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Remarks on the strong summability of numerical 
and orthogonal series by some methods of Abel type 

L. REMPULSKA 

In this paper we shall prove that Leindler's theorems on the strong summability 
of orthogonal series, given in [2], are true for the methods (A; £„) of Abel type. 

1. Let C"(0 ,1 ) be the class of real functions defined in (0, 1) and having deriv-
atives of all orders in (0, 1). Denote by B„={bk(r; n)}k=0 a sequence of functions of 
the class C°°(0, 1) and such that 

(!) '
 P

p
tl: 

for k,p—0, 1, ..., n. As in [3] we write 

Rk(r\Bn)= £ bp{r-, 

and ARk(r; B„)=Rk(r; B„)-Rk+1(r; B„) for k=0, 1, ... and r£(0, 1). In [3] the 
following definition is given: A real numerical series 

(2) £ uk (Sk = u0+... + uk) t=o 

is summable to s by the method (A; Bn) if the series 2 is convergent in (0, 1) 
fc=0 

and if the function L(Bn), 

(3) £ ( r ; B„) = 2 Rk(r\ B„)uk = 2 ARk(r\ B„)Sk 
k = 0 fc=0 

(rC(0,1)) satisfies the condition ^lim L(r;Bn)=s. The classical Abel method, i.e. 
(A; B0) method, will be denoted by (A). We shall write L(r) for L(r; B0). 
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In [3] and [4] there were given fundamental properties of the methods (A; B„) of 
summability of numerical and orthogonal series, and some applications of those 
methods to the Dirichlet problem for some equations of Laplace type. In [3] and [4] 
it was proved that 

Theo rem A. Series (2) is summable to s by a method (A; B„) if and only if 

l i m ( l - r y * L ( r ) s s \ ' * ? = <>> r-i- drp 10 if p = l,...,n. 

If the sequence B„ is defined as follows : 

(4) b0(r; n) = 1, b„(r; n) = (r-r2)"/«!, 

bk(r\ n) = bk(r; n-l)+-^bk(r;n-l)} 

for k=l, ..., n — 1 and «=0 , 1, ..., then 

L( r ;B n ) = ( l - r r ^ t Z ( k l " ) r * S k 

for 7J=0, 1, ... and r£(0, 1) ([3], [4]). 
Moreover in [3] it was proved that 

(5) ARk(r- BB) = ZWp(r; B„) r* 

for rÇ(0, 1), k=0, 1, ... and n è 0 , if Wp(B„) are some functions of the class 
0 ( 0 , 1 > with 

(6) Wp(r; BS] ^ = 0 for p, q = 0, 1, ..., n. 

From (5)—(6) and from the Taylor formula for Wp(Bn) we obtain 

Lemma 1. Let r0€(0, 1). Then, for every sequence B„, there exist positive con-
stants Mi(r0) and M2(r0) depending on r0 such that 

M1(r0)(l-r)"+1(fc+l)nr* S \ARk(r;Bn)\ M 2 ( r 0 ) ( l - r )"+ 1 (k+ 1 ) V 

for k=0, 1, ... and rÇ(r0, 1). 

2. We shall say that series (2) is strongly (A; -8„)-summable to s with exponent 
0 if the function H(B„, q), 

(7) H(r-, B„, q) = J MJ?k(r; 2?„)|\Sk-s\* 
k=0 

(r€(0, 1)) satisfies the condition 

(8) rlim H(rx Bn, q) = 0. 



Strong summability of numerical and orthogonal series 393 

By (7), (8) and Lemma 1, we obtain 

Lemma 2. Series (2) is strongly (A; B„)-summable to s with exponent 0 if and 
only if 

(9) lim (1 - r ) B + 1 2 ( k + l y » * ! ^ - s|* = 0. i - *=o 
Lemma 2 implies 

C o r o l l a r y 1. Forafixedn, the methods (A; B„),for the strong summability of numer-
ical series (2) are equivalent, i. e. if B„ and B* are two sequences having properties (1), 
then rlim H{r\ B„, q)=0 if and only if \\im H(r; B*, q)=0. 

C o r o l l a r y 2. If series (2) is strongly (A; B„)-summable to s with exponent 0, 
then it is strongly (A; B„)-summable to s with every exponent 0<q<-ql. 

The next statement is obvious: 

Lemma 3. If series (2) is strongly (C, 1 )-summable to s with exponent q> 0, i.e. 

lim (l/(» + l ) ) l to-sl« = 0, 
then 

lim ( l / (n+l)p) 2 { k + i y - l \ S k - s \ " = 0 
k=0 

for every p> 1. 

