Behavior of the extended Cauchy representation of distributions

DRAGIŠA MITROVIĆ

1. Introduction. There is an interesting correspondence between the spaces $\mathcal{O}'_{\alpha} = \mathcal{O}'_{\alpha}(\mathbf{R})$ of distributions and the class of functions that are analytic in the complex plane C with a boundary on R, except for a set of points lying in $\mathbf{C} - \mathbf{R}$, and vanish at the point of infinity. In the present paper we make a study of this correspondence. As we shall see it depends essentially on the support of distributions, order relation of included functions, and their distributional boundary value in either half plane.

$$\Delta^{+} = \{z \in \mathbb{C}: \text{ Im } (z) > 0\}, \quad \Delta^{-} = \{z \in \mathbb{C}: \text{ Im } (z) < 0\}, \quad z = x + iy.$$

The problem under study is motivated by some facts from the theory of integrals of the Cauchy type. Namely, to every function $u: \mathbb{R} \to \mathbb{C}$ Hölder continuous with compact support equal K there corresponds the function

$$\hat{u}(z) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{u(t)}{t-z} dt, \quad z \in K.$$

If $v(z) \equiv \hat{u}(z)$, then: (1) v is an analytic function in $\mathbf{C} - K$; (2) v(z) has the boundary values $v^+(x)$ and $v^-(x)$ in \mathbf{C} ; (3) v(z) = O(1/|z|) as $|z| \to \infty$. Conversely, given a function v which satisfies the conditions (1)—(3), then it is the Cauchy integral of some u with supp u = K.

If T is a distribution, then the notation T_t is used to indicate that the testing functions on which T is defined have t as their variable. The pairing between a testing function space and its dual is denoted by $\langle T, \varphi \rangle$. The space of $C^{\infty} = C^{\infty}(\mathbf{R})$ functions having compact support is denoted by $\mathcal{D} = \mathcal{D}(\mathbf{R})$; its dual $\mathcal{D}' = \mathcal{D}'(\mathbf{R})$ is the space of Schwartz distributions on **R**. As regards the general properties of the spaces \mathcal{O}_{α} and \mathcal{O}'_{α} we refer to [1].

2. Definitions. In order to describe the correspondence in question in a condensed form we introduce some classes of functions.

Received April 10, 1984.

Let K be a closed subset of **R** and let $\{a_1, a_2, ..., a_n\}$ $(n \in N)$ be a finite set of distinct complex points lying in $\Delta^+ U \Delta^-$. A function f is said to belong to the class $\{M\}$ if

(m.1) f is analytic in the domain $C - (K \cup \{a_1, a_2, ..., a_n\})$, a_k being a pole of order α_k (k=1, 2, ..., n);

(m.2) f(z) converges (weakly) in either half plane to a \mathcal{D}' -boundary value;

(m.3)
$$f(z) = O(1/|z|) \text{ as } |z| \to \infty.$$

We use the notation $\{M_c\}$ for the class of functions in $\{M\}$ that satisfy (m.1) when K is a compact set. Also, a function f is said to belong to the class $\{M_0\}$ if it satisfies the conditions (m.1), (m.2) and the condition

(m.4)
$$f(\infty) \equiv \lim_{z \to \infty} f(z) = 0.$$

Thus we have the inclusions $\{M_c\} \subset \{M\} \subset \{M_0\}$. Further, the class of functions that satisfy the conditions (m.1)—(m.3) when the set of poles is empty is denoted by $\{A\}$. The class $\{A_c\}$ is the subclass of $\{A\}$ relative to compact set K in (m.1). If here the condition (m.3) is replaced by (m.4) we have the class $\{A_0\}$.

Remark. The arbitrary sets involved in (m.1) are not necessarily the same for all functions in a class defined above.

Now denote by R(z) a meromorphic function, vanishing at the point $z = \infty$, with prescribed poles $a_1, a_2, ..., a_n$ (in $\Delta^+ \cup \Delta^-$) and their principal parts. Let $T \in \mathcal{O}'_a$ ($\alpha \ge -1$). The function \hat{F} from C-(supp $T \cup \{a_1, a_2, ..., a_n\}$) to C defined by

(1)
$$\hat{F}(z) = (1/2\pi i) \langle T_t, 1/(t-z) \rangle + R(z)$$

will be referred to as the extended Cauchy representation of T.

