
Acta Sci. Math., 51 (1987), 3—15 

The finitely based varieties of graph algebras 

KIRBY A. BAKER*, GEORGE F. MCNULTY** and HEINRICH WERNER 

Dedicated to the memory of András P. Huhn 

1. Introduction 

S H A L L O N [17] proposed a method of making graphs into algebras (algebraic 
systems) for which even a small finite graph can have a rich theory of equations 
with unusual properties. 

Specifically, for any graph G (possibly with loops at the vertices but without 
multiple edges), add one new element °° to obtain the set =GU{°°}, and 
define a binary operation * on G® by x*y—x if x and y are joined by an edge, 
and x*y=°° otherwise. The Shallon graph algebra is the pair =((?#;#>. 
Such algebras have been investigated in [9], [12], [14], [15], [16] and [17]. 

An equational basis for an algebra is a list of equations, true in the algebra, 
of which all equations true in the algebra are logical consequences. L Y N D O N [ 7 ] 

discovered the surprising fact that a finite algebra may have no finite equational 
basis. His example had seven elements and one binary operation. M U R S K I Í [ 1 0 ] later 
found a three-element example. Such algebras are said to be nonfinitely based. 

S H A L L O N [17] showed that for the looped graph Ls of Figure 1, L3* is nonfinitely 
based. She also noted that Murskii's example is M #, and gave additional examples. 

In a further development, P E R K I N S [ 1 3 ] and M U R S K I Í [ 1 1 ] discovered that some 
algebras, including Murskii's example, are nonfinitely based in a contagious way: 
If the algebra in question is a subalgebra or homomorphic image of another finite 
algebra, then that algebra too is nonfinitely based. More generally, an algebra A is 
said to be inherently nonfinitely based [13] if A is contained in some locally finite 
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variety but in no finitely based locally finite variety. (A variety is said to be locally 
finite if its finitely generated members are finite.) In [1], the authors showed that 
in fact all four graphs of Figure 1 have inherently nonfinitely based graph algebras. 
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It follows that any graph with one of these four as an induced subgraph also has 
an inherently nonfinitely based graph algebra. 

We obtain the following facts. 

1.1. Theo rem. A graph G has a finitely based graph algebra if and only if 
G has no [induced] subgraph isomorphic to one of the four graphs of Figure 1. 

1.2. Co ro l l a ry . If a graph algebra is not finitely based, then it is inherently 
nonfinitely based. 

Indeed, in Section 2 it is shown that the graph algebras of graphs not containing 
one of the four graphs of Figure 1 are members of a specific variety (Proposition 2.4), 
and in Section 3 it is shown that all graph algebras in that variety are finitely based 
(Theorem 3.1). These facts, together with the result quoted from [1], constitute a 
proof of Theorem 1.1 and Corollary 1.2. 

Further, we show that for the specific variety just mentioned, all subvarieties 
are finitely based. For each of these we give explicit defining equations. The lattice 
of subvarieties is discussed in Sections 4, 5. 

Graph algebras are natural candidates for applying the methods of [1]. They 
are locally finite and have absorbing elements. Further, it is not hard to show that 
the variety generated by a class of graph algebras must be locally finite and generated 
by a single graph algebra. Some interesting algebraic features, such as simplicity 
and subdirect irreducibility, can be easily discerned by inspection of the graph. 

It simplifies the arguments below to consider augmented graph algebras. For 
a graph G, the corresponding augmented graph algebra, here denoted by G*, is 
obtained from G # by declaring the absorbing element °° to be a miliary operation 
(distinguished constant). We actually prove Theorem 1.1 for the case of augmented 
graph algebras and then in Section 5 explain the modifications necessary for the 
unaugmented case. 

M o - 9 
r s 

A 
r s 

Pa 

Figure 1 
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We denote by (G) the variety generated by the augmented graph algebra G*. 
For each k—1,2,..., Lk and Pk will denote /c-vertex graphs in the form of a path, 
with and without loops, respectively, as in the diagrams of P4 and L3 in Figure 1. 
In particular, hx is the graph with a single looped vertex and Px is the graph with 
a single unlooped vertex. For graphs G and H, G+H will denote the disjoint union 
of G and H, with no edges between the two. 

