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A connection between the unitary dilation and the normal extension
of a subnormal contraction

C. R. PUTNAM

1. Introduction and theorem. Let H be an infinite dimensional, separable, com--
plex Hilbert space and let T be a bounded (linear) operator on H. If T is a contrac--
tion (|T)=1) on H, then, by a well-known result of B. Sz.-NaGy [7] there exists a.
Hilbert space K> H and a unitary operator U on X for which

(1.1) T"=PU"H and T = PU™H, n=0,1,2,...,

where P is the orthogonal projection P: K—H. If Kis the least subsp;ace of K which
reduces U and contains H (as will be supposed) then U is the (unique) minimal uni--
tary dilation of T. See HALMOs [3], Sz.-NAGY and Foiag [8].

Next, let T be any subnormal operator, so that there exists a Hilbert space
K’> H and a normal operator N on K’ for which NHc H and T=N|H. Thus, N’
is a normal extension of T and, if P’ denotes the orthogonal projection P’: K’ —H,

(1.2) T*=N"H and T = P’N™H, n=0,1,2,....

In case K’ is the least subspace of K’ which reduces N and contains H (as will be-
supposed) then N is the (unique) minimal normal extension of T. (See HALMOS [3]
and, for an extensive treatment of subnormal operators, CoNwAY [2].) The operator T~
is said to be a pure subnormal operator if it has no normal part.

Henceforth, it will be supposed that T is both a contraction and a pure subnor-
mal operator. Let the associated operators - U and N defined above have the corre--
sponding spectral resolutions

(1.3) U= [2zdG, onKand N= [zdE, on K’,
C D=
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where D is the unit disk D={z: |z|<1} with closure D~ and C={z:|z|=1}. The
main object of this note is to point out the following explicit connection between the
operators U and N:

Theorem. Let T be a pure subnormal contraction on H with the minimal unitary
dilation U on K and the minimal normal extension N on K’ of (1.3). Then, for any Borel
set B on C and for any vector x in H,

(14) VEB)x12+ [ hy(2) ALE.x]* = |GB)x?,
where

(1.5) he(2) = (1/27) [Re(P.()dt, with P,(f) = (¢*+2)(e"—2)
B

and B,={t:0=1=2m, e“cB}.

The function Re (P,(¢)) is the Poisson kernel and, as is well known, is positive
forall t€C, z€D, while hy(z) is harmonic in D.

The formula (1.4) is contained ‘“‘between the lines” in [6], pp. 333—334, but
apparently has not appeared explicitly in theliterature. For completeness, the argument
will be given below.

As above, let P and P’ denote the orthogonal projections P: K—~H and P’: K’ —~
—H, so that, by (1.1) and (1.2), for x in H and n=0,1,2,..., one has T"x=
=PU"x=N"x and T""x=PU™x=P’N""x. Hence, if f=f(z) is analytic in D and
«continuous in D~ then

ffdE:x=P [fdG.x and P’ [FdE.x =P [ fdG,x.
D- [o] D= (¥

‘Consequently, if #=A(z) is any real harmonic function in D which is continuous on
D~, then
P’ [hdE,x =P [hdG,x, xcH.
D- [

Next, let B be any closed subset of C and let ¢ be a real-valued continuous func-
tion on C satisfying ¢=1 on fand 0=¢<1 on C—pB. Then there exists a function
h(2), given by the Poisson integral, which is harmonic in D, continuous in D, and
satisfies h=¢ on C. Consequently,

P'([hdE+ [odE)x=P [¢dG,x, xcH.
D [of C

‘On forming inner products with x one obtains
(1.6) fodlEx*+ [hd|Ex]*= [¢d|G.x|
(o D C
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On replacing ¢ by ¢,=¢" and h by the corresponding 4,, n=1, 2, ..., one sees that
¢1=@,=... and the sequence {¢,} converges to the characteristic function of f. Simi-
larly, 0=h,=1, ly=h,=..., and {h,} converges to hy(z) of (1.5). Clearly, one has
the relation (1.4), when B is closed, and the extension of (1.4) to arbitrary Borel sets
readily follows.