Let us observe that every function f in $\{A_0\}$ ($\{M_0\}$) is sectionally analytic in **C** with a boundary on **R** (except for the poles), that is, it can be decomposed into two independent functions $f^+(z)$ and $f^-(z)$ such that $f(z)=f^+(z)$ for $z \in \Delta^+$, $f(z)==f^-(z)$ for $z \in \Delta^-$ (the half planes being punctured at the points of poles).

3. Main result. We need the following

Lemma [5]. If $f^+(z)$ is a function analytic in Δ^+ with $f^+(z)=O(1/|z|)$ as $|z| \to \infty$ in Δ^+ , and if $f^+(x+i\varepsilon)$ converges to \mathcal{D}' -boundary value f_x^+ as $\varepsilon \to +0$, then: 1) f_x^+ belongs to \mathcal{O}'_{α} for all $\alpha < 0$; 2) $f^+(x+i\varepsilon)$ converges to \mathcal{O}'_{α} -boundary value f_x^+ as $\varepsilon \to$ $\rightarrow +0(\alpha < 0)$; 3) f_x^+ generates the Cauchy representation

(2)
$$(1/2\pi i)\langle f_t^+, 1/(t-z)\rangle = \begin{cases} f^+(z) & \text{for } z \in \Delta^+, \\ 0 & \text{for } z \in \Delta^-. \end{cases}$$

For a function $f^{-}(z)$ analytic in Δ^{-} and satisfying here the conditions similar to ones of $f^{+}(z)$, we have

(3)
$$-(1/2\pi i)\langle f_t^-, 1/(t-z)\rangle = \begin{cases} f^-(z) & \text{for } z \in \Delta^-, \\ 0 & \text{for } z \in \Delta^+. \end{cases}$$

The distributional version of the previous discussion concerning the integral of the Cauchy type leads to the following

Theorem. Let $T \in \mathcal{O}'_{\alpha}$ $(\alpha \ge -1)$ with supp T = K and let $\{a_1, a_2, ..., a_n\}$ $(n \in N)$ be a set of distinct complex points located in $\Delta^+ \cup \Delta^-$. If $f(z) \ge \hat{F}(z)$, then $f \in \{M_0\}$. Conversely, given an $f \in \{M\}$, then it is the extended Cauchy representation of some $T \in \mathcal{O}'_{\alpha}$ for all $\alpha \in [-1, 0]$ with supp T = K.

Proof. Consider the direct part of the theorem. To prove the statement (m.1) it suffices to note that the Cauchy representation $\hat{T}(z)$ of T is an analytic function in the domain C-K ([1, p. 56]). The statement (m.2) follows directly from [4, Theorem 2]:

$$f_x^+ = \hat{F}_x^+ = T_x/2 - (1/2\pi i)(T_x * \operatorname{vp} 1/x) + R(x),$$

$$f_x^- = \hat{F}_x^- = -T_x/2 - (1/2\pi i)(T_x * \operatorname{vp} 1/x) + R(x).$$

Observe that the rational function R(x) is a regular distribution (in \mathcal{O}'_{α} for all $\alpha < 0$). As regards the statement (m.4) it is a simple consequence of the hypothesis $R(\infty)=0$ and the fact that every sequence of functions $\varphi_n(t)=1/(t-z_n)$ converges to zero in \mathcal{O}'_{α} ($\alpha \ge -1$) as $z_n \to \infty(n \to \infty)$.

Conversely, suppose given an $f \in \{M\}$. Then in view of Lemma the assertions (m.2) and (m.3) together imply $f_x^+ \in \mathcal{O}'_{\alpha}$, $f_x^- \in \mathcal{O}'_{\alpha}$ for all $\alpha < 0$. Now define $T_x = -f_x^+ - f_x^-$. Since $(f_x^+ - f_x^-) \in \mathcal{O}'_{\alpha}$ for all $\alpha < 0$ and the Cauchy kernel belongs to \mathcal{O}'_{α} for all $\alpha \ge -1$, we can associate to T the Cauchy representation

$$\hat{T}(z) = (1/2\pi i) \langle T_t, 1/(t-z) \rangle = (1/2\pi i) \langle (f_t^+ - f_t^-), 1/(t-z) \rangle$$

for all $\alpha \in [-1, 0)$. Clearly, \hat{T} is analytic in C-supp T and vanishes at the point $z = \infty$; moreover, it is easy to show that in this situation $\hat{T}(z) = O(1/|z|)$ as $|z| \to \infty$. To prove that f is the extended Cauchy representation of T first we shall show that the function H from C-(supp $T \cup \{a_1, a_2, ..., a_n\}$) to C defined by

