Behavior of the extended Cauchy representation of distributions

DRAGIŠA MITROVIĆ

1. Introduction. There is an interesting correspondence between the spaces $\mathcal{O}_{\alpha}^{\prime}=\mathscr{O}_{\alpha}^{\prime}(\mathbf{R})$ of distributions and the class of functions that are analytic in the complex plane \mathbf{C} with a boundary on \mathbf{R}, except for a set of points lying in $\mathbf{C}-\mathbf{R}$, and vanish at the point of infinity. In the present paper we make a study of this correspondence. As we shall see it depends essentially on the support of distributions, order relation of included functions, and their distributional boundary value in either half plane

$$
\Delta^{+}=\{z \in \mathrm{C}: \operatorname{Im}(z)>0\}, \quad \Delta^{-}=\{z \in \mathrm{C}: \operatorname{Im}(z)<0\}, \quad z=x+i y
$$

The problem under study is motivated by some facts from the theory of integrals of the Cauchy type. Namely, to every function $u: \mathbf{R} \rightarrow \mathbf{C}$ Hölder continuous with compact support equal K there corresponds the function

$$
\hat{u}(z)=\frac{1}{2 \pi i} \int_{-\infty}^{\infty} \frac{u(t)}{t-z} d t, \quad z \bar{€} K .
$$

If $v(z) \equiv \hat{u}(z)$, then: (1) v is an analytic function in $\mathbf{C}-K$; (2) $v(z)$ has the boundary values $v^{+}(x)$ and $v^{-}(x)$ in \mathbf{C}; (3) $v(z)=O(1 /|z|)$ as $|z| \rightarrow \infty$. Conversely, given a function v which satisfies the conditions (1)-(3), then it is the Cauchy integral of some u with $\operatorname{supp} u=K$.

If T is a distribution, then the notation T_{t} is used to indicate that the testing functions on which T is defined have t as their variable. The pairing between a testing function space and its dual is denoted by $\langle T, \varphi\rangle$. The space of $C^{\infty}=C^{\infty}(\mathbf{R})$ functions having compact support is denoted by $\mathscr{D}=\mathscr{D}(\mathbf{R})$; its dual $\mathscr{D}^{\prime}=\mathscr{D}^{\prime}(\mathbf{R})$ is the space of Schwartz distributions on \mathbf{R}. As regards the general properties of the spaces \mathcal{O}_{α} and $\mathscr{O}_{\alpha}^{\prime}$ we refer to [1].
2. Definitions. In order to describe the correspondence in question in a condensed form we introduce some classes of functions.

Received April 10, 1984.

Let K be a closed subset of \mathbf{R} and let $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}(n \in N)$ be a finite set of distinct complex points lying in $\Delta^{+} U \Delta^{-}$. A function f is said to belong to the class $\{M\}$ if
(m.1) f is analytic in the domain $\mathbf{C}-\left(K \cup\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}\right), a_{k}$ being a pole of order $\alpha_{k} \quad(k=1,2, \ldots, n)$;
(m.2) $f(z)$ converges (weakly) in either half plane to a \mathscr{D}^{\prime}-boundary value;

$$
\begin{equation*}
f(z)=O(1 /|z|) \quad \text { as } \quad|z| \rightarrow \infty . \tag{m.3}
\end{equation*}
$$

We use the notation $\left\{M_{c}\right\}$ for the class of functions in $\{M\}$ that satisfy (m.1) when K is a compact set. Also, a function f is said to belong to the class $\left\{M_{0}\right\}$ if it satisfies the conditions (m.1), (m.2) and the condition

$$
\begin{equation*}
f(\infty) \equiv \lim _{z \rightarrow \infty} f(z)=0 \tag{m.4}
\end{equation*}
$$

Thus we have the inclusions $\left\{M_{c}\right\} \subset\{M\} \subset\left\{M_{0}\right\}$. Further, the class of functions that satisfy the conditions (m.1)-(m.3) when the set of poles is empty is denoted by $\{A\}$. The class $\left\{A_{c}\right\}$ is the subclass of $\{A\}$ relative to compact set K in (m.1). If here the condition (m.3) is replaced by (m.4) we have the class $\left\{A_{0}\right\}$.

Remark. The arbitrary sets involved in (m.1) are not necessarily the same for all functions in a class defined above.

