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Normal approximation for sums of non-identically distributed 
random variables in Hilbert spaces 

V. V. ULYANOV 

The problem of estimation of the speed of convergence in the central limit theo-
rem in Hilbert spaces has a history of nearly twenty years. In most papers the speed is 
studied on the class of balls with a fixed center. This is an important and natural class 
of sets, but it is not very rich. However, in contrast to the finite dimensional case, one 
has shown that in Hilbert spaces (in general) it is impossible to construct estimates 
which are uniform with respect to rich classes, since not even on the class of all balls 
the speed of convergence in the central limit theorem in Hilbert spaces is uniform 
(see e.g. [1], p. 70). 

The first estimates of order n~1/2 on balls with a fixed center under the assumption 
of finiteness of some moments and without any other additional restrictions (such as 
independence of coordinates) were obtained by GÖTZE [ 2 ] . Following Götze's paper a 
series of papers appeared, mostly based on Götze approach, which improved and 
extended his results (see e.g. [3], [4], [5]). 

The estimates for the case of independent not necessarily identically distributed 
random variables (i.non-i.d.r.v.) were obtained by BENTKUS [5] (see Theorem 3.3 
in [5] or the condition (5) and the estimate (6) below). The previous results for the 
case of i.non-i.d.r.v. were obtained by BERNOTAS, PAULAUSKAS [6], ULYANOV [ 7 ] , [8]. 
However, corollaries from results [6]—[8] for i.i.d.r.v. give estimates of the order n_1/G. 

9 In the present paper we construct estimates on some classes of Borel sets, in 
particularly on balls with a fixed center, for the case of i.non-i.d.r.v. Our results 
improve the corresponding estimates of BENTKUS [5], have the "natural" form and 
at the same time they are obtained under somewhat different conditions. One of the 
main features of our estimates is that they require minimal moment conditions and 
their dependence on the (truncated) moments has an explicit form. We shall use the 
methods of [2], [3], [5] and some ideas from [7]. 
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In what follows, H is a real separable Hilbert space with inner product (x, y), 
x,y£H, and norm |x |=(x, x)1/2, D : H-»H is a bounded symmetric operator 

\D\ = sup | (Dx, x)|/|x|2, 
x^O 

h: H-+R1 is a linear continuous functional, 

W(x) = (Dx,x) + h(x), 

Aa,r = {x£H: W(x+a) < r}, r S 0, a^H; 

N„ = {\,2,...,n}. 

Let A: H-*H be a bounded symmetric operator with eigenvalues = . We 
oo 

write A£G(P, k), JS>0, if and only if <rk^p. Denote tr A= 2 <*i- Let Z be a ran-
j=I 

dom variable with values in H. Denote by % the symmetrization of X, i.e. %= X1—X2, 
where Xx and X2 are independent copies of X. For <5 > 0 put 

where IB is the indicator of the set BczH. By c (resp. c( •)) with or without indices, 
we denote constants (resp. constants depending only on quantities in the parenthe-
ses); the same symbol may stand for different constants. Let Aj, i£Nn , be any num-
bers and 0<zN„. Put /1(0)= 2 V 

ae 
Our main result is the following theorem. 

T h e o r e m . Let Xt, i£N„, be i.non-i.d.r.v. with values in H with zero means and 
covariance operators Aiy i£Nn, respectively. Assume that there exists an operator A0 

such that 
(1) Ai = liA0, ¿¡SO, i£Nn, 

2 k = i i=1 
and 

jttrAi= 1, (DA0feG(P, 13), for some 0 > 0. 
1=1 

n ' 
Put Sn= 2 and let Z be a Gaussian (0, A0) r.v. with values in H, 

¡=i 
Then for all h S 1 

(2) A = sup \P{SniAa.r)-P{ZiAa>r)\ ^ C l ( l + |a|3)(/l2+L3), 
r E O 

where At= ± E\Xki\\ L3= % E\Xl\\ c ^ c M , №1, P)-
¡=i »=1 
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C o r o l l a r y 1. Assume that A0€G(fi, 13)for some /?>0. Then for all n=1 

(3) Ax = sup |P( |5„+a| < r)-P(\Z+a\ < r)| S c(/?)(l+|a|»)(/l2+L8). 
r SO 

C o r o l l a r y 2. Assume that A1=A2=...=A„, A^G0?, 13), for some /J>0, 
E\Xi\asL,i^Na. Then for all «si 

( 4 ) A ^ C W D + W ^ L N - 1 ' * . 

