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Horn sentences in submodule lattices 

GÁBOR CZÉDLI 

To the memory of András P. Huhn 

1. Introduction. Given a ring R with 1, a lattice is said to be representable by 
.R-modules if it is embeddable in the lattice of submodules of some i?-module. 
The class L(i?) of all lattices representable by 2?-modules is known to be a quasi-
variety, i.e., to be axiomatizable by universal Horn sentences (cf. HERRMANN and 
POGUNTKE [9], HUTCHINSON [11] and, for another proof, [3]). The study of these 
quasivarieties was started in HUTCHINSON [10]. The main problem in this theory is 
to classify the possible quasivarieties of the form L(i?). This needs to answer the 
following question: 
(1.1) When does the inclusion L(i?1)^L(i?2) hold? 

Denoting by 7?-Mod (x) the category of jR-modules with cardinality less than or 
equal to a given cardinal x, the main result of [10] is the following. 

Theorem 1.2 (HUTCHINSON [10]). L ( ^ ] ) Í I L ( í 2 ) if arid only if for each in-
finite cardinal x there exists an exact embedding functor Rx -Mod (x) ->-R2 -Mod. 

Note that even a stronger result (cf. HUTCHINSON [11B]) is true: L ( I ? I ) G L ( I I 2 ) 
iff there is an exact embedding functor Rx -Moil 

By the help of this theorem, HUTCHINSON [10] proves a number of interesting 
results concerning (1.1). As the proof and the applications of this theorem require 
a good command of category theory and a hard technique, it seems reasonable to 
develop another approach to (1.1). As L(7?) is a quasivariety, the inclusion L(JRL) ^ 
QL(i?a) holds if and only if every Horn sentence satisfied in L(i?2) is also satisfied 
in L(i?j). Therefore (1.1) can be reduced to the following problem: 

(1.3) When does a Horn sentence hold in L(R)1 
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Our aim in the present paper is to investigate the connection between properties 
of rings R and Horn sentences holding in L(i?). We give some answer to (1.3) in 
Theorem 3.5, which, among others, enables us to give new proofs for some results 
of HUTCHINSON [10] concerning (1.1). Although our description (Theorems 4.1 and 
4.2) of the ring properties that can be characterized by Horn sentences is not com-
plete, it leads to a solution of the following problem of JÓNSSON [ 1 3 ] : 

(1.4) Is there a strong Mal'tsev condition for any Horn sentecne / which charac-
terizes if x holds in the congruence lattices of algebras of an w-permutable 
variety? 

The connection between ring properties and lattice identities, which are partic-
ular Horn sentences, was firstly studied by HERRMANN and H U H N [8]. After András 
P. Huhn had personally initiated me into their research with C. Herrmann, we 
with G. Hutchinson settled the case of lattice identities in [12]. The present paper 
resembles [12] in some extent; e.g., the use of Mal'tsev conditions is the main tool 
of investigations in both papers. The results of this paper are taken from the author's 
thesis [4]. 

2. Preliminaries. By a ring we always mean a ring with 1, and modules are 
always unitary left modules. Suppose R is a ring, let i?-Mod denote the class of 
i?-modules. If M is an jR-module then Con (M) and Su ( M ) will stand for the lattice 
of congruences and that of submodules of R, respectively. For a class Jl of modules, 
let Con ( J / ) = {Con (M): M^Jt} and Su ( Ji) = {Su (M): M£J(}. Then L(i?) = 
= I S Su(-R-Mod). As Con ( M ) S u ( M ) for any M<EI?-Mod (cf. BIRKHOFF [ 1 , p. 
159]), we have L(I?)=IS Con (i?-Mod). It is worth pointing out that exactly the 
same Horn sentences hold in L(i?), Su (i?-Mod) and Con (.R-Mod), whence, in many 
of the forthcoming results, L(J?) can be replaced by any of the other two. The lattice 
variety generated by L(i?) will be denoted by HL(ft), which consists of all homo-
morphic images of lattices in L(i?). 

For any integers m and n, let D(m, n) denote the sentence (in the first-order 
language of rings with 1) "(3x)(m • x=n-1)" where k-y or ky is an abbreviation 
for y+y + ...+y (A: times if &>0) or 0 (if k = 0) or -\k\-y (if jfc<0). D(m,n) 
is called a divisibility condition. Denoting the set of prime numbers by P, a map 
S: {0}UP-*co + l is called a spectrum if 

(a) 5(0) < a 
and 

0?) if S(0)>0 then S(p) = max {/: 0^/" and pl divides 5(0)} holds for all 
peP. 