Now denote by $R(z)$ a meromorphic function, vanishing at the point $z=\infty$, with prescribed poles $a_{1}, a_{2}, \ldots, a_{n}$ (in $\Delta^{+} \cup \Delta^{-}$) and their principal parts. Let $T \in \mathcal{O}_{\alpha}^{\prime}(\alpha \geqq-1)$. The function \hat{F} from $\mathbf{C}-\left(\operatorname{supp} T \cup\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}\right)$ to \mathbf{C} defined by

$$
\begin{equation*}
\hat{F}(z)=(1 / 2 \pi i)\left\langle T_{t}, 1 /(t-z)\right\rangle+R(z) \tag{1}
\end{equation*}
$$

will be referred to as the extended Cauchy representation of T.
Let us observe that every function f in $\left\{A_{0}\right\}\left(\left\{M_{0}\right\}\right)$ is sectionally analytic in \mathbf{C} with a boundary on \mathbf{R} (except for the poles), that is, it can be decomposed into two independent functions $f^{+}(z)$ and $f^{-}(z)$ such that $f(z)=f^{+}(z)$ for $z \in \Delta^{+}, f(z)=$ $=f^{-}(z)$ for $z \in \Delta^{-}$(the half planes being punctured at the points of poles).
3. Main result. We need the following

Lemma [5]. Iff ${ }^{+}(z)$ is a function analytic in Δ^{+}with $f^{+}(z)=O(1 /|z|)$ as $|z| \rightarrow \infty$ in Δ^{+}, and if $f^{+}(x+i \varepsilon)$ converges to \mathscr{D}^{\prime}-boundary value f_{x}^{+}as $\varepsilon \rightarrow+0$, then: 1) f_{x}^{+} belongs to $\mathcal{O}_{\alpha}^{\prime}$ for all $\left.\alpha<0 ; 2\right) f^{+}(x+i \varepsilon)$ converges to $\mathscr{O}_{\alpha}^{\prime}$-boundary value f_{x}^{+}as $\varepsilon \rightarrow$ $\rightarrow+0(\alpha<0)$; 3) f_{x}^{+}generates the Cauchy representation

$$
(1 / 2 \pi i)\left\langle f_{i}^{+}, 1 /(t-z)\right\rangle=\left\{\begin{array}{lll}
f^{+}(z) & \text { for } & z \in \Delta^{+} \tag{2}\\
0 & \text { for } & z \in \Delta^{-}
\end{array}\right.
$$

For a function $f^{-}(z)$ analytic in Δ^{-}and satisfying here the conditions similar to ones of $f^{+}(z)$, we have

$$
-(1 / 2 \pi i)\left\langle f_{t}^{-}, 1 /(t-z)\right\rangle=\left\{\begin{array}{lll}
f^{-}(z) & \text { for } & z \in \Delta^{-} \tag{3}\\
0 & \text { for } & z \in \Delta^{+}
\end{array}\right.
$$

The distributional version of the previous discussion concerning the integral of the Cauchy type leads to the following

Theorem. Let $T \in \mathcal{O}_{\alpha}^{\prime}(\alpha \geqq-1)$ with supp $T=K$ and let $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}(n \in N)$ be a set of distinct complex points located in $\Delta^{+} \cup \Delta^{-}$. If $f(z) \equiv \hat{F}(z)$, then $f \in\left\{M_{0}\right\}$. Conversely, given an $f \in\{M\}$, then it is the extended Cauchy representation of some $T \in \mathcal{O}_{\alpha}^{\prime}$ for all $\alpha \in[-1,0)$ with $\operatorname{supp} T=K$.

Proof. Consider the direct part of the theorem. To prove the statement (m.1) it suffices to note that the Cauchy representation $\hat{T}(z)$ of T is an analytic function in the domain $\mathbf{C}-K([1, \mathrm{p} .56])$. The statement (m.2) follows directly from [4, Theorem 2]:

$$
\begin{aligned}
& f_{x}^{+}=\hat{F}_{x}^{+}=T_{x} / 2-(1 / 2 \pi i)\left(T_{x} * \operatorname{vp} 1 / x\right)+R(x) \\
& f_{x}^{-}=\hat{F}_{x}^{-}=-T_{x} / 2-(1 / 2 \pi i)\left(T_{x} * \operatorname{vp} 1 / x\right)+R(x)
\end{aligned}
$$