R e m a r k s . 1. Our theorem improves estimate (3.14) of Theorem 3.3 in [5]; 
For completeness we recall the corresponding result proved by BENTKUS [5] (Theo-
rem 3.3). 

Let Xt, i€N„, be i.non-i. d.r.v. with values in H with zero means and covarictnce 
n 

operators At,i£N„, respectively. Assume that ^tTAi= 1 and there exists a notme-

gative operator A0: H-+H such that -

(5) A{ S A0ln, i£Nn, 

and (DA0)2€G(fi, k), for some &>0. Let q,e,B be any numbers, 2, 0-c 
< e S l , i?>0. Then there exists a constant c=c(e) such that if feSc then for all 
» S i 
(6) A ^ c,(l +1a s | )(^2+^s+(«/cr|)E-1 + (n max £|Z (1 |2)B), 

where c2=c2(fi, e,q,\D\, \h\, B), o= max (n^E\X}\^-%\ 
Thus our theorem shows that the last two terms on the right hand side of (6) 

may be omitted. At the same time we replace condition (5) by condition (1). 
2 . Estimate ( 4 ) was obtained earlier by YURINSKI! [ 3 ] . 

The proof of the theorem is based on a series of lemmas. 

L e m m a 1. Let A(, i£N„, be nonnegative numbers such that 

max A, s 1/3. 

Then there exist sets @l5 02 such that 0
i
n©2=0, 01U02=A'n, A ( 0 j ) S l / 3 , 

/ = 1 , 2 . 
<0 <0+1 

P r o o f . It is easy to see that there exists an/„such that ^ A , s l / 3 , ^ A, >1/3. 

Put 0 ! = { 1 , 2 , . . . , / 0 +l} . The above construction implies Lemma 1., 

L e m m a 2. Let A(,/£JV„, be nonnegative numbers such that 

¿ A , = 1, max A, m . R s 1/3. 

it 
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Let Mt, i€N„, be any nonnegative numbers. Then there exists. 0<zNn such that 

R^X(0)s3R, M(0)/A(0)g f Mi-
1=1 

P r o o f . As in Lemma 1 it is easy to see that there exist 0 l 5 0 2 , . . . , &„, such that 

0 , n 0 j = 0 , iVj , IJ 0,=N„ and R^X(0t)s3R, / = 1 , 2 , ...,m. Assume that the 

ratios M(0,)/A(0,) are arranged in the following way 

M(eh) ^ M(0j „ ^ M ( 0 j 
A(0(l) - A(0it) X(0im) • 

This implies 

M(0il)/X(0ll)^ 2 
/=i 

Put 0 = 0 , . Lemma 2 is proved. 

L e m m a 3. Let X be a r.v. with values in Hand EX—0, E\X\i< <*>. Then for any 
z£H, 5>0 

(7) zf S 2 E ( X , z)2—4|z|2(£|Ar
1|2+2.E|.Jf1|8/i), 

where 

P r o o f . We have 

(8) E({2y,zf = E(X\ z ) 2 - £ ( ( ^ ) 3 , z)2 S E(X\ zY-\z\*E\(X\\\ 

(9) E(X\ z)2 = 2 E { X \ zf-2{E(X\ z))2. 
As in (8) we get 
(10) z)2 S £ ( * , z ) 2 - | z | 2 £ |* i l 2 . 
Since EX=0, 
(11) E(X\z) = -E(Xi,z). 
Moreover 

(12) ¡E(Xi,z)\ ^ IzK^I^I2)1/2. 

From (9)—(12) it follows that 

(13) £ ( ^ 1 , z ) 2 s 2 £ ( Z , z ) 2 - 4 | z | 2 £ | A ' 1 | 2 . 
Furthermore 
(14) £ KJ?1),!2 S E |£T/<5 ^ 8£ |.Yl|3/5. 

Using (8), (13) and (14) we get (7). Lemma 3 is proved. 

L e m m a 4. Lei A, B be any bounded linear operators in H, A^O. Then the sets 
of non-zero eigenvalues of the operators AB, BA and A1,2BA112 are the same (taking 
into account the multiplicity of the eigenvalues). 
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Proof . See VAKHANIA [9], p. 8 4 , or Lemma 2.3 in [5]. 