For any spectra and 5 2 , let mean that 5j(0) divides 52(0) and, 
for all p£P, S1(p)^S2(p). Equipped with this (ordering) relation, the set S£s of 
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all spectra turns into a complete lattice (cf. Theorem 2.1 later). For a ring R, let 
SR be the map {0}Ui>—co+1 defined by (0)=char ,R=min {«: z'^1 and D(0, i) 
holds in 7?}, the characteristic of R (here min 0=0) and, for p£P, SR(p)= 
=min {/: and D(pi+1,p') holds in R} (here min 0=CO). HUTCHINSON [12] 

has shown that SR is a spectrum; it will be called the spectrum of R. 
Now, for a spectrum S with S(0)=0, let FR({xp: p£P}) be the free commu-

tative ring with 1 on the free generating set {.xp: p€P}, let Js denote the ideal of 
this ring generated by {pSiv)(pxp—1): p£P and S(jp)<a>}, and put Rs— 
= FR({xp. p£P})/Js. For S(0)=m>0, we put Rs=Zm, the factor ring of the 
ring Z of integers modulo m. 

For an integer n and a prime p, let exp (n, p) denote sup {/: 0s/<.co and pl 

divides n}. Then the main result of [12] is the following 

T h e o r e m 2.1 (HUTCHINSON [12]). (a) H L ( I ? ) and SR mutually determine each 
other. 

(b) The lattice varieties of the form HL(7?), R is a ring, form a complete lattice 
£Cr under the inclusion. 

(c) !£R is isomorphic to <£s. In fact, the map H L ^ H - S ^ is a 
lattice isomorphism whose inverse is £CS-*£CR, .S'>-<-HL(i?5). 

(d) D(0, n) holds in a ring R iff SR(0) divides n while, for m^0, D(m,n) 
holds in R i f f (V/?€-P)(exp (m,p)>exp (n, p)=>exp (n,p)sSR(j?)). 

By a Horn sentence we mean a universally quantified first order lattice sentence 
X of the form 

(2.2) (po^qo & Pi—^i & ••• & ptmt) =>P = <1 

where — l ^ i < c o and pa, q0, px, qx, ...,pt, qt,p, q are lattice terms. (In case 
t= — 1 the premise is empty and x is the identity pSq.) Let us call x regular if, for 
any two rings Rx and R2, SR=SRt and L(I? X ) (=Z imply L ( I ? 2 ) | = x . I.e., x IS 
regular iff the satisfaction of % in L(.R) depends only on SR or, equivalently, on 
H L ( / ? ) . By Theorem 2.1 (a), every lattice identity is regular. In Sections 4 and 8, 
we will deal with ring properties characterizable by regular Horn sentences as we 
have not succeeded in handling the general case. (This situation resembles [2].) 
HUTCHINSON [10] has shown that there are rings Rx and R2 such that SR —SRt but 
L ( J ? 1 ) ^ L ( I ? 2 ) , whence there exist irregular Horn sentences, too. In the forthcoming 
[6] we will explicitly construct an irregular Horn sentence. 

3. Mal'tsev type conditions. Given an integer « g 2 and a Horn sentence x, 
[3] associates a Mal'tsev condition with x such that the satisfaction of x in the con-
gruence lattices of an arbitrary n-permutable variety is equivalent to the satisfac-
tion of this Mal'tsev condition in "ll. Unfortunately, the Mal'tsev conditions in [3] 
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are so complicated that instead of recalling them and adapting them to the special 
case ^=2?-Mod it is better and shorter to develop them independently. As these 
conditions will be meaningful only when aU=R-Mod, they will be referred to as 
Mal'tsev type conditions. 