Observe that the rational function $R(x)$ is a regular distribution (in $\mathcal{O}_{\alpha}^{\prime}$ for all $\alpha<0$). As regards the statement (m.4) it is a simple consequence of the hypothesis $R(\infty)=0$ and the fact that every sequence of functions $\varphi_{n}(t)=1 /\left(t-z_{n}\right)$ converges to zero in $\mathcal{O}_{\alpha}^{\prime}(\alpha \geqq-1)$ as $z_{n} \rightarrow \infty(n \rightarrow \infty)$.

Conversely, suppose given an $f \in\{M\}$. Then in view of Lemma the assertions (m.2) and (m.3) together imply $f_{x}^{+} \in \mathcal{O}_{\alpha}^{\prime}, f_{x}^{-} \in \mathcal{O}_{\alpha}^{\prime}$ for all $\alpha<0$. Now define $T_{x}=$ $=f_{x}^{+}-f_{x}^{-}$. Since $\left(f_{x}^{+}-f_{x}^{-}\right) \in \mathcal{O}_{\alpha}^{\prime}$ for all $\alpha<0$ and the Cauchy kernel belongs to $\mathcal{O}_{\alpha}^{\prime}$ for all $\alpha \geqq-1$, we can associate to T the Cauchy representation

$$
\hat{T}(z)=(1 / 2 \pi i)\left\langle T_{t}, 1 /(t-z)\right\rangle=(1 / 2 \pi i)\left\langle\left(f_{t}^{+}-f_{t}^{-}\right), 1 /(t-z)\right\rangle
$$

for all $\alpha \in[-1,0)$. Clearly, \hat{T} is analytic in $C-\operatorname{supp} T$ and vanishes at the point $z=\infty$; moreover, it is easy to show that in this situation $\hat{T}(z)=O(1 /|z|)$ as $|z| \rightarrow \infty$. To prove that f is the extended Cauchy representation of T first we shall show that the function H from $\mathbf{C}-\left(\operatorname{supp} T \cup\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}\right)$ to \mathbf{C} defined by

$$
\begin{equation*}
H(z)=f(z)-\hat{T}(z) \tag{4}
\end{equation*}
$$

is meromorphic in \mathbf{C}. In fact, after a simple computation we have

$$
\left\langle\left(H_{x}^{+}-H_{x}^{-}\right), \varphi\right\rangle=\left\langle\left(f_{x}^{+}-f_{x}^{-}\right), \varphi\right\rangle=\left\langle\left(\hat{T}_{x}^{+}-\hat{T}_{x}^{-}\right), \varphi\right\rangle
$$

for all $\varphi \in \mathscr{D}$. Since $T_{x}=\hat{T}_{x}^{+}-\hat{T}_{x}^{-}$it follows

$$
\begin{equation*}
\left\langle H_{x}^{+}, \varphi\right\rangle=\left\langle H_{x}^{-}, \varphi\right\rangle \tag{5}
\end{equation*}
$$

for all $\varphi \in \mathscr{D}$. Further, let $\Delta=\{z \in \mathbb{C}:-d<\operatorname{Im}(z)<d\}$ be the strip of the half height

$$
d=\operatorname{Min}\left\{\left|\operatorname{Im}\left(a_{1}\right)\right|,\left|\operatorname{Im}\left(a_{2}\right)\right|, \ldots,\left|\operatorname{Im}\left(a_{n}\right)\right|\right\}
$$

Let (a, b) be an arbitrary finite open interval in \mathbf{R}, E^{+}and $E^{\dot{\circ}}$ two open rectangles contained in Δ which have (a, b) as a common edge. Evidently, H is an analytic function in Δ except the boundary on \mathbf{R} consisting of the set supp $T \cup K$. Applying the distributional analytic continuation principle ([6], [3, p. 244]) the' equality (5) implies that the function H is analytic in $E^{+} \cup(a, b) \cup E^{-}$, and consequently, in all of Δ. Thus H is analytic everywhere in \mathbf{C} except for the poles a_{k} of f, and as a meromorphic function which vanishes at the point of infinity it may be written uniquely in the form

