.e.

$$\lim_{n\to\infty} (1/(n+1)) \sum_{k=0}^{n} |S_k - s|^q = 0,$$

then

$$\lim_{n\to\infty} \left(1/(n+1)^p\right) \sum_{k=0}^n (k+1)^{p-1} |S_k - s|^q = 0$$

for every p>1.

Applying Lemma 3, we shall prove

Lemma 4. If series (2) is strongly (C, 1)-summable to s with exponent q>0, then condition (9) is satisfied for n=0, 1, ...

Proof. If (2) is strongly (C, 1)-summable with exponent q > 0, then $|S_k - s|^q = o(k)$. Hence the series $\sum_{k=0}^{\infty} (k+1)^n r^k |S_k - s|^q$ is convergent in (0, 1) and for $n = 0, 1, \ldots$ Applying the Abel transformation, we get

$$(1-r)^{n+1} \sum_{k=0}^{\infty} (k+1)^n r^k |S_k - s|^q = (1-r)^{n+2} \sum_{k=0}^{\infty} (k+1)^{n+1} r^k l_k$$

for $r \in (0, 1)$ and n = 0, 1, ..., where

$$l_k = (1/(k+1)^{n+1}) \sum_{p=0}^k (p+1)^n |S_p - s|^q.$$

By Lemma 3 and by Toeplitz's theorem ([1], p. 14), we obtain (9) for $n=0, 1, \ldots$. Thus the proof is complete.

Lemma 5. Suppose that for series (2) condition (9) holds with n=p+1 $(p \in N)$ and with some exponent q>0. Then (9) also holds with n=p and with exponent q.

Proof. Let

$$U_n(r; q) = (1-r)^{n+1} \sum_{k=0}^{\infty} (k+1)^n r^k |S_k - s|^q$$

for $r \in (0, 1)$. Hence

$$rU_p(r; q) = (1-r)^{p+1} \int_0^r (1-t)^{-p-2} U_{p+1}(t; q) dt$$

for $r \in (0, 1)$. But,

$$\int_{0}^{r} (1-t)^{-p-2} U_{p+1}(t; q) dt = o((1-r)^{-p-1}) \text{ (as } r \to 1-)$$

if $\lim_{r\to 1^-} U_{p+1}(r;q) = 0$. This proves our statement.

Lemmas 2 and 5 prove

Theorem 1. For a fixed integer $n \ge 0$, the following conditions are equivalent for every numerical series (2), for every q > 0 and every sequence B_n : (here $H(r; q) \equiv H(r; B_0, q)$).

(a)
$$\lim_{r\to 1^-} H(r; B_n, q) = 0$$
,

(b)
$$\lim_{r\to 1^-} (1-r)^{n+1} \sum_{k=0}^{\infty} (k+1)^n r^k |S_k-s|^q = 0,$$

(c)
$$\lim_{r\to 1^-} (1-r)^p \frac{d^p}{dr^p} H(r; q) = 0$$
 for $m = 0, 1, ..., n$.

3. Let $\{\varphi_k(x)\}_{k=0}^{\infty}$ be a real and orthonormal system on the interval (0, 1). We shall consider the strong summability of orthogonal series

(10)
$$\sum_{k=0}^{\infty} c_k \varphi_k(x) \quad \text{with} \quad \sum_{k=0}^{\infty} c_k^2 < \infty$$

by the methods $(A; B_n)$. The strong summability of (10) by the methods $(A; B_n)$, defined by the sequence (4), was examined by L. Leindler [2].

Let $S_k(x) = \sum_{p=0}^{k} c_p \varphi_p(x)$ and let f be the function given by the Riesz—Fischer theorem, having expansion (10). By $L(r, x; B_n)$ and $H(r, x; B_n, q)$ with s=f(x) $(r \in (0, 1), x \in (0, 1))$ we denote the functions as in (3) and (7) but for series (10). As usual ([1]) we say that two methods of summability are equivalent in L^2 if the summability of series (10) in a set E of positive measure by one of those methods implies the summability of (10) to the same sum almost everywhere in E by the other method.

In [3] we proved the following

Theorem B. The methods $(A; B_n)$, n=0, 1, ..., and the Cesàro (C, 1) method of summability for orthogonal series (10) are equivalent in L^2 .

In [2] L. LEINDLER proved

Theorem C. If orthogonal series (10) is Abel-summable to f(x) in (0, 1) almost everywhere, then

$$\lim_{r\to 1^{-}} (1-r)^{n+1} \sum_{k=0}^{\infty} {k+n \choose n} r^{k} |S_{k}(x) - f(x)|^{q} = 0$$

for any $n \in \mathbb{N}$ and q > 0 in (0, 1) almost everywhere.

Applying Theorem C and Corollary 1, or arguing as in [2], we obtain

Theorem 2. If orthogonal series (10) is (A)-summable to f(x) in $\langle 0,1 \rangle$ almost everywhere, then it is strongly (A; B_n)-summable to f(x) in $\langle 0,1 \rangle$ almost everywhere with every exponent q>0 and every sequence B_n (n=0,1,...).

Applying Lemma 1 and arguing as in the proof of Theorem 5 given in [2], we can prove

Theorem 3. Suppose that α and q are two positive numbers and B_n $(n \ge 0)$ is a sequence having properties (1). If the coefficients of series (10) satisfy the condition

$$\sum_{k=1}^{\infty} c_k^2 k^{2\alpha} < \infty,$$

then

$$H(r, x; B_n, q) = o_x((1-r)^{\alpha})$$

if $q\alpha < 1$; and

$$H(r, x; B_n, q) = \begin{cases} o_x((1-r)^{\alpha}) & \text{if } n+1 > q\alpha, \\ o_x((1-r)^{\alpha}|\log(1-r)|^{1/q}) & \text{if } n+1 = q\alpha, \\ O_x((1-r)^{(n+1)/q}) & \text{if } n+1 < q\alpha \end{cases}$$

in the case $q\alpha \ge 1$ but $0 < q \le 2$, almost everywhere in (0, 1) as $r \to 1-$.

References

- [1] S. KACZMARZ and H. STEINHAUS, Theory of orthogonal series, Gosudarstv. Izdat. Fiz.-Mat. Lit. (Moscow, 1958). (Russian)
- [2] L. LEINDLER, On the strong and very strong summability and approximation of orthogonal series by generalized Abel method, Studia Sci. Math. Hungar., 16 (1981), 35—43.
- [3] L. REMPULSKA, On some summability methods of the Abel type, Comment. Math. Prace Mat., in print.
- [4] L. Rempulska, Some properties and applications of summability methods of the Abel type, Funct. Approximatio Comment. Math., 14 (1983), 17—22.

TECHNICAL UNIVERSITY OF POZNAŇ INSTITUTE OF MATHEMATICS 3 A PIOTROWO STREET 60–965 POZNAŇ, POLAND