Our Mal'tsev type conditions will be given by certain graphs. First, for any 
lattice term p=p(x: x£U) we define a graph G{p) associated with p. (Here we 
adopt the abbreviation p(x: x£ {jc1? x2, ..., x„}) for p(xx, ..., xn). U is assumed 
to have a fixed order.) The edges of G(p) will be coloured by the variables x£U, 
and two distinguished vertices, the so-called left and right endpoints, will have special 
roles. In figures these endpoints will always be placed on the left-hand side and on 
the right-hand side, respectively. An x-coloured edge connecting the vertices u and 
v will often be denoted by (u, x, v). Before defining G(p) we introduce two kinds of 
operations for graphs. We obtain the parallel connection of graphs Gx and G2 by 
taking disjoint copies of Gx and G2 and identifying their left (right, resp.) endpoints 
(Figure 3.1). 

Similarly, we obtain the serial connection of Gx and G2 by taking disjoint copies of 
Gx and G2 and identifying the right endpoint of Gx and the left endpoint of G2 . 
(The left endpoint of Gx and the right endpoint of G2 are the endpoints of the serial 
connection, cf. Figure 3.2.) Now if p is a variable then G(p) is the following graph 

which consists of a single edge coloured by p. Let G(ptAp2) (G(/>]V/>2)> resp.) 
be the parallel connection (serial connection, resp.) of the graphs G(J>i) and G(JJ2). 
This defines G{p) for any lattice term p via induction on the length of p. For a graph 
G, let V(G) and E(G) denote the vertex set and the edge set of G, respectively. Note 
that E(G(J?))QV(G(P))xUxV(G(j>)) if p~p{x: x£U). 

Now let p—p(x: x£U) be a lattice term, let R be a ring, let M^R-Mod, and 
let (p be a map from Uinto Su(M). A map ij/: V(G(p))->-M will be called a connect-
ing map (with respect to q>) if (left endpoint)^=0 and holds for 
every edge (a, x,b)dE(G(p)). For a graph G, let .(<;p,\jr): G-^-M denote the fact 
that \j/: V(G)-»M is a connecting map with respect to cp. Given a y£M, if there 

Figure 3.1 Figure 3.2 



Horn sentences in submodule lattices 21 

exists a connecting map 1¡/: V(G(p))^M such that (right endpoint)^ =y then 
y will be said to be attainable by G(p) (with respect to <p). Knowing that XV Y= 
=X+Y={x+y: x£X and y£Y} and XhY=XC\Y hold for X, F€Su(M), an 
easy (and therefore omitted) induction on the length of p yields the following 

Lemma 3.3. For arty y(LM, y£p(x(p: x£U) i f f y is attainable by G(jj) 
with respect to (p. 

The following lemma will also be useful. 

Lemma 3.4. Assume that l(x: x£U) is a lattice term, M and K are modules 
over a ring R, \j/: M->-K is a homomorphism, p: U^Su(M) and cp: USu(^) are 
maps, andxpij/Qxq) for all x£U. Then t(xii: x£U)\pQt(x(p: x£U). 

Proof . The proof goes via induction on the length of t. If t£U, i.e. t is a 
variable, then the statement is obvious. If the statement is already true for tx and t2 

then for t=txVt2 we have 

t(x[i: x£ U)ij/ = (t^xp: xf U)+t2(x[i: U))ij/ = 

— t^xp: x£ U)il/ + t2(xp: x€ U)\j/ Q tx(xq>: x€ U) + t2(x<p: x€ U) — t(x<p: x£ U), 

while in the case t=t1f\t2 we have 

t(xp: x€ U)\j/ = (hixfi: x£ U)C\t2(xp\ x€ U))\j/ g 

g t^xp: xe U)\jjC\t2(xii: x£ g t^xcp: x£ U)f)t2(xcp: U) = t(xcp: x<E U). 
If G is a graph and if is a set then let HXG denote the graph whose vertex 

set and edge set are HxV(G) and {((h, a), x, (h, b)): (a, x, b)££(G)J, respectively. 
Note that HXG is isomorphic to U G, the disjoint union of \H\ copies of G. 