(4)
$$H(z) = f(z) - \hat{T}(z)$$

is meromorphic in C. In fact, after a simple computation we have

$$\langle (H_x^+ - H_x^-), \varphi \rangle = \langle (f_x^+ - f_x^-), \varphi \rangle = \langle (\hat{T}_x^+ - \hat{T}_x^-), \varphi \rangle$$

for all $\varphi \in \mathcal{D}$. Since $T_x = \hat{T}_x^+ - \hat{T}_x^-$ it follows

(5)
$$\langle H_x^+, \varphi \rangle = \langle H_x^-, \varphi \rangle$$

10*

for all $\varphi \in \mathcal{D}$. Further, let $\Delta = \{z \in \mathbb{C} : -d < \operatorname{Im}(z) < d\}$ be the strip of the half height $d = \operatorname{Min} \{|\operatorname{Im}(a_1)|, |\operatorname{Im}(a_2)|, ..., |\operatorname{Im}(a_n)|\}.$

Let (a, b) be an arbitrary finite open interval in \mathbb{R} , E^+ and E^- two open rectangles contained in Δ which have (a, b) as a common edge. Evidently, H is an analytic function in Δ except the boundary on \mathbb{R} consisting of the set supp $T \cup K$. Applying the distributional analytic continuation principle ([6], [3, p. 244]) the equality (5) implies that the function H is analytic in $E^+ \cup (a, b) \cup E^-$, and consequently, in all of Δ . Thus H is analytic everywhere in \mathbb{C} except for the poles a_k of f, and as a meromorphic function which vanishes at the point of infinity it may be written uniquely in the form

(6)
$$H(z) = \sum_{k=1}^{n} \sum_{p=1}^{a_k} B_{k,p}/(z-a_k)^p,$$

where the coefficients $B_{k,p}$ must be determined (by means of f). Since the function \hat{T} is analytic in C-supp T, using Theorem on the partial fraction expansion of rational functions ([2]) from (4) we get

(7)
$$B_{k,\alpha_k-m} = (1/m!) \lim_{z \to a_k} d^m [(z-a_k)^{\alpha_k} f(z)]/dz^m$$

 $(m=0, 1, 2, ..., a_k-1)$. Returning to equality (4) with (6) and (7) it follows the representation

(8)
$$f(z) = (1/2\pi i) \langle T_t, 1/(t-z) \rangle + \sum_{k=1}^n \sum_{p=1}^{a_k} B_{k,p}/(z-a_k)^p.$$

So we have established that the given $f \in \{M\}$ is the extended Cauchy representation of $T_x = (f_x^+ - f_x^-) \in \mathcal{O}'_{\alpha}$ for all $\alpha \in [-1, 0)$. Next we have to prove that supp T = K. First let K be a closed proper subset of **R**. Since the function f is analytic on the open set $\mathbf{R} - K$, it follows that

$$\langle f_x^+, \varphi \rangle = \lim_{\varepsilon \to +0} \langle f^+(x+i\varepsilon), \varphi \rangle = \lim_{\varepsilon \to +0} \langle f^-(x-i\varepsilon), \varphi \rangle = \langle f_x^-, \varphi \rangle$$

for all φ with support disjoint from $K(\varphi \in \mathscr{D}(\mathbf{R}-K))$. Thus $\langle (f_x^+ - f_x^-), \varphi \rangle = = \langle T_x, \varphi \rangle = 0$ for all such φ . Hence we may conclude that supp T = K. The assumption that supp $T \subset K$ properly leads to the conclusion that there exists an open interval $(a, b) \subset (K - \text{supp } T)$ on which $(f_x^+ - f_x^-)$ is zero of $\mathscr{D}'((a, b))$. Therefore (by the analytic continuation principle) f would be analytic on $(\mathbf{R}-K) \cup (a, b)$ contrary to the hypothesis. For the same reason supp $T = \mathbf{R}$ in the case $K = \mathbf{R}$. Finally suppose that there exists a distribution $S \in \mathscr{O}'_a(a \ge -1)$ distinct from T and such that $f(z) = \widehat{S}(z) + H(z)$ for $z \in \mathbf{C} - (K \cup \{a_1, a_2, ..., a_n\})$. According to [4, Theorem 2] we have $f_x^+ - f_x^- = \widehat{S}_x^+ - \widehat{S}_x^- = S_x$. Hence $T_x = S_x$ on \mathscr{D} and this implies $T_x = S_x$ on \mathscr{O}_a (since \mathscr{D} is dense in \mathscr{O}_a for all $a \in \mathbf{R}$). But this contradicts the hypothesis on S. Thus, the distribution T is unique. The proof is complete.