In most respects we follow the terminology and notation of [1] and [2]. Additional 
valuable references are [3] and [8]. We use the notation G both for a graph and for 
its vertex set. By a subgraph we always mean an induced subgraph. 

The authors are grateful to the referee for detailed suggestions. 

By a complete graph we mean a graph in which every two vertices are joined 
by an edge and in which there is a loop at each vertex. A graph G is said to be bi-
partite-complete if G decomposes into two disjoint subsets, G=G0+Gl, and there 
is an edge between every member of Ga and every member of Gx but no other edges; 
in particular, there are no loops. 

2.1. P r o p o s i t i o n . For a graph G, the following conditions are equivalent: 
(a) G has no subgraph isomorphic to M, T, Pt, or L3; 
(b) each connected component of G is complete or bipartite-complete. 

Proof . Trivially, (b)=>(a). For (a)=>(b): Let G be a connected graph that does 
not contain M, T, Pi, or L3 as a subgraph. Since M is not a subgraph of G, G has 
either no loops at all or a loop at every vertex. 

Case 1: All vertices of G have loops. Since L3 is not a subgraph of G, any two 
vertices are connected by an edge and hence G is complete. 

Case 2: No vertex of G has a loop. Since T and Pt are not subgraphs of G, 
each path of three edges must have an extra edge between its beginning and end 
vertices, as portrayed in Figure 2. 

Thus every vertex has an edge to any other vertex at an odd distance, but no edge 
to any vertex at an even distance. Therefore G is bipartite-complete. 

We shall now need more information about the class of graphs G whose aug-
mented graph algebras G* belong to a given variety V. A groupoid with absorbing 

2. A characterization of graphs with excluded subgraphs 

Figure 2 
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element is an algebra with one binary operation and a nullary operation °° that is 
absorbing for the binary operation. 

2.2. Lemma. Let V be a variety of groupoick with absorbing element The 
class of graphs G with G*£V is closed under formation of 

(i) subgraphs; 
(ii) strong homomorphic images; 

(iii) Cartesian products; 
(iv) disjoint (i.e., disconnected) unions. 
(For a converse see P O S C H E L and W E S S E L [ 1 4 ] and Kiss [ 4 ] ; for related results 

on digraph algebras see P O S C H E L [ 1 4 ] , [ 1 5 ] . ) 

Proof . For (i): If H is a subgraph of G then clearly H* is a subalgebra of G*. 
For (ii): Let F: G-+H be a strong homomorphism of G onto H. In other 

words, /(jc) is adjacent to / ( y ) if and only if x is adjacent to y. Extend / to G* by 
setting / (°°) = «>. Then / becomes a homomorphism of G* onto H*. 

For (iii): The subset B={x£ JJ Gf \ x(i) = °° for some /} defines a congruence 

0 = i d U ( B X B ) on ¡/Gf, and €( J] GA* = ([[ Gf)/0. 
iii ¡ 6 / ¡ 6 / 

For (iv): The subset C—{x€ ]J G* \ for at most one i} defines a 
¡€1 

subalgebra of ]J Gf isomorphic to ( £ Gf)*. 
¡ei ai 

This lemma enables the construction of many augmented graph algebras in 
a variety V containing G* for some graph G. 

2.3. P r o p o s i t i o n . Suppose V is a variety containing G* for some graph G. 
(a) If G contains a connected component that is complete and has at least two 

vertices, then V contains all graphs whose connected components are complete. 
(b) If G contains a connected component that is bipartite-complete and has at 

least three vertices, then V contains all graphs whose connected components are 
bipartite-complete. 

Proof . By 2.2-(iv), it suffices to prove that V contains all complete graphs in 
case (a) and all bipartite-complete graphs in case (b). 

For (a): By (i) V contains L\. Every complete graph is a subgraph of some 
power of L2 and so yields an augmented graph algebra in V. 