It is known that |G, x]? is, for each x in H, x30, equivalent to arc length
Lebesgue measure on C; see Sz.-NAGY and Foias [8], p. 84. The absolute continuity
of E, on C follows from (1.4). (That is, E(8)=0 whenever B is a Borel set on C having
arc length measure zero.) Other proofs of this last result are given in CoNwaY and
OLIN [2], p. 35, OLIN [4] and PuTNaM [5] (see also [6]).

2. U as the sweep of N. It may be noted that (1.4) of the Theorem or, equiv-
alently, (1.6), in which ¢ is now any continuous function on C and h=h(2)=¢(z) is
its harmonic extension to D~ (via the Poisson integral), can be interpreted in terms of
the sweep of a measure. (For the concept of “sweep” see CoNwAY [2], p. 334.) Thus,

one has
fodu=[oap,
b+ ¢

where du=d|E,x||* and dfi=d|G,x[? so that fi on Cis the sweep of zon D~.
3. Two corollaries.

Corollary 1. Under the hypotheses of the Theorem, suppose that, in addition,

3.1 . x =E(C)x for some xcH, x#0.
Then
3.2) E, on C is equivalent to arc length measure on C,

that is, E(f)=0 for a Borel set B of C ifandonlyif B has arc length measure zero.

Proof. In view of the remarks at the end of section 1, it is sufficient to show that
B has arc length measure zero whenever E(B)=0. It follows from (3.1) and (1.4) that
E(Jz] <1) x=0, so that | E,x|*=| G, x]? z on C. However, as noted above, |G, x|2 is
equivalent to arc length measure on C and the proof is complete.

For use below, let o,={¢*:0=s=r}, 0=t=2n, and put E,=E(x) and
G,=G(x). If A=la, blc[0, 27, let AE=E,—E, and AG=G,—G,.

Corollary 2. Suppose that for some x€H, x#0,
(3.3) inf {]4Gx}?/|l} = 0,

where A is any subinterval of [0, 2] and |A|=>0 is its length. Then (3.1), hence also
(3.2), holds.
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Proof. By (1.4) and (1.5),

G4 [4Ex[¥/141+(1)27) [ /1Al ( [ Re(P.() dr)d[E,x]* = | 4Gx|*/|Al.
D a4

By (3.3), there exists a sequence of intervals 4,, |4,|=0, n=1,2, ..., where 4,=
=la,, b,] and a,, b,—~c for some cin [0, 2r]. It follows from (3.4) and Fatou’s lem-

ma that
[Re(P.())d|E.x|* = 0.

Consequently, E(D)x=0, that is, (3.1), and hence (3.2).

4. Remarks. It follows from Corollary 2 that if E, on C is not equivalent to arc
length measure on C (so that there exists a Borel set f on C of positive arc length
measure for which E(B)=0), then, for every x in H, x#0, there exists a constant
k, for which || AGx||?/|4d}=k,>0 for all subintervals 4 of [0, 2a]. This result can be
regarded as a refinement of the relation

4.1) log (d||G,x||*/d?)€ L(0, 2x),

which is valid whether or not E, on C is equivalent to arc length measure on C. In
fact, (4.1) holds for arbitrary completely nonunitary (not necessarily subnormal)
contractions T'; see Sz.-NAGy and Foias [8], p. 84.

Since for each x€H, both |E,x||? and ||G,x|? are absolutely continuous on
[0, 27), it is seen from (3.4) with A=[¢t, 1+ 4¢] that

4.2 d|E, x]?/dt+(1/2=%) fRe (P.(®))d||E.x|? = d|G,x]¥dt

holds a.e. on 0=¢=2n. In fact, the relation corresponding to (4.2) but with the
equality replaced by “="’ follows from Fatou’s lemma. That, in fact, equality holds
(a.e.) follows from an integration and the fact that x=E(D")x=G(C)x.

We are indebted to K. F. Clancey and to J. B. Conway for very helpful discus-
sions, especially in connection with the “sweep’ interpretation of (1.4) as given in
section 2.
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