÷.

In particular, if all poles a_k of the function f are simple (k=1, 2, ..., n), then in the representation (8) instead of double sum we have

$$\sum_{k=1}^{n} \operatorname{res} [f(z), a_k]/(z-a_k).$$

4. Consequences. First assume that the set of poles of the function \hat{F} is empty. In this case \hat{F} is reduced to the Cauchy representation \hat{T} of T. Thus we have at once

Corollary 1. Let $T \in \mathcal{O}'_{\alpha}$ $(a \ge -1)$ with supp T = K. If $f(z) \ge \hat{T}(z)$, then $f \in \{A_0\}$. Conversely, given an $f \in \{A\}$, then it is the Cauchy representation of some $T \in \mathcal{O}'_{\alpha}$ for all $a \in [-1, 0]$ with supp T = K.

Nevertheless we can prove the second part of this Corollary directly, that is, without intervention of the meromorphy. In fact, since the distributions f_x^+ and f_x^- belong to \mathscr{O}'_{α} ($\alpha < 0$) we may define $T_x = f_x^+ - f_x^-$. As T_x is a linear continuous functional on \mathscr{O}_{α} generating the Cauchy integral $\hat{T}(z)$ we have for all $\alpha \in [-1, 0)$

$$\hat{T}(z) = (1/2\pi i) \langle f_t^+, 1/(t-z) \rangle - (1/2\pi i) \langle f_t^-, 1/(t-z) \rangle.$$

Using the formulas (2) and (3) we get at once the required result

$$\hat{T}(z) = \begin{cases} f^+(z) & \text{for } z \in \Delta^+, \\ f^-(z) & \text{for } z \in \Delta^-, \end{cases}$$

that is, $f(z) = \hat{T}(z)$. So we have proved by Lemma that the given $f \in \{A\}$ is the Cauchy representation of some $T \in \mathcal{O}'_{\alpha}$.

Denote in Schwartz's notation by $\mathscr{E}' = \mathscr{E}'(\mathbf{R})$ the space of distributions on **R** with compact support (recall that $\mathscr{E}' \subset \mathscr{O}'_{\alpha}$ for all $\alpha \in \mathbf{R}$, but an $T \in \mathscr{O}'_{\alpha}$ with compact support belongs to \mathscr{E}'). From Theorem we derive

Corollary 2. Let $T \in \mathscr{E}'$ with supp T = K. If $f(z) \equiv \hat{F}(z)$, then $f \in \{M_c\}$. Conversely, given an $f \in \{M_c\}$, then it is the extended Cauchy representation of some $T \in \mathscr{E}'$ with supp T = K.

We have to comment only the assertion (m.3). The function \hat{F} around the point z=0 has the Laurent expansion of the form

$$\hat{F}(z) = c_0 + c_1/z + c_2/z^2 + \dots$$

which converges uniformly and absolutely outside the smallest disk containing K and all poles a_k (k=1, 2, ..., n). The fact that $\hat{F}(z)$ vanishes as $z \to \infty$ implies that $c_0=0$, and the required result follows at once.

Consequently, to every pair $(T, \{a_1, a_2, ..., a_n\})$ with $T \in \mathscr{E}', n \in N$, there corresponds an $f \in \{M_c\}$ and to every $f \in \{M_c\}$ there corresponds a pair $(T, \{a_1, a_2, ..., a_n\})$ with $T \in \mathscr{E}', n \in N$.

D. Mitrović

Corollary 3. Let $T \in \mathscr{E}'$ with supp T = K. If $f(z) \equiv \hat{T}(z)$, then $f \in \{A_c\}$. Conversely, given an $f \in \{A_c\}$, then it is the Cauchy representation of some $T \in \mathscr{E}'$ with supp T = K.

