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Normal approximation for sums of non-identically distributed
random variables in Hilbert spaces -

V. V. ULYANOV

The problem of estimation of the speed of convergence in the central limit theo-
rem in Hilbert spaces has a history of nearly twenty years. In most papers the speed is
studied on the class of balls with a fixed center. This is an important and natural class
of sets, but it is not very rich. However, in contrast to the finite dimensional case, one
has shown that in Hilbert spaces (in general) it is impossible to construct estimates
which are uniform with respect to rich classes, since not even on the class of all balls
the speed of convergence in the central limit theorem in Hilbert spaces is uniform
(see e.g. [1], p. 70).

The first estimates of order n~/% on balls with a fixed center under the assumption
of finiteness of some moments and without any other additional restrictions (such as
independence of coordinates) were obtained by GotzE [2]. Following Gétze’s paper a
series of papers appeared, mostly based on Gétze approach, which improved and
extended his results (see e.g. [3], [4], [5])-

The estimates for the case of independent not necessarily identically distributed
random variables (i.non-i.d.r.v.) were obtained by BENTKUS [5] (see Theorem 3.3
in [5] or the condition (5) and the estimate (6) below). The previous results for the
case of i.non-i.d.r.v. were obtained by BERNOTAS, PAULAUSKAS [6], ULyanov [7], [8].
However, corollaries from results [6]—[8] for i.i.d.r.v. give estimates of the order n~¢.

» In the present paper we construct estimates on some classes of Borel sets, in
particularly on balls with a fixed center, for the case of i.non-i.d.r.v. Our results
improve the corresponding estimates of BENTKUS [5], have the “natural” form and
at the same time they are obtained under somewhat different conditions. One of the
main features of our estimates is that they require minimal moment conditions and
their dependence on the (truncated) moments has an explicit form. We shall use the
methods of [2], [3], [5] and some ideas from [7].
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In what follows, H is a real separable Hilbert space with inner product (x, y),
x, y€H, and norm |x|=(x, x)"/2, D: H—~H is a bounded symmetric operator

| D| = sup |(Dx, x)|/|x[?
x#0

h: H—R! is a linear continuous functional,
W(x) = (Dx, x)+h(x),
A,,={x€H: W(x+a)<r}, r=0, acH;
N,={1,2,...,n).
Let A: H—~H be a bounded symmetric operator with eigenvalues oy=a,=.... We
write A€G(B, k), =0, if and only if ¢,=p. Denote tr A= ,_Z.; o, Let X be a ran-

dom variable with values in H. Denote by X the symmetrization of X, i.e. £=X,—X,,
where X and X, are independent copies of X. For 6=0 put

X=X I{|x|<6}s X;=X- I{mga},
where I is the indicator of the set B< H. By c (resp. ¢(-)) with or without indices,
we denote constants (resp. constants depending only on quantities in the parenthe-

ses); the same symbol may stand for different constants. Let 4;, i€ N,, be any num-
bers and @ c N,. Put A(@)= > 4,.
ico

Our main result is the following theorem.

Theorem. Let X;, i€N,, be i.non-i.d.ro. withvaluesin H with zero means and
covariance operators A;, (€N, respectively. Assume that there exists an operator A,
such that

¢y A;=A44,, =0, icN,,

Sh=1
i=1
and e

Strd; =1, (DAY€EG(B,13), for some B> 0.
i=1 .

Put S,= Z"' X;, and let Z be a Gaussian (0, A,) r.v. with values in H,
i=1
Then for all n=1

(2) A = Sug IP(SneAa.r)_P(ZEAa,r)! = c1(1+|a|3)(A2+L3)!

where Ay= 3 E\Xyl*, Ly= 3 E|XM®, c;=c,(IDl, |4, B). -
i=1 i=1
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Corollary 1. Assume that A,€ G(B, 13) for some B=0. Then for all n=1
3 4, = sup |P(1S,+a] < N—P(1Z+a| < )| = c(B)(1+]aP)(As+Ly).