h£H 
Let us fix a ring R and a Horn sentence % of the form (2.2) where ¿SO. (The 

assumption t^O does not hurt the generality as any lattice identity p=q is equiva-
lent, modulo lattice theory, to the Horn sentence x^x=*p^q.) Let U be the set 
of variables occurring in /• Before formulating Theorem 3.5, we have to define cer-
tain modules over R. It seems reasonable to outline our goal roughly before the 
following tedious definition. In order to obtain a necessary condition for the satis-
faction of x in L(i?) we will start from a "small" module M", submodules X° for 
x£U, and an element Aep(X°: x£U). If p^X°: x£U)^q0(Jf°: x£C/) fails then, 
in order to improve this failure, we will extend X°, x£ U, and M° to appropriate 
X1 and M\ respectively. Then, by extending X1, x(LU, and M1 to X2 and M2 if 
necessary, we will try to remedy the failure of PxiX1-. x £ x £ U ) ; etc. 
After co steps we will obtain Mm= [J Mm and, for x£U, X°'= | J Xm. Now 

m<(o m<a> 
the premise of x will hold for X™, x£U, and the satisfaction of x in L(i?) will imply 
fleq(Xa: x££/)= IJ q(Xm- x£U). Lemma 3.3 will be our main tool in doing so. 
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Now the precise definition comes. First we define lattice terms pi and q{ for 
to: let Pi and qt be p} and qj, respectively, where j=i mod( /+ l ) and O^j^t. 

For any integer ma0, we intend to define a graph Gm, a subset Fm of V(Gm), an 
i?-module Mm and submodules Xm of Mm (for all x£ XJ) by induction such that 
V(Gm)<gMm, Mm is freely generated by Fm and, for all U, Xm is the submodule of 
Mm generated by {c—b: (jb, x, c)£E(Gm)}, in notation Xm=[c~b: (b, x, c)£E(Gm)]. 
(Here we have a map U—Su(Mm) which we denote by capitalizing and adding a 
superscript, e.g. x<—Xm and y^Y™ for x, ytZ U.) As Gm and Fm will determine 
Mm and Xm, x(i U, it will suffice to define the former two. 

Let G°:=G(p) and F° :— F(G(/?))\{left endpoint}, and, in order to ensure 
V(G°)QM°, identify the left endpoint of G° and the zero of M°. 

Assume that G m - \ Fm_1 , M m _ 1 and Xm~\ x£U, have already been defined 
for some m s l . Now the definition ramifies as we want to define two kinds of our 
graphs and modules. 

(a) Choose a subset Sm of M m _ 1 such that where P%~1 = 
=pm{X™-1: x€U). 

(b) Choose a subset Sm of M"-1 such that i ^ m " 1 where 
P,™-1, S™-1 and [Sm] denote pm(Xm~l: x£U), qm{Xm'1: x£U) and the submodule 
generated by Sm. 

In both cases, we put 
Fm:= Pm-1U({m}xSmx(K(C(9j) \{lef t endpoint, right endpoint})). 

We obtain Gm from G"'"1U ({m} X Sm X G (qm)) by identifying the zero of Mm and 
all the (m, s, left endpoint), s£Sm, and by identifying (m, s, right endpoint) and s 
for every s£Sm. Then V(Gm-1)'^V(Gm)<gMm and G"1-1 is a (weak) subgraph 
of Gm, i.e., £'(Gm-1)g£'(Gm)n(F(Gm-1)XC/XF(Gm-1)). Therefore Xm-1QXm, 
x£U. Obviously, Fm-iQFm and Mm'1^Mm. 

Now we have defined Gm, Fm, Mm and Xm, x£U, for all m^O. Note that, in 
both cases, these things depend on the choice of Sx, S2, Ss, ... because we want 
to make the following theorem easy to handle. We also note that the choice Sx =PX, 
S2=P\, S3—P\, ... is always possible. Let fx denote the right endpoint of G°=G(p), 
then we have 

Theorem 3.5. (A) Suppose that Sx, S2, S3, ... are chosen according to (a). 
If there exists a non-negative integer n such that fx(zq{Xn: x£U) then % holds in 
L(R) or, equivalently, in Su(J?-Mod). 

(B) Suppose that Sx, S2, S3, ... are choosen according to (b). Then % holds in 
L(i?) if and only if there exists a non-negative integer n such that fx£q(X"\ x£U). 