Lemma 5. Let X,(Yt), i£N„, be i.non-i.d.r.v. (independent Gaussian r.v.) with 
values in H with zero means and covariance operators A„ i£N„, respectively. Let R be 
any positive number, Rs 1/6. Assume that 

A, — XtA0, AJ £ 0, i£N„, 

(15) 2 t r J i , = 2 = l> (DA0)KG(fi, 13) for some /? > 0, 
f=J i=l 

max X, =SR, A2 jR»/(200|£)|2). i simn 
Let 6> i n0 2 =0 J 01\J02=N„. Put A= 2 cov Vt, B= 2 cov Fj, where 

itOx i£0s 

(16) V, =($}Y or Vt — 3 = 400\D\2(A2+L3)lf}. 

Then there exists 0^ such that 

(17) (DAD)llzB(DAD)ll2£G(Rp/2, 13), tiA S 12R. 

Proof . Let x£H. Put z=(DAD)1/2x, 

A2(Q)= 2E \Xa\\ 1^(0) = 2 E\Xl\\ 
¡(.0 i£0 

Note that 

(18) E(?i,x)2 = 2E(Yi,x)2. 

From (18) and Lemma 3 it follows that 

( 1 9 ) (Bz, z ) S 2(A„z, z)X(0
2
) - 4 \Z\2(A

2
(02)+2L

3
(0

2
)/S). 

Furthermore 
(20) \z\*^4\D\2 \x\2A(0J. 

By Lemma 4 the sets of the non-zero eigenvalues of the operators (DAD)ViA^DAD)1,% 

and All2DADAlla are the same. Put y=DA]j2x. As in (19) we have 

(21) (Ay,y) S 2(A0y,y)A(0J-4 \y\2(A2(0d+2L3(01)IS). 
Moreover 
(22) \y\2^4\D\2\x\2X(0J^4\D\2\x\2. 

Since under the assumptions of Lemma 5 (DA0)2£G(/?, 13), by Lemma 4 we have 

(23) All2DAoDAl'aeG(0, 13). 

By Lemma 2 there exists a such that 

( 2 4 ) R S A ( 0 J ) ^ 3 R , L
S
(0

1
)/X(0

L
) Z * . 

n* 
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Now from (15), (21), (22) and (24) we have for any x£H • V : 

(All2DADAl'*x, x) S 2(Ay2DA0DAy2x, x)R-l6\D\2\x\2{A&+.2L3(01)IS) 3* 
( 2 5 ) . . 

S 2(Ay2DA0DAl'2x, x)R-pR\x\s. 

From (23), (25) and the results of §4, Ch. Zin [10] it follows that 

(26) Ay*DADAy2<iG(Rp, 13). 

Similarly from (15), (16), (19), (20), (24), (26) and from the simple inequality 

(27) tr A s= 4-1(0!) 

we get (17). Lemma 5 is proved. 

P roof of Theorem. Put + F(r)^P(Sn^Aawr), F ^ r ) ^ 
=P(3*eAar), b(r)=P(Z€Aar). Let f ( t ) and g(t) be the Fourier—Stieltjes trans-
forms of Fx and b respectively. Using the inequality 

|fr'(r)|=§ / g(t)dt, 
— oo 

the symmetrization inequality (see Lemma 2.1 in [3]) and Lemhia 2.4 in [5] we get 

(28) \b'(r)\^c(\D\,m + \a?). 
It is easy to see that 

(29) IFOO-F.wi s 2 n \ x > \ s l) -s A2. •••••••• 
i=l 

By Theorem 2, §1, Ch. 5 in [11], from (28), (29) we have for any T > 0 

(30) ]P(SnZAa,r)-P(Z£Alhr)\^A2+c(l + \a\*)IT+ / U n / i O - g i O l dt. ' ' 5 

; -T 

Now we estimate \f(t)—g(t)\. By Theorem 4.6 in [12] we havd 

(31) 1 / ( 0 - «(01 ^ c(|/| + 1/1^(1 + \a\*)(A2+Ls)x(t), ; . . ; 
where 

and M is any subset of Nn containing not more than one element* 
V = { V

X
, V

2
,..., F„), V

T
= X F or VI=?I, i£N„, Y

1 ?
 Y

2
,.... Y

N
 are independent 

Gaussian r.v.'s with zero means and covariance operators A
T
, A

2
,..., A„, respec-

tively. 
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Denote 4=A+-Z-3- The left hand side of (2) is not greater than 1. Hence we 
may assume without loss of generality that 

(32) A m c 3 , 

where c3 is a constant small enough. In fact, if (32) is not true then (2) is obvious with 
c t ^ l / c 3 . We may also assume that 

(33) max A,- S A2'2S. ISiSn 

In fact, if there exists an z0 such that Af >/12/25 then tr A, >/l2 / 2 5 . Since tr A, = 
we have E ^ f ^ A 2 ' ™ . Moreover, 

E\Xk\2 = E\Xiai\2+E\X>\\ 

Now we consider two possible cases. 