$$
\begin{equation*}
H(z)=\cdot \sum_{k=1}^{n} \sum_{p=1}^{a_{k}} B_{k, p} /\left(z-a_{k}\right)^{p} \tag{6}
\end{equation*}
$$

where the coefficients $B_{k, p}$ must be determined (by means of f). Since the function \hat{T} is analytic in $\mathbf{C}-\operatorname{supp} T$, using Theorem on the partial fraction expansion of rational functions ([2]) from (4) we get

$$
\begin{equation*}
B_{k, a_{k}-m}=(1 / m!) \lim _{z \rightarrow a_{k}} d^{m}\left[\left(z-\dot{a}_{k}\right)^{x_{k}} f(z)\right] / d z^{m} \tag{7}
\end{equation*}
$$

($m=0,1,2, \ldots, a_{k}-1$). Returning to equality (4) with (6) and (7) it follows the representation

$$
\begin{equation*}
f(z)=(1 / 2 \pi i)\left\langle T_{t}, 1 /(t-z)\right\rangle+\sum_{k=1}^{n} \sum_{p=1}^{a_{k}} B_{k, p} /\left(z-a_{k}\right)^{p} \tag{8}
\end{equation*}
$$

So we have established that the given $f \in\{M\}$ is the extended Cauchy representation of $T_{x}=\left(f_{x}^{+}-f_{x}^{-}\right) \in \mathcal{O}_{\alpha}^{\prime}$ for all $\alpha \in[-1,0)$. Next we have to prove that $\operatorname{supp} T=K$. First let K be a closed proper subset of \mathbf{R}. Since the function f is analytic on the open set $\mathbf{R}-K$, it follows that

$$
\left\langle f_{x}^{+}, \varphi\right\rangle=\lim _{\varepsilon \rightarrow+0}\left\langle f^{+}(x+i \varepsilon), \varphi\right\rangle=\lim _{\varepsilon \rightarrow+0}\left\langle f^{-}(x-i \varepsilon), \varphi\right\rangle=\left\langle f_{x}^{-}, \varphi\right\rangle
$$

for all φ with support disjoint from $K(\varphi \in \mathscr{D}(\mathbf{R}-K))$. Thus : $\left\langle\left(f_{x}^{+}-f_{x}^{-}\right), \varphi\right\rangle=$ $=\left\langle T_{x}, \varphi\right\rangle=0$ for all such φ. Hence we may conclude that supp $T=K$. The assumption that supp $T \subset K$ properly leads to the conclusion that there exists an open inter$\operatorname{val}(a, b) \subset(K-\operatorname{supp} T)$ on which $\left(f_{x}^{+}-f_{x}^{-}\right)$is zero of $\mathscr{D}^{\prime}((a, b))$. Therefore (by the analytic continuation principle) f would be analytic on $(\mathbf{R}-K) \cup(a, b)$ contrary to the hypothesis. For the same reason $\operatorname{supp} T=\mathbf{R}$ in the case $K=\mathbf{R}$. Finally suppose that there exists a distribution $S \in \mathcal{O}_{\alpha}^{\prime}(\alpha \geqq-1)$ distinct from T and such that $f(z)=S(z)+H(z)$ for $z \overline{\mathcal{E}} \mathbf{C}-\left(K \cup\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}\right)$. According to [4, Theorem 2] we have $f_{x}^{+}-f_{x}^{-}=S_{x}^{+}-S_{x}^{-}=S_{x}$. Hence $T_{x}=S_{x}$ on \mathscr{D} and this implies $T_{x}=S_{x}$ on \mathcal{O}_{α} (since \mathscr{D} is dense in \mathcal{O}_{α} for all $a \in \mathbf{R}$). But this contradicts the hypothesis on S. Thus; the distribution T is unique. The proof is complete.

In particular; if all poles a_{k} of the function f are simple $(k=1,2, \ldots, n)$, then in the representation (8) instead of double sum we have

$$
\sum_{k=1}^{n} \operatorname{res}\left[f(z), a_{k}\right] /\left(z-a_{k}\right)
$$

4. Consequences. First assume that the set of poles of the function \hat{F} is empty. In this case \hat{F} is reduced to the Cauchy representation \hat{T} of T. Thus we have at once

Corollary 1: Let $T \in \mathcal{O}_{a}^{\prime}(a \geqq-1)$ with $\operatorname{supp} T=K$. If $f(z) \equiv \hat{T}(z)$, then $f \in\left\{A_{0}\right\}$. Conversely, given an $f \in\{A\}$, then it is the Cauchy representation of some $T \in \mathcal{O}_{\alpha}^{\prime}$ for all $a \in[-1,0)$ with $\operatorname{supp} T=K$.