Proof . It suffices to prove (A) and the "only if" part of (B). 
To prove (A), assume that fxiq(Xn: x£U) holds for some n. Let ylg-R-Mod, 

for xeU let A"£Su(A), let ax£p{X'\ x£ZJ), and assume that pi(X':x£U)G 
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Qqi(X': x£U) holds for i ^ t (whence for i'<co as well). Let <p denote the map 
f/—Su(A), xi—X'. We need to show ax£q{X'\ x£U). Via induction on m, we 
intend to define two maps, ?;m: V(Gm)-~A and i/>ra: Mm—A for any m^O such 
that 

(/,„) (<p, t]m): Gm—+ A, and t¡/m: Mm-*A is a homomorphism extending both t]m 

and 
By Lemma 3.3, ax is attainable by G(p)=G° with respect to ( p . I.e., there is a map 
i f : V(G°)-~A such that fxif=ax and (<p, J/°): G°-^A. Extend ri°\F° to a hom-
omorphism i¡/°: M°—A. (Here \ stands for the restriction.) As M° is freely gen-
erated by F°, i¡/° exists and is uniquely determined. Since Ofj°=(left endpoint)»j0=0, 
ip0 extends >f, too, and (/0) is satisfied. 

Now let m s l and suppose (/m_x). I.e., (<p, tf-1): Gm~1-^A and i¡/m~l extends 
both i f - 1 and r]°. For x£ U, 

xm-l^m-l = [c_b. X) c)£E(Gm-1)]lpm-1 = 

= [c\j/m-1-biljm-1: (b, x, c)£E(Gm-1)] = [ct]m~1-brim-1: (b, x, c)eE(Gm~1)] g X', 

whence, by Lemma 3.4, 

S ^ — i c = p^JT-1: xe U)^-1 g Pm{X': *6 U) g qm{X': x£ U). 

I.e., Sm\l/m-1Qqm(X': x£U). By Lemma 3.3, for every s£Sm, is attainable 
by G(qm)^ {wj}x{.y}x (?(#,„) with respect to <p. I.e., there is a map >j™ such that 
(<p,»j™): {m}x{s}XG(g„)-^^ and (m, s, right endpoint)f)'s"=s^m-1. Put jjm = 
= i ? m - 1 U T r C - Then f f is really a map from V(Gm) into A, and it extends t]"1'1. 
Further, if s£Sm then ar]m = {m,s, right endpoint)f|m=5^m"1. Now let ijjm: Mm-*A 
be the unique homomorphism that extends t\m\Fm. For any F m _ 1 g Fm, ui]/m = 
=ur\m=ut\m-1=u\l)m-1. Hence and [Fm-1]=Mm~1 yield 
that t/>m extends t¡im~x. For u£V(Gm)\Fm either u£V(Gm-1) and utjm=urim-1^ 
=u\l/m-1=u\l/m or u£Sm and wf"=(m, u, right endpoint)?/"' = wi/im~1=wi/fm. Hence 
ipm is an extension of r\m. As rjm_1 and rj™, s£Sm, are connecting maps, so is t]m. 
I.e., G m ^ A , and ( / J holds. 

Now t]m and i//"1, satisfying (/m), are defined for all msO. From (/„) we conclude 
that, for U, 

X" tK = [c-b: (b, x, c)<iE(Gn)W = [c<pn-bip": (b, x, c)£E(Gn)] = 

= [cr\" — btf-. (b, x, c)6£,(G")] g X'. 

Hence Lemma 3.4 yields ax=fxrf^fx\\>niq{Xn-. x£U)xj/n^q{X': x£U). This 
proves (A). 

To prove the "only if" part of (B), assume that x holds in L(J?) and Fm, Gm, 
Mm, Xm ( O S m « a , x£U) are defined according to (b). Then F ° g F x g F 2 g . . . , 
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M°QM1QM2Q... and G°QGl!^G2Q... . Put F°:= (J Fm and Gm:= | J Gm 

(i.e., V(G<°)= U V(Gm) and E(Ga)= U E{Gm)). Let" Ma be the ^ m o d u l e m< co m< co 
freely generated by F" and, for x£U, let Xm=[c-b: (b, x, c)£Ga]. It is easy 
to see that V(G°>)QMa, (J Mm and, for x£U, Xco= \J Xm. We will m< co m<o 
show that the submodules Xa, x£U, satisfy the premise of 

Let the map £ / -Su(M' ) , x^X1 be denoted by cpl, IrSco. Since Xa= (J Xm 

m< co 
and X°<gX1QXiQ..., we obtain that, for any map r\\ V(G(pj) 
(cpm, tf): G(jpj)^MiS there is an m such that (cpm-\r]): G(pj)-^M'°,j+l<m<co 
and j=m mod (/+1). Hence, denoting the right endpoint of G(pj) by r and apply-
ing Lemma 3.3, we obtain 