For (b): If G contains a connected component that is bipartite-complete and 
has at least three vertices, then by (i) V contains P f . P 3XP 3 has the two compo-
nents X and Q of Figure 3, and every bipartite-complete graph is a subgraph of 
some power of Q; hence 2.2-(iii) and 2.2-(i) apply to show that V contains every 
bipartite-complete graph. 
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X Q 

Figure 3 

In contrast to Proposition 2.3, these graphs G have the property that every 
power of G has only copies of G itself as connected components: P±, and P2. 

2.4. P ropos i t i on . All augmented graph algebras that are not inherently non-
finitely based belong to the variety (Pz+L2). 

(The converse is true and forms part of Theorem 3.2.) 

P roof . The variety V=(P2+L2) contains L\ and therefore contains all 
complete graphs by Proposition 2.3. By 2.2-(i) and 2.2-(iii), V contains (P S XL Z )* . 
But P 2 X L 2 ^ Q , a bipartite-complete graph of more than two elements, so that 
V contains all bipartite-complete graphs by Proposition 2.3. Now, any augmented 
graph algebra that is not inherently nonfinitely based has components of only these 
two kinds, by Lemma 2.1, and so is in V by 2.2-(iv). 

Since we want to give finite equational bases for the varieties in question, we 
must examine the evaluations of (groupoid) terms in augmented graph algebras. 

Because graph varieties have an absorbing element «>, their equations have a 
particular form: 

3.1. Lemma. Let V be a variety with absorbing element °o and a=x an 
equation true in V. Then either a = x is a regular equation (i.e., in a and i the 
same variables occur) or else the equations a = °° and T = °° also hold in V. 

P roof . Assume some variable x occurs in a but not in t . Replace x by °° 
and leave all other variables unchanged. Then a evaluates to <*> and hence 
holds in V. Since <T=T also holds in V, o = <=° follows. 

A term x takes the value of its leftmost variable or depending on whether 
or not for each subterm cr2 - a3 of r the values, of the leftmost variables of <r2 and 
<r3 are connected by an edge in the underlying graph or not. 

3. Equations and the finitely based varieties 
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Here are some simple examples of equations true in every augmented graph 
algebra ; see Figure 4 for illustrations of substitutions that give values other than <=° : 

(0) A'" = «= = °°xr, 

(1) xy = (xy)y, 

(2) x(yz) = (xy)(yz), 

(3) (xy)z = (xz)y, 

(4) xy = x(yx), 

(5) x((yz)u) = (x(yz))(yu). 

(1),(4) o o (3) 

If all vertices of a graph are looped (as in a complete graph) its augmented 
graph algebra satisfies the idempotent law 

(id) xx = x. 

However, if no vertex has a loop (as in a bipartite-complete graph) its augmented 
graph algebra satisfies the nilpotent law 

(np) xv = yy. 

These two laws are contradictory, in the sense that they together imply x=y, the 
equation of the trivial variety. 

Additional equations true in and LÏ are these; illustrations giving values 
other than °° are shown in Figure 5. 

(6) *(j(zw)) = (x(yz))(uz), 

(7) (x(yz))(uv) = (x(yv))(uz), 

(8) • = x(yy), 

(9) (x*)(yz) = (x(yy))(zz). 

(The proofs are omitted. The solid edges in the graph diagrams are edges that must 
exist in order that the terms have values given by their leftmost variables.) 
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U V X z 
Figure 5 

Another useful consequence of these equations is that 

(10) x(yy) YTT x(yy)(yy) (xx){yy) Tjf (x(xx)) (;>>>)• 

The difficulty with varieties generated by graph algebras, augmented or not, 
is that most algebras in such varieties are not graph algebras. For example, the 
product of graph algebras is typically not a graph algebra. Thus in order to find 
an equational base for the variety generated by a graph algebra it is not sufficient 
to consider graph algebras alone (augmented or not). Our strategy will be as follows: 

Step 1: Give a finite generator G* of the variety. 
Step 2: Give a description of (possibly) all augmented graph algebras in the 

variety. 
Step 3: Give a finite set of equations true in G* (the hoped-for equational base). 
Step 4: Use the equations of Step 3 to find a normal form for all groupoid terms. 
Step 5: Determine all equations between normal forms not derivable from the 

equations of Step 3 and show that they fail in G*. 
Note that if G has two connected components G0 and Gj, G=G 0 +Gj , then an 

equation holds in G* if and only if it holds both in G0 and in Gx. 