Nevertheless we can prove the second part of this Corollary directly, that is, without intervention of the meromorphy. In fact, since the distributions f_{x}^{+}and f_{x}^{-} belong to $\mathscr{O}_{\alpha}^{\prime}(a<0)$ we may define $T_{x}=f_{x}^{+}-f_{x}^{-}$. As T_{x} is a linear continuous functional on \mathbb{O}_{a} generating the Cauchy integral $\hat{T}(z)$ we have for all $a \in[-1,0)$

$$
\hat{T}(z)=(1 / 2 \pi i)\left\langle f_{t}^{+}, 1 /(t-z)\right\rangle-(1 / 2 \pi i)\left\langle f_{t}^{-}, 1 /(t-z)\right\rangle
$$

Using the formulas (2) and (3) we get at once the required result

$$
\hat{T}(z)=\left\{\begin{array}{lll}
f^{+}(z) & \text { for } & z \in \Delta^{+} \\
f^{-}(z) & \text { for } & z \in \Delta^{-}
\end{array}\right.
$$

that is, $f(z)=\hat{T}(z)$. So we have proved by Lemma that the given $f \in\{A\}$ is the Cauchy representation of some $T \in \mathcal{O}_{\alpha}^{\prime}$.

Denote in Schwartz's notation by $\mathscr{E}^{\prime}=\mathscr{E}^{\prime}(\mathbf{R})$ the space of distributions on \mathbf{R} with compact support (recall that $\mathscr{E}^{\prime} \subset \mathcal{O}_{\alpha}^{\prime}$ for all $a \in \mathbf{R}$, but an $T \in \mathcal{O}_{\alpha}^{\prime}$ with compact support belongs to \mathscr{E}^{\prime}). From Theorem we derive

Corollary 2. Let $T \in \mathscr{E}^{\prime}$ with supp $T=K$. If $f(z) \equiv \hat{F}(z)$, then $f \in\left\{M_{c}\right\}$. Conversely, given an $f \in\left\{M_{c}\right\}$, then it is the extended Cauchy representation of some $T \in \mathscr{E}^{\prime}$ with $\operatorname{supp} T=K$.

We have to comment only the assertion (m.3). The function \hat{F} around the point $z=0$ has the Laurent expansion of the form

$$
\hat{F}(z)=c_{0}+c_{1} / z+c_{2} / z^{2}+\ldots
$$

which converges uniformly and absolutely outside the smallest disk containing K and all poles $a_{k}(k=1,2, \ldots, n)$. The fact that $\hat{F}(z)$ vanishes as $z \rightarrow \infty$ implies that $c_{0}=0$, and the required result follows at once.

Consequently; to every pair ($T,\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$) with $T \in \mathscr{E}^{\prime}, n \in N$, there corresponds an $f \in\left\{M_{i}\right\}$ and to every $f \in\left\{M_{c}\right\}$ there corresponds a pair ($T,\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$) with $T \in \mathscr{E}^{\prime}, n \in N$.

Corollary 3. Let $T \in \mathscr{E}^{\prime}$ with supp $T=K$. If $f(z) \equiv \widehat{T}(\dot{z})$, then $f \in\left\{A_{c}\right\}$. Conversely, given an $f \in\left\{A_{c}\right\}$, then it is the Cauchy representation of some $T \in \mathscr{E}^{\prime}$ with supp $T=K$.

Thus one can place distributions in \mathscr{E}^{\prime} into a one-to-one correspondence with functions in $\left\{A_{c}\right\}$.