(3.6) pj{X": U) = {b: (B^rt, = b and {<p°>, j): G(Pj)^ Mm)} = 

= {b: (3tf)(3m)(j+l < m < co, j = m m o d ( / + l ) , rtj = b 

and (<pm-\t,y. G(pj) M ra)} = 

= U({i>: (3fj)(rij = b and (<pm~\ ij): G(Pj)-+ Mm)): 

j+1 < m < co and j = m mod (i+1)) = 

= U ( p j { X m - x \ x£U): j + 1 < m < co and j = mmod( i+l ) ) . 

Since (cpm, identical map): {m}x {s}xG(qm)-^Mco, Lemma 3.3 yields segm(Xm: x£ U) 
for any s£Sm, m<oj. Therefore [Sm]Qqm{Xm: x£U). For and 
j=m mod (?+l) we obtain 

Pj(X-1: *€ U) = pm(Xm~1: x£ U) = P^1 = 

= ( / i s - N e s - o u ^ ^ n e s - 1 ) g [ s j u e s - 1 i 

i qm(Xm: tnUq^X"-1: U) g 

Q qm(X": x€ U)Uqm(X": xi U) = qm(X": xi U) = qj(X°". x£ U). 

This inclusion and (3.6) yield pj(Xa: x^.U)<^qJ{Xa: x£U), whence the premise of 
X holds for X", x£U. As Su{Mm)eL(R), p{Xm: x£U)Qq{Xa: x<£U). Lemma 
3.3 yields fi£p(Xm: x£U) as (cpa, identical map): G(p)-^M. An argument anal-
ogous to (3.6) shows that q(Xa: x£U) = | J q(Xm: x£U). Hence we have 

m < a> 
AtpiX"'- x£U)<=q(xm: x£U)= | J q(Xm: x£U). Therefore there is an n such m<o 
that fi£q(X"\ JC€ U), which completes the proof. 

4. Regular Horn sentences. Let U denote the set {x, y, z, t, e} of variables, and 
define the following lattice terms over U (the meet and join will be denoted by • and 
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+ , respectively): 

p:= (x+j)(z+i), (x+z)( j+4 w0:=x, 
si+i:=(Wi+t)(y+z) and wi+1:= (si+1+p)(x+z) for i ^ O . 

By induction, this defines st and Wj for all i ' s l , — 1. Now let m, n and k be 
non-negative integers, put 

Po'-= (O+v^-Ow^+^z, q0:= e, 

^;=((wk+y)(z+t)+wmn)(x+y+e)+x+z, 

and let y_(m, n, k) denote the Horn sentence 

Po S q0 =>p ^ q. 
Theorem 4.1. For any ring R and non-negative integers m,n,k, the Horn 

sentence %{m, n, k) holds in L(i?) if and only if there exists a non-negative integer 
i such that the divisibility condition D(mni+1,kn') holds in R. 

Note that, in virtue of Theorems 2.1 (d) and 4.1, y (m, n, k) is regular. To avoid 
the feeling that (3 i)(D(mni+1, kn')) in the above theorem is just a haphazard ring 
property we state the following result, which is almost the converse of Theorem 4.1. 
While we have collected all we need to prove Theorem 4.1, the following theorem 
will be proved only in Section 8. 

Theo rem 4.2. Let % be a regular Horn sentence. Assume that there is a ring 
R* of characteristic 0, i.e., SR„(0)-0, such that x holds in L(2?*). Then there 
are positive integers mx, ny and kx such that, for any ring R, x holds in L(i?) if 
and only if D(mxnx

+1, k.^nj) holds in R for some integer z'^0. 