3.2. Theorem: Let V be the variety (P2+L2). 
(a) G*£V if and only if all connected components of G are complete or bipar-

tite-complete. 
(b) The equations (0)—(9) form an equational base for V. 
(c) By using the equations (1)—(9), every term in which «> does not occur can be 

transformed into one of the normal forms 

(i) x (one variable), 

(ii) x1(x1x1)(x2xj...(xnxj, « = 1, 

(Hi) x1(yix1)(y2x2)...(ynxn), » S i , {*!, •••,xn}n{>1, ..., j„} = 0, 
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where ulu2...un—[...(u1 u2)u3...)un (association from the left). In type (iii) the vari-
ables jcl5 ..., x„ will be referred to as bottom variables and yt, ...,y„ will be referred 
to as top variables. 

(d) A regular equation i=c is derivable from (0)—(9) if and only if both sides 
have the same normal form, the same leftmost variable, and the same top and bottom 
variables (in the case of type (iii)) or both sides have an occurrence of 

(e) An equation not derivable from (0)—(9) fails in (P2+L2)*. 

Proof . The " i f" direction of (a) is clear by previous reasoning and the "only i f" 
direction follows from the rest of the theorem, since by Proposition 2.1 every other 
graph is inherently nonfinitely based and hence cannot be a member of the locally 
finite and finitely based variety V. 

The condition (b) follows from (c)—(e) and the fact that (0)—(9) hold in 
(Pt+LJ*. 

For (c): First we show that the terms of the form x(u1v1)...(u„v„) 
(n—0) are closed under multiplication (in the presence of (0)—(10)): Write 
Q=x(ulv1)...(unvn) and <r=y(r1s1)...(rmsm). By using (3) repeatedly we have 
ga=x[y(r1s1)...(rmsm)](u1v1)...(u„v„). If m=0, we use (4) to replace xy by x{yx), 
and we are done. If m > 0 then 

x b f a s i ) Tly * Lv O^ s t ) . . . (>'m-ism-i)rm](smrm) = 

^ * I>m Ol Si) • • • (rm _ ! Sm _ J ] (sm rm) = ... = X | > x ... rm] (Si rj... (sm r j . 

By an induction on m using (5), (3) and (1), we obtain that x[yr1...rm]=x(yr1)...(yrm) 
for TWSI. Thus aq is reduced to the desired form. 

Since terms equivalent to terms of the desired form include the variables and are 
closed under multiplication, we conclude that any term T without can be written 
in the form ^(MJ^)...(junvn), where x,u1,v1, ...,u„,vn are the variables occurring 
in T. 

By equation (7) we can freely interchange the ...,vn and then by (3) and 
(7) together we also can interchange the ux, ...,«„ among each other. If some ut=Vj 
we can use (3) and (7) to obtain t^— vx and then thence 

x(M1uJ(uiv£...(unv„) = X(«I "I) (W2 u2) (v2 v2)...(un un) (vn v„), 

as follows: x{u lu1){u iu2){v iv2)^(^x(uxu1)][x{u1u iyi)(u2v2), and the computation 
of multiplicative closure given above shows that 

"l)] [^(«1 "l)l = xixU^iUj Uy) = X(U± UJ(UX MJ) = X(«I MI). 

Moreover, by (10), x(u1u1)=x(xx)(ulu1), and therefore we may assume 
x=ut. By (1) we may also assume that all the variables are distinct. If some ut=x, 
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we can use (8) to obtain ui—vi for some i. Hence in these cases we arrive at normal 
form (ii). 

Now we may assume {w1; ..., w„}fl v„}=0 and ...; «„}. By 
(2) and (4), x(u1v1)=(xu1)(ulvl)=x(u1x)(u1v1), so we may assume xd {vx, ..., v„}, 
say x=v1. Thus in this case z reduces to normal form (iii). It is not always possible 
to remove all duplications of variables; however, if there are duplications both 
among the top variables and among the bottom variables we can remove them 
using (3), (7) and (1). Furthermore, the following reasoning shows that duplications 
among the uu ...,u„ can be arranged so that only ut is duplicated, and similarly 
for vx, ...,»„: 

x("iUi)(»1»2)(«3i'3) x(u1v])(u1v2)(usv3)(usvs) = 

= x (mx u3) fa v3) («3 vj (us Vg) ^ xfavsXusvJCuaVz) = xCu^Xu^XugVs). 