It may happen that $f \equiv \hat{F} \in\{M\}$ (any given $f \in\{M\}$ is the extended Cauchy representation of some $T \in \mathcal{O}_{\alpha}^{\prime}(\alpha \geqq-1)$ with supp $\left.T=K\right)$. For example, the function f defined by

$$
f(z) \equiv \hat{F}(z)=(1 / 2 \pi i)\langle\operatorname{vp} 1 / t, 1 /(t-z)\rangle+1 /(z-i)
$$

belongs to $\{M\}$ with $K=R$. This follows from

$$
\begin{aligned}
& f^{+}(z)=1 / 2 z+1 /(z-i), \quad z \in \Delta^{+}-\{i\} \\
& f^{-}(z)=-1 / 2 z+1 /(z-1), \quad z \in \Delta^{-}
\end{aligned}
$$

with $f_{x}^{+}=1 / 2(x+i 0)+1 /(x-i), \quad f_{x}^{-}=1 / 2(x-i 0)+1 /(x-i)$. Conversely, given $f^{+}(z)$ and $f^{-}(z)$ we reconstruct $f(z)$ starting with $f_{x}^{+}-f_{x}^{-}=\operatorname{pp} 1 / x$.

In addition, by means of the second part of Theorem we' solve the following boundary value

Problem 1. Let T be a given distribution in $\mathcal{O}_{\alpha}^{\prime}(\alpha \geqq-1)$. Find a function $f \in\{M\}$ whose \mathscr{D}^{\prime}-boundary values f_{x}^{+}and f_{x}^{-}satisfy the condition $f_{x}^{+}-f_{x}^{-}=T_{x}$ on \mathbf{R}.

The general solution is given by (8), where $B_{k, p}$ are arbitrary real or complex coefficients.

It is of interest to sketch the following results: if in Corollaries $2-3$ we replace (via condition (m.2)) the convergence in the \mathscr{D}^{\prime} topology by one in $\mathscr{O}_{\alpha}^{\prime}$ for a given $\alpha \in[-1,0)$, we get new corollaries $2.1-3.1$ respectively.

Fact 1. Corollaries 2-3 are equivalent to Corollaries 2.1-3.1.
To prove this first observe that $f \in\{M\}$ remains in $\{M\}$ if we substitute the convergence in \mathscr{D}^{\prime} for one in $\mathscr{O}_{\alpha}^{\prime}(\alpha \in \mathbf{R})$. Next, we use the representation (8) or Lemma.

Also, if in Problem 1 we replace $T \in \mathcal{O}_{\alpha}^{\prime}(\alpha \geqq-1)$ by $T \in \mathcal{O}_{\alpha}^{\prime}(-1 \leqq \alpha<0)$ and the convergence in \mathscr{D}^{\prime} by one in $\mathscr{O}_{\alpha}^{\prime}$, we come to

Problem 1.1. Let T be a given distribution in $\mathcal{O}_{\alpha}^{\prime}(-1 \leqq \alpha<0)$. Find a function $f \in\{M\}$ whose $\mathcal{O}_{\alpha}^{\prime}$-boundary values f_{x}^{+}and f_{x}^{-}satisfy the condition $f_{x}^{+}-f_{x}^{-}=T_{x}$ on \mathbf{R}.

Fact 2: Problem 1 with $T \in \mathcal{O}_{\dot{\alpha}}^{\prime}(-1 \leqq \alpha<0)$ is equivalent to Problem 1.1.
Similarly, substituting under previous conditions the class $\left\{M_{\}}\right\}$for $\left\{M_{c}\right\}$ and $\left\{A_{c}\right\}$ we come to an equivalent Problem 1.2 and Problem 1.3, respectively.

References

[1] H. J. Bremermann, Distributions, complex variables, and Fourier transforms, Addison-Wesley (New York, 1965).
[2] J. W. Dettman, Applied complex variables, Macmillan (New York, 1965).
[3] A. Martineau, Distributions et valeurs au bord des fonctions holomorphes, in: Proceedings of an International Summer Institute held in Lisbon (1964).
[4] D. Mrrrović, The Plemelj distributional formulas, Bull. Amer. Math. Soc., 77 (1971), 562-563.
[5] D. Mrrrović, A distributional representation of strip analytic functions, Internat. J. Math. Math. Sci., 5 (1982), no. 1, 1-9.
[6] W. Rudin, Lectures on the edge-of-the wedge theorem, Amer. Math. Soc. (Providence, R. I., 1971).

UNIVERSITY OF ZAGREB
FACULTY OF TECHNOLOGY
DEPARTMENT OF MATHEMATICS
PIEROTTIJEVA 6
ZAGREB, YUGOSLAVIA