Corollary 2. Assume that Ay=A;=..=A,, A4,€G(B,13), for some B=0,
E|X®=L,i€N,. Then for all n=1 :
) 4, = c(B)(1-+|al®)La—12,

Remarks. 1. Our theorem improves estimate (3.14) of Theorem 3.3 in [5).
For completeness we recall the corresponding result proved by BENTKUS [5] (Theo-
rem 3.3).

Let X, i€N,, be i.non-i. dr.v. with values in H with zero means and covariance

operators A;, icN,, respectively. Assume that 12 tr 4,=1 ‘and there exists a nonne-
=1 .
gative operator Ay: H—~H such that .

&) A;= Ay/n, i€EN,,

and (DA)EG(B, k), for some B=>0,k=0. Let g, &, B be any numbers, q=>2, 0=
<g=1, B>0. Then there exists a constant c=c(g) such that if k=c then for all
n=l ‘
© 4 = cy(1+1a*)(Aa+ Ly+(n/op)*~* + (n max E|X,[*)’),
here Ca—cz(ﬂa 8, q, IDl Ihla B) 0' = ma.x (nq/zElxqu)l/(q—S)
Thus our theorem shows that the last two terms on the right hand side of (6)

may be omitted. At the same time we replace condition (5) by condition (1).
2. Estimate (4) was obtained earlier by YURINSKII [3].

The proof of the theorem is based on a series of lemmas.

Lemma 1. Let A;, i€N,, be nonnegative numbers such that

'2"'/1.=1 max 4, = 1/3.

1=i=n

Then there exist sets ©,, @, such that @lﬂ@z—ﬂ @1U@2_Nn, ).(91)21/3
i=1,2.

Proof. It is easy to see that there exists an Z, such that ‘2 A=1/3, '2 A1 /3
1
Put @,={1,2, ..., {y+1}. The above construction implies Lemma 1.,

Lemma 2. Let A, i€N,, be nonnegative numbers such that .

=1, max 4, = R = 1/3.

i=1 - 1=1m

11
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Let M;, i€N,, be any nonnegative numbers. Then there exists. ® CN, such that
R=A(6)=3R, M(8)/A(6)= 3 M,.
i=l

Proof. Asin Lemma 1 it is easy to see that there exist ©,, 8,, ..., &, such that
0,N0,=0, i#j, U 6,=N, and R=A(0)=3R, i=1,2,...,m. Assume that the
ratios M (9,)/).(9,) are arranged in the following way

M@©) _ MO, _ _ M(@,)

A6,y — e, T A6,)

This implies
M©,)/HO) = 3 M.
Put =6, . Lemma 2 is proved.

Lemma 3. Let X be a r.v. with values in Hand EX=0, E|X|*< . Then for any
zZ€H, 6=>0

) E((R'Y, z)* = 2E(X, 2)*—4|2]*(E|X,|*+2E|X[*/3),
where X1=(X?)", 'X1=X1(,,,§1,.
Proof. We have
® E((XY, 2)* = E(X1, 22— E((XY);, 2)* = E(XY, 2)2—|2]PE |(XY),)2.-

©® . E(X1, 2)? = 2E(XY, 22 —2(E(XY, 2)
As in (8) we get

(10) E(X1, z)? = E(X, 2 —|z|2E| X, |2
Since EX=0,

an E(X1, z) =—E(X,, 2).
Moreover

12) NE(Xy, 2)| = |2 (BIX ).
From (9)—(12) it follows that

(13) ' - E(R, 2)® = 2E(X, 2)*—4|z]PE| X,
Furthermore

(149) E|(XY),)2 = E|X}/6 = S8E|XJ?/6.

Using (8), (13)'and (14) we get (7). Lemma 3 is proved.

Lemma 4. Let A, B be any bounded linear operators in H, A=0. Then the sets
of non-zero eigenvalues of the operators AB, BA and AM*BAY? are the same (1aking
into account the multiplicity of the eigenvalues).’
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Proof. See -VAKHANIA [9], p. 84, or Lemma 2.3 in [5].

Lemma 5. Let. X,(Y)), i€N,, be i.non-idr.v. (independent Gaussian r.v.) with
values in H with zero means and covariance operators A;, i€ N,,, respectively. Let R be
“any positive number, R=1/6. Assume that

A;=Xd,, 4=0, i€N,,~

(15) Z'trA, Z’A =1, (DAY€G(,13) for some B =0,
2

Jmax A =R, A;= Rg/(200|D}?).