This reasoning already provides a proof for the " i f" direction of (d), while 
the "only i f" direction follows from (e). 

For (e): By Lemma 3.1 we need consider only equations a = <» and regular 
equations a=z in which °° does not occur. 

Case 1: Let <j=x be a regular equation with a of type (ii) or (iii). Then o= 
=x(xx)—xx by (1) and (4) and hence the equation a=x is equivalent to the idem-
potent law x=xx, which holds in but fails in P* («'=1, 2, 3). 

Case 2: Let a—z be a regular equation with a and z of type (ii). If a=z 
is not derivable from (0)—(9) then a and T must have different leading variables 
x and y. Replacing all other variables by x we derive the equation x(xx)(yy)= 
=y(yy)(xx), which is equivalent to x(yy)=y(xx), by (10). The equation x(yy) = 
=y(xx) clearly implies every regular equation a=z in which both a and T are of 
type (ii). is true in P* ( i=1, 2, 3) and in L* but not in L\. 

Case 3: Let <r=z be a regular equation with a of type (iii) and z of type (ii). 
Substitute x for each bottom variable and y for each top variable of a. Then <7= 
=x(yx)=xy and z=x(xx)(yy)=x(yy) or z=y(xx)(yy)=y(xx) (see Case 2), 
and hence we can derive xy-x(yy) or xy=y(xx). From xy=x(yy) we can 
derive the associative law: 

x(yz) = (xy)(yz) = x(yy)(yz) = x(yy)(yy)(zz) = x(yy)(zz) = (xy)(zz) = 

— (x (zz)) y — (xz)y = (xy) z 

and conversely the associative law implies xy^(xy)y=x(yy). xy-x(yy) holds 
in Px and in L\ but not in P2* and L*. On the other hand, from xy=y(xx) we can 
derive the commutative law: 

xy = y(xx) = (y(xx))(xx) = (j(>x))(xx) = ^(j^(xx)) = y(xy) = yx. 

Then xy=yx=x(yy), as before. 
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Case 4: Let o=x be a regular equation with a, x of type (iii). If a and x have 
different top and bottom variables the same substitution as in Case 3 will lead to 
an equation xy=x(yy)... or xy=y(xx)... and we are in Case 3. Since <T=T is 
not derivable from (0)—(9) and since we assume that top and bottom variables 
coincide, the leading variables must be different, say x and z. Substitute y for all 
top variables and x for all bottom variables different from z and obtain from <j=x 
the equation 

which in turn obviously implies a = x. x(yz)—z(yx) fails in P* and L\ but holds 
in P* and L 

Case 5: Let CT=°° be an equation such that °° does not occur in a . By sub-
stituting x for all variables in a we obtain the equation xx=&= or even x=°°. 
These equations fail to hold in L*. If a has a normal form of type (iii), by substituting 
x for all the bottom variables and y for all the top variables, we can obtain 
xyj^x(yx)^a=°o. Note that x— °° =>xy= °°=>xx= and moreover that x = °°<=> 
<*x—y, xy=°°oxy=zz, and xx=o°oxx—yy. 

This completes the proof of (e) and the whole theorem. 

The preceding proof was a bit more elaborate than actually needed because 
we want next to classify the subvarieties of V and therefore need a classification of 
all possible equations, as given in the proof. 

4.1. T h e o r e m . The lattice of all subvarieties of V=<P2+Z,2) is as given in 

x(yz) ~ (xy)(yz) = x(yx)(yz) = z(yx){yz) ~ z(yx) 

4. The lattice of finitely based subvarieties 

Figure 6. 