Applying Lemma 3, we shall prove 

Lemma 4. If series (2) is strongly (C, Y)-swnmable to s with exponent q> 0, then 
condition (9) is satisfied for n=0,1, ... . 

Proof . If (2) is strongly (C, l)-summable with exponent q>0, then |5fc—s|®= 

=o(k). Hence the series 2 (Ar+l),,rk|5r
it— i f is convergent in (0,1) and for n= 

k = o 
=0, 1, .... Applying the Abel transformation, we get 

( l - r ) n + 1 ¿ ( f c + l F ^ I S i t - s l « = ( l - r ) B + 2 ¿ ( k + l ) " + V / t k=0 k-0 
for r€(0,1) and n=0, 1, ..., where 

lk = (l/(fc+l)B+1) 
p=o 

By Lemma 3 and by Toeplitz's theorem ([1], p. 14), we obtain (9) for « = 0 , 1 , . . . . 
Thus the proof is complete. 
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Lemma 5. Suppose that for series (2) condition (9) holds with n=p+\ (p£N) 
and with some exponent q>0. Then (9) also holds with n=p and with exponent q. 

Proof . Let 

u.(r\ q) = ( i - r ) " + 1 ¿ ( f c + i y ^ i s i - s i « k=0 
for r€<0,1). Hence 

rUp(r; q) = ( 1 - r ^ 1 f\l-t)->-*Up+1(t', q)dt 
• . o 

for r6<0,1). But, 

f (l-t)7*-*Up+1(t; q)dt = oidl-r)-'-1) (as r -*- '1 —) 
o 

if lim Up+1(r; q)=0. This proves our statement. 

Lemmas 2 and 5 prove 

T h e o r e m 1. For a fixed integer « s 0, the following conditions are equivalent for 
every numerical series (2), for every q>0 and every sequence B„: (here H(r; q)= 
= H(r;B0,q)). 

(a) Bn,q) = 0, 

(b) lim ( l - r ) B + 1 2 (k+iyt*\Sk-s\> = 0, 
fc=0 

(c) limJl-ry-^Hir; q) = 0 for m = 0, 1, ..., n. 

3. Let {<P*(.K)}£°=o be a real and orthonormal system on the interval <0, 1). We 
shall consider the strong summability of orthogonal series 

(10) 2ckcpk(x) with 
k=0 k=0 

by the methods (A;B„). The strong summability of (10) by the methods (A; B„), 
defined by the sequence'(4), was examined by L . L E I N D L E R [ 2 ] . 

k 
Let Sk(x)= 2 cp<Pp(x) and let / b e the function given by the Riesz—Fischer 

p=o 
theorem, having expansion (10). By L(r, x; Bn) and H(r,x;B„,q) with s=f(x) 
(r€(0,1), x€(0,1)) we denote the functions as in (3) and (7) but for series (10). As 
usual ([1]) we say that two methods of summability are equivalent in L* if the summa-
bility of series (10) in a set E of positive measure by one of those methods implies the 
summability of (10) to the same sum almost everywhere in E by the other method. 
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In [3] we proved the following 

Theorem B. The methods (A; B„), n=0, 1, ..., and the Cesàro (C, 1) method 
of summability for orthogonal series (10) are equivalent in L,2. 

In [2] L . L E I N D L E R proved 

Theorem C. If orthogonal series (10) is Abel-summable to f ( x ) in (0, 1) almost 
everywhere, then 

lim (1 -r)n+i 2 Pt 1 r*|S*(*)-/(*)l4 = 0 ' - 1 - t=oV ' / 

for any nÇN and q>0 in(0, 1) almost everywhere. 

Applying Theorem C and Corollary 1, or arguing as in [2], we obtain 

Theorem 2. If orthogonal series (10) is (A)-summable to f (x) in (0,1) almost 
everywhere, then it is strongly (A; B^-summable to f ( x ) in {0, 1) almost everywhere 
with every exponent q>0 and every sequence B„(n=0, 1, ...)• 

Applying Lemma 1 and arguing as in the proof of Theorem 5 given in [2], we can 
prove 

Theorem 3. Suppose that a and q are two positive numbers and B„ («S0) is a 
sequence having properties (1). If the coefficients ofseries (10) satisfy the condition 

k=l 
then 

H(r,x-Bn,q) = ox((l~rY) 
if qa.< 1 ; and 

ox((l-r)*) if n+1 >qa, 
H(r,x; B„, q) = o x ( ( l - r )* | log( l - r ) |W) if n+1 = qa, 

Ox((l-r) (B+1)/«) if n+l<qa 

in the case qa^l but 0 < g s 2 , almost everywhere in <0, 1) as r->-l —. 
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