Proof of Theorem 4.1. We will apply Theorem 3.5 (B) with the choice 
Sj=Pj(HJ~~l: heU). The graph G°=G(jp) is given in Figure 4.3, whence X=X°= 
= [/.]. Y=Y°=[f1-f2], Z = Z » = [ / 8 ] and r = r ° = [ / 1 - / 8 ] . Since G(q0)=G(qj), 

has no "inner vertex", i.e., \V(G(qj))\ =2, we have FJ = F°={f1,f2,f3} 
and M J = M ° , Let F and M denote F° and M°, respectively. As the only 
edge of G(cjj)=G(q0) is coloured by e, all the edges in E(GJ)\E(G°) are coloured 

Figure 4.3 
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by e, and we have XJ=X°, YJ=Y°, ZJ=Z°, TJ=T°, £°={0} and EJ = 
=[EJ~1Up0{Hj~1: hiU)]=Ejll+p0(Hj~l: h£U). We claim that 

P = LA], Wj = [f2+jf3] for j ^ - l , 

(4.4) ^ = [ / , - /2-1/3] for / S i , and 

£J = p j - i = { r/3: riR and nJr = 0} 

where V stands for v(H°: he_U) if v£{p, Wj, j,}. These formulas can be obtained 
by an elementary calculation, only a part of which will be presented. As any element 
a of M can uniquely be written of the form a=rlf1+r2f2+r3f3 where rx, r2, r3£R, 
we can compute as follows. 

P = (X+Y)C\(Z+T) = 

= {a€M: (3r l 5 r2, r3, r4£.R)(a = r 1 / 2 + r 2 ( / 1 - / 2 ) = ^ /g + r ^ / - ^ ) ) } = 

= {a€M: (3r l 5 r2, r s , r^R)(a = r 2 / i + 0 i - r 2 ) / 2 = ^/i+C'o-'^/a)} = 

= {a€M: (3r l 5 r2, r3, r4€i?)(a = r 2 / i + ( r i - r 2 ) / 2 = r ^ + O g - r J / g and 

ra = '-4, r\-r2 = 0, r 3 - r 4 = 0)} - K M : (3r2ei?)(a = r ^ ) } = {r2 / i : = [ / J . 

The rest of (4.4) follows similarly via induction. Another elementary computation 
of the same nature yields 

q(HJ: he U) = {af + bf2+ c/3: a, ft, c£R and = /cnJ'a)}. 

Therefore fx = \fx+0f2+0f3eq(HJ: h£U) iff D(mni+\ knJ) holds in R, and a 
reference to Theorem 3.5 (B) completes the proof. 

5. Systems of ring equations. Let w and v be natural numbers and, for i<v, let 
fi(}'j' j<u) be a ring term (i.e., a term in the language of unitary rings). Then 

fiiyj- j <u) = 0, 0 = ? / < v, 

is called a system of ring equations. This system is said to be solvable in a ring R 
iff there exist elements rj7 j<u, in R such that /¡(rj -. j<u)=0 for 

Lemma 5.1. For any Horn sentence y there is a set {En: n<co} of systems 
of ring equations such that 

(i) for any ring R, y„ holds in. L(i?) i f f there exists an such that En is 
solvable in R ; 

(ii) E0, Elt E2, ... is a weakening sequence in the sense that, for any n^co and 
any ring R, if E„ is solvable in R then ¿0 is En+l. 
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The p r o o f will only be outlined as it is relatively easy but would need a lot of 
technical preliminaries. First, consider a Mal'tsev condition (3n^co)(U„), where 
U0, t / j , U2, ... is a weakening sequence of strong Mal'tsev conditions, such that, 
for any congruence permutable variety "V, x holds in Con {V) iff ( 3 H < C O ) (U„ holds 
in i r ) . The existence of this Mal'tsev condition was proved by J 6 N S S O N [ 1 3 ] ; a Mal'tsev 
condition of this kind is explicitly given in [3]. We can easily associate a system E„ 
of ring equations with each U„ such that, for any ring R, U„ holds in i?-Mod (which 
is a congruence permutable variety) iff E„ is solvable in R (cf., e.g., [2, Claim 5.1] 
or [12, proof of Theorem 2] where analogous or particular cases are handled). 

C o r o l l a r y 5.2. Let R be the direct product of two rings, Rx and R2. Then 
L(i?)=L(i?j)VL(i?2) in the lattice of quasivarieties of lattices. 

Proof . We only need to show that an arbitrary Horn sentence / holds in L(i?) 
iff it holds in both L(i?x) and L (R 2 ) . It is easy to see that a system of ring equations 
is solvable in R iff it is solvable both in Rx and R2. Now if L ( 2 ? X ) |= / and L ( / ? 2 ) t= / 
then, by Lemma 5.1, there are m and k such that the appropriate Em and Ek are 
solvable in Rx and R2, respectively. Put n=max {m, k}. Then E„ is solvable in Rx 

and Ro, whence it is solvable in R and L ( I ? ) N / . Conversely, if L ( I ? ) L = X is assumed 
then L(J?x)Nz and L (R 2 ) t=x follows similarly and even more easily. 