Case 1. E\X,^E\Xfj2. Then E\X^>A^jl. Since A ^ E t f ^ we 
have A>A2l№/2, that is /l>(l/2)25 /23 . This contradicts assumption (32). 

Case 2. E\Xff>E\XioL\\ Then E\Xlf=-A2'25/2. We have 

(£|A?0|2)3/2 2s'2 (E|A?0|2)3/2 ~ ' 

Hence /1>(l/2)75/44. This also contradicts assumption (32). 
Furthermore, from the definition of x(t), (33) and Lemma 1 it follows that if we 

denote 
(34) S{ = inf Eexp { 2 * 7 { 2 DV}, £ Vj)}, 81 > 0, 

where @ i n ® 2 = 0 and 
(35) 2 

then 
(36) 

Note that for any symmetric r.v. X,z£H, 8>0 we have 

£ e x p {i(z, X)} ^ £ e x p {i(z, Xs)}. 
Therefore 
(37) <5fS inf £exp {2 ii ( Z DV'}, 2 Vj)}> 

where V;=Vf if Vj=X} and V'j=Vj if V j = f j t U 0 2 . By Lemma 2.5 in 
[5] we get for all t and M that 

4|D|«5e|i| s 1, 4 \D\ MS max {y, e} ^ 1, 

(38) di^c inf (exp ( - 02/(tr ¿ + 5 g ) ) +exp ( - y2/tr B) + <p (s)), 
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where ¿=min {2\t\, M}, <p(s)=Eexp {is (DU, V)/2}, U, V are independent Gaus-
sian r.v.'s with zero means and covariance operators A= Y" cov V, and B= 

lie i 
= 2 c o v K'> respectively. From (1.4) in [3] it follows that 

(39) <p(s) = ]J (1 +s2 /^/4)_ 1 / 2 , 
j=i 

where Pj,j= 1, 2, ... are the eigenvalues of (DAD)1/2B(DAD)112. 
Now we estimate the right hand side of (38) for different values of t. 

Case I. U|sSc/(/lln(l//l)). Put y=c lnx/2(l//l), ö = c l n ( l / / 4 ) , ő=cA, M= 
= c/(A In (1//1)). From (1), (27) we get 

(40) tx A+trB^A. 

Hence for the above values of y, q, S, M we have 

(41) exp (— g2/(tr A+ŐQ))+exp (— y2/tr B) S. cA°. 

By Lemma 5 and (32), (33), (35) there exist 6>x and a constant c such that 

(42) (DADf/2B(DADyi\G(cP, 13). 
From (39), (42) we have 
(43) ( K s ^ c O + i18)-1. 

Case2. c/(A In (\IA))^\t\^clA. Put y = c ln^O/z i ) , Q = C , M = C / ( A In (I/A)), 

S=cA. By Lemma 5 and (32), (33), (35) there exist © i and a constant c such that 

(44) {DAD)1'2 B {DAD)1'2 6 G (cA2'25 p, 13), trA^ cA2'25. 

From (39), (40), (44) we have 

(45) Si ciA'+il+A^KA In (1/4)))-13) c(Ac+A312'25 In13 (I I A)). 

Furthermore, put T=c/A, T^cftA In (1/A)). From (31), (34), (36), (37), (41), (43), 
(45) we get 

(46) f W-^M-gWdt^cil + W A f (1 + t2)x(t)dtm 
-T -T 

^ c(l + |a|3)/l / (\ + t2)5ídt^c(l + \a\s)A{ f + f + / ^ ( 1 ^ d r s 
— T — T

X
 T t —T 

OO * 

^ c ( l + | a | 3 ) / l ( l + / fiil+t^l^dt+A^ln^il/A^^cil + l a ^ A . 

Estimates" (30) and (46) imply (2). The theorem is proved. 
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Proof of Co ro l l a ry 1. This follows from the theorem. To this end it is enough 

to put h=0, D=T, the identity operator, and to note that if A0£G (/5,13), then 
A*£G(P, 13). 

The proof of Corollary 2 is obvious. 
I am grateful to professor J. Mogyoródi for his attention to my work. 
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