Let ©,N0,=0, 6,U8,=N,. Put A=:Z cov ¥y, B=i2 cov V;, where
€6, €0:

6 V=@ or V=%, icN, &= 400|DP(4s+Ly)B.
Then there exists €, such that '
a7 (DADY2 B(DAD)*c G(Ry/2, 13), trA = 12R.

Proof. Let x¢H. Put z=(DAD)"%x,

A;(8) = iEZ'O E|X,l% Ly(©) = i€2'9 E|X}2.
Note that
(18) E(Y;, x)* = 2E(Y;, X

From (18) and Lemma 3 it follows that

(19) (B2, 2) = 2(4y 2, 2) AM(O3) —4|2|2(4:(O») +2L3(0,)/6).
Furthermore _
(20) : |zI* = 4|D|?|x|*A(©))-

By Lemma 4 the sets of the non-zero eigenvalues of the operators (DAD)"24,(DAD)"*
and AY2DADAY? are the same. Put y=DAY?x. Asin (19) we have

@1 (A7, Y) = 2(4oy, YIAO) —4 |y (45(0)) +2Ly(61))5).
Moreover
22) - Y1 = 4|DP 1A, = 4|DP [xl2.

Since under the assumptxons of Lemma 5 (DAy)€G (ﬂ, 13), by Lemma 4 we have
(VX)) E A‘/’DA,,DA‘/’EG(,B, 13).

By Lemma 2 there exxsts a 6, such that

29 R =1(8) =3R, %(90/1(91) = L.

1
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Now from (15), (21), (22) and (24) we have forany x¢cH - :% : .

(4} DADAY, ) = 2(4*DADAYx, x) R~ 16|D|2|x|2(A,+2L,(eg/a)

@25) . oL
= 2(Ay® DA DAY x, x)R ﬁRle

From (23), (25) and the results of §4, Ch. X in [10] it follows that

26) AY2DADAY*¢G(RB, 13). o
Similarly from (15), (16), (19), (20), (24), (26) and from the s1mp1e mequallty
27 trd = 4,1(@1)

we get (17). Lemma § is proved. ' o

Proof of Theorem. Put §!=X}+X]+...+X%, F(r)=P(S,€4,,), F(r)=
=P($€4,,), b(r)=P(ZcA,,). Let f(¢) and g(t) be the Fourler——Stlelt_]w trans-
forms of F, and b respectively. Using the mequalxty

S
oo .

el = [ gmar,

—c0

the symmetrization inequality (see Lemma 2.1 in [3]) and Lemma 2.4 in [5] we get
(28) 1’ = (D1, pY(1+]al). '

It is easy to see that

29 [F(r)—F ()] = '_Z;P(IXJ =1) =4,
By Theorem 2, §1, Ch. 5 in [11], from (28), (29) we have for any T=0
GO IP(S,€4,) = P(ZE Ay )| = Ayte(I+al)T + f Itl“llf(t) g(t)l dt.

Now we estimate | f(¢)—g(¢)l. By Theorem 4.6in [12] we have

€2 (O —g@l = e+ A +]al)(4s+ L) ), - ;
where
%(r) = Sli,lp sup . inf sup mf E'exp {Z;t(Z' Dy, Z' V,)}

u B,=N,\M 1=¢=4 B<B ieB o\

and M is any subset of N, containing not more than one element,
V_(Vla st ooy n)’ Vl X or I,i Yh IEN,,, Yl, Yz, tery Y are mdepeﬂdent
Gaussian r.v.’s with zero meaans and covariance operators Ay, 45,5 4, tespec-
tively.
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Denote 4= A;+L;. The left hand side of (2) is not greater than 1. Hence we
may assume without loss of generality that

(32) ' A =cs,

where ¢, is a constant small enough. In fact, if (32) is not true then (2) is obvious with
¢,=1/c;. ' We may also assume that

33) . max A =AY,

1=i=n

In fact, if there exists an iy such that 1, >A2/25 then tr 4, >A2/"‘5 Smce tr 4, =
-—EIX, | we have ‘E|X, |2>A2/25 Moreover

E|X* = E|X;nl*+ E1X3 1%
Now we consider two possible cases.