(P2+LH 

C z + i i ) (Pl + L 2) 
\ / \ ^ \ 

(P i + Li) (Li! 
\ / \ / 

C i ) 

(0) 

Figure 6 
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These varieties have the following equational bases: 

(P2+L2): (0)—(9); 

(Ps+Li): (0)—(9)> x(yy) = y(xx); 

<p3y- (0)—(9), xx = yy; 

(P*)- (0)—(9), xx = yy, x(yz) = (yx); 
(0), xy — uz; 

<0>: x = y, 

(P2 + L1): (0)-(9), x(yz) = z(yx); 

(Pi+L2): (0)-(9), x(yz) = (xy)z~, 

(Pi+Lt): (0), x{yz) = {xy)z, xy = yx, xy = x(yy); 

(L2): (0), x(yz) = (xy)z, XX — X, x(yz) = x(zy); 

(0), x(yz) = (xy)z, XX = X, xy = yx. 

Proo f . From the proof of Theorem 3.1 we can deduce the following classifica-
tion of equations not derivable from (0)—(9). 

(a) Each equation <7=°° not derivable from (0)—(9) is equivalent to one of 
.v—y, xy=zz, or xx=yy. 

(b) Each regular equation x=i is equivalent to xx=x. 
(c) Each regular equation <r=r with both sides of type (ii) is equivalent to 

x(yy)=y(xx). 
(d) Each regular equation a=x with both sides of type (iii) with the same top 

and bottom variables is equivalent to x(yz)=z(yx). 
(e) Each of the remaining regular equations <t=t implies x_y=x(j.}>) or even 

xy=y(xx). The first of these implies every regular equation o = x with the same 
leading variable, because xy=x(yy)<=>x(yz)=(xy)z. The second of these implies 
every regular equation <r=r, because xy=y(xx)o(x(yz)=(xy)z & xy—yx). 

This reasoning shows that every equation not derivable from (0)—(9) is equiva-
lent in the presence of (0)—(9) to one of the equations x=°° , xy=°°, xx= 
x x = x , x(yy)=y(xx), xy=x(yy), xy—y(xx), x(yz)=z(yx). Moreover, between 
these we have the implications necessary to yield the diagram claimed by the theorem, 
when it is further observed that 

xx = °° and xy = x(yy) imply xy = 
xx = °° and xx — x imply x = and 

x(yy) = y(xx) and xx = x imply xy — yx. 

4.2. C o r o l l a r y . For any graph G either G* is inherently nonfinitely based 
or else G* is finitely based and generates one of the eleven varieties in Theorem 4.1. 
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5. Graph algebras versos augmented graph algebras 

The situation for augmented graph algebras is now clear. To obtain similar 
results for graph algebras only a little more work is needed. By removing (0) from 
all the bases given in Theorem 4.1 and taking [G] to mean the variety generated 
by G *, analogously to (G) for G*, the arguments given above yield eleven finitely 
based subvarieties of [P2+L2]. 

However, the analysis of the nonregular equations not derivable from (1)—(9) 
must now be done without the help of 3.1 and (0). It turns out that there are only 
three additional nonregular equations: x=xy, xx=xy, and xx=x(yy). In the 
presence of (0) and in all graph algebras x—xy is equivalent to x=y and xx=xy 
is equivalent to xy=zz. In the presence of (0) and (4) and in all graph algebras 

is.equivalent to xx=yy. However, (1)—(9) are not sufficient to establish 
any of these equivalences. There are, in fact, three additional subvarieties of [P2+L2 \ : 

These new varieties are not generated by graph algebras. In the case of graph algebras 
we obtain the lattice of Figure 7. 

We deduce an analogue of Corollary 4.2 for graph algebras: 

5.1. Corol la ry . Let G be any graph. If G has an induced subgraph isomorphic 
to one of M, T, Pi, or Ls, then [G] is inherently nonfinitely based. Otherwise, [G] 
is one of the eleven finitely based varieties generated by graph algebras and appears 
in Figure 7. 

[/„, based on x = xy, 

Ux,. based on xx = xy, 

U2, based on (1)—(9) and xx = x(yy). 

[/»2 + Z.d 

[Pj Ux [^I + LJ [¿2] 

\ I X X I 
[Pi] i/o [¿l] 

[ 0 ] 

Figure 7 
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