Thus one can place distributions in \mathscr{E}' into a one-to-one correspondence with functions in $\{A_c\}$.

It may happen that $f \equiv \hat{F} \in \{M\}$ (any given $f \in \{M\}$ is the extended Cauchy representation of some $T \in \mathcal{O}'_{\alpha}$ ($\alpha \ge -1$) with supp T = K). For example, the function f defined by

$$f(z) \equiv \hat{F}(z) = (1/2\pi i) \langle \operatorname{vp} 1/t, 1/(t-z) \rangle + 1/(z-i)$$

belongs to $\{M\}$ with K=R. This follows from

$$f^{+}(z) = 1/2z + 1/(z-i), \quad z \in \Delta^{+} - \{i\},$$

$$f^{-}(z) = -1/2z + 1/(z-1), \quad z \in \Delta^{-}$$

· ;

with $f_x^+ = 1/2(x+i0) + 1/(x-i)$, $f_x^- = 1/2(x-i0) + 1/(x-i)$. Conversely, given $f^+(z)$ and $f^-(z)$ we reconstruct f(z) starting with $f_x^+ - f_x^- = vp 1/x$.

In addition, by means of the second part of Theorem we'solve the following boundary value

Problem 1. Let T be a given distribution in \mathcal{O}'_{α} ($\alpha \ge -1$). Find a function $f \in \{M\}$ whose \mathcal{D}' -boundary values f_x^+ and f_x^- satisfy the condition $f_x^+ - f_x^- = T_x$ on \mathbb{R} .

The general solution is given by (8), where $B_{k,p}$ are arbitrary real or complex coefficients.

It is of interest to sketch the following results: if in Corollaries 2—3 we replace (via condition (m.2)) the convergence in the \mathscr{D}' topology by one in \mathscr{O}'_{α} for a given $\alpha \in [-1, 0)$, we get new corollaries 2.1—3.1 respectively.

Fact 1. Corollaries 2-3 are equivalent to Corollaries 2.1-3.1.

To prove this first observe that $f \in \{M\}$ remains in $\{M\}$ if we substitute the convergence in \mathcal{D}' for one in $\mathcal{O}'_{\alpha}(\alpha \in \mathbb{R})$. Next, we use the representation (8) or Lemma.

Also, if in Problem 1 we replace $T \in \mathcal{O}'_{\alpha}$ ($\alpha \ge -1$) by $T \in \mathcal{O}'_{\alpha}$ ($-1 \le \alpha < 0$) and the convergence in \mathcal{D}' by one in \mathcal{O}'_{α} , we come to

Problem 1.1. Let T be a given distribution in $\mathcal{O}'_{\alpha}(-1 \leq \alpha < 0)$. Find a function $f \in \{M\}$ whose \mathcal{O}'_{α} -boundary values f_x^+ and f_x^- satisfy the condition $f_x^+ - f_x^- = T_x$ on **R**.

Fact 2. Problem 1 with $T \in \mathcal{O}'_{\alpha} (-1 \leq \alpha < 0)$ is equivalent to Problem 1.1. Similarly, substituting under previous conditions the class $\{M\}$ for $\{M_c\}$ and $\{A_c\}$ we come to an equivalent Problem 1.2 and Problem 1.3, respectively.

References

- [1] H. J. BREMERMANN, Distributions, complex variables, and Fourier transforms, Addison-Wesley (New York, 1965).
- [2] J. W. DETTMAN, Applied complex variables, Macmillan (New York, 1965).
- [3] A. MARTINEAU, Distributions et valeurs au bord des fonctions holomorphes, in: Proceedings of an International Summer Institute held in Lisbon (1964).
- [4] D. MITROVIĆ, The Plemelj distributional formulas, Bull. Amer. Math. Soc., 77 (1971), 562-563.
- [5] D. MITROVIĆ, A distributional representation of strip analytic functions, Internat. J. Math. Math. Sci., 5 (1982), no. 1, 1-9.
- [6] W. RUDIN, Lectures on the edge-of-the wedge theorem, Amer. Math. Soc. (Providence, R. I., 1971).

UNIVERSITY OF ZAGREB FACULTY OF TECHNOLOGY DEPARTMENT OF MATHEMATICS PIEROTTILEVA 6 ZAGREB, YUGOSLAVIA