Case 1. EIX |22E|X1|2 Then E|X;, [2=>A%%/2. Since AZE|X,* we
have A= AY%/2, that is A>(1/2)25/23 This contradlcts assumption (32).

Case 2. EIX,.1|2>E|X,.°1|2. Then E|X,.t|2>/12/25/2. We have

( A2/25 /2)3/2 A3/25 l l
Hence A=>(1/2)"*%. This also contradicts assumption (32).

_ Furthermore, from the definition of x(z), (33) and Lemma 1 it follows that if we
denote

A= = A3/25/29/2,

(34)  &t= inf Eexp{2it( 3 DV, S V))}, 6 >0,
61,6, jeo, j€e,
where ©,MNO@,=0 and
(35) 2 A=
. ice,u8,
then o
(36) o #()) = 5.

Note that for any symmetricr.v. X, z€H, §=0 we have
Eexp {i(z, X)} = Eexp {i(z, X%)}.

Therefore
37 W HE mf _Eexp {21!( Z’ Dvj, Z’ 9}
where V V}’ if Vj-—f and V;=V; if V;=Y;, je©,U0®,. By Lemma 2.5 in

[5] we get fo; all 7 and M that
4|D|Solt] =1, 4|D|Md max {y, g} =1,

(38) 8= c jnf (exp(—o®/(tr 4+50))+exp (—*/tr B)+ ¢ (s)),
P ]
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where s=min {2[¢|, M}, o(s)=Eexp {is (DU, V)/2}, U, V are independent Gaus-
sian r.v.’s with zero means and covariance operators A= J.covV; and B=

j€o
= 2 cov ¥}, respectively. From (1.4) in [3] it follows that '
j€6z
(39) o() = I (1+5*B,/4)7",
i1

where B;,j=1,2, ... are the eigenvalues of (DAD)Y*B(DAD)'2,
Now we estimate the right hand side of (38) for different values of ¢.

Case 1. |t|=c/(Aln (1/4)). Put y=cIn*?(1/4), g¢=cln (l/'A),i' d=cA, M=
=c¢/(A In (1/4)). From (1), (27) we get ’

(40) trd4+trB=4.

Hence for the above values of 7, ¢, 5, M we have

41) - exp(—g¥(tr A+50))+exp (—y?/ir B) = cA°.

By Lemma 5 and (32), (33), (35) there exist ©, and a constant ¢ such that

42) (DAD)Y* B(DAD)'?€ G(cpB, 13).
From (39), (42) we have
@) () = c(1+)2,

Case 2. c/(Aln (1/A)=]t|=c/A. Put y=cIn'*(1/4), g=c, M=c[(4 In (1/4)),
d=cA. By Lemma 5 and (32), (33), (35) there exist @, and a constant ¢ such that

(44) (DAD)2 B(DADY ¢ G(c A B, 13), tr A = cA®®.
From (39), (40), (44) we have |
@5) 8 = c(A°+(1+AYS(A In (1/A)) ) = oA+ AP 513 (1/4)).

Furthermore, put T=c/4, T,=c[(41n(1/4)). From (31), (34), (36), (37), (41), (43),:
(45) we get . )

T T
(46) [0 —g@ldt = e(l+laPa [ Q+Px(de =
-T -T

T T, T -T, e
sc(l+la®d [ Q+e)sdt=cU+a®A( [+ [+ [ )U+®)o,de=
-T . -T, T, -7 i

= c(l+laP)A(1+ [ AU+ de+ A2 104 (1/4)) = c(1+]al) A.

Estimates (30) and (46) imply (2). The theorem is proved.
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Proofof Corollary 1. This follows from the theorem. To this end it is enough

to put A=0, D=1, the identity operator, and to note that if 4,6G (B, 13), then
A€G (B2 13).

The proof of Corollary 2 is obvious.
I am grateful to professor J. Mogyorédi for his attention to my work.
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