6. Two results of G. Hutchinson. In this section we will deduce two. results of 
H U T C H I N S O N [10] from the results of Sections 3 and 5. 

C o r o l l a r y 6 . 1 ( H U T C H I N S O N [ 1 0 , Proposition 2 ] ) . Assume that Rx and R2 

are rings and there is a homomorphism of Rx into R2 (preserving 1, of course). 
Then L ( I ? 2 ) G L ( J R X ) . 

Proof . Let (p: R^R, be a ring homomorphism. It suffices to show that any 
Horn sentence holding in L(i?i) holds in L(JR2), too. But this is evident by Lemma 
5.1 as q> maps any solution of E„ in Rx to a solution of E„ in R2. 

P r o p o s i t i o n 6.2 ( H U T C H I N S O N [10]). Let Rx and R, be rings with the same 
spectrum S=SRi — SRt, and assume that either Rx and R2 are torsion free or 
S{0), the characteristic of Rx and R2, is a square free (i.e., divisible by p8 for no 
prime p) positive number. Then L ( I ? J ) = L ( I ? 2 ) . 

Proof . First we prove the statement under the following stronger assumption: 
either S(0) is a prime or Rx and R2 are torsion free. It is sufficient to show that L ( I ? X ) 

and L(-Ro) satisfy exactly the same Horn sentences. Therefore it suffices to show 
that an appropriate construction needed by Theorem 3.5 (B) does not depend (in 
a sense to be defined later) on the choice of R£ {Rx, /?2}. 
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Let F= {fx,/2,. . ,/ ,} be a set, let R<i{Rx, R»}, and let M be the free R-
module generated by F. A submodule C of M will be called normal, if it is of the 
form {^(Cjjf j i l ^ j ^ t ) : / < « c ] with a suitable n c<(o and integers c(J.. The 
form [2Kcijfj: 1 —J—0 ' be called a normal form of C. Note that if 
only F is fixed then distinct submodules (necessarily over distinct rings) may have 
identical normal forms. We need 

Claim 6.3. Assume that C, D£Su(M) are given by the respective normal 
forms [2(cijfj- l ^ ' ^ O : i<«c] and [ 2 ( d i j f j : 1 = 7 ^ 0 : i^nD\ Then there are 
normal forms of C+D and Cf)D that depend only on the normal forms 
\_2(cijfj'• 1 = / = 0 : and 1=7 —0 : ^ « J but do not depend on 

Proof of.Claim 6.3. The statement is trivial for C+D as [ 2 ( e i j f j : l=j=0: 

/<« c +n D ] , where eiJ=ciJ for / < n c and eij.=di_ncij for nc^i<nc+nD, is a 
normal form of C+D. Dealing wiht CC\D, put n=nc+nD, and let y and r stand 
for /»-dimensional column vectors. Then the system of linear equations 

2 (c,jyt: i < nc)-2 (dijync+,: i < nD) = 0 t) 

can be written of the form £ y = 0 for a suitable integer matrix B. It is easy to see 
that, denoting the entries of r by 

COD = {2 (<•,' 2 ( c t j f j : 1 S j ^ 0 : i < «c): and Br = 0}. 

A classical matrix diagonalization method of Frobenius yields that there are integer 
square matrices A and C of appropriate sizes such that A and C are invertible, 
their inverses are integer matrices and ABC is a diagonal matrix, i.e., the / th entry 
of the ith row is 0 whenever i^j (cf. FROBENIUS [ 7 ] ; this result is quoted with a 
proof in [12, p. 284 and Appendix]). Denoting C - 1 r by r ' and observing that, by 
the existence of A. £ r = 0 is equivalent to ABr=Q, we have 

{r^jR": BT = 0} = {rER": (ABC^C^R) = 0} = 

= { r £ R N : (3T'£R")((ABC)T' = 0 a n d r = Cr ' )} . 

As ABC is diagonal, (ABC)r'=0 is equivalent to g0'o=0, gxr[=0,..., g„-1r'n_1=0 
where the integers g0,gx, ...,g„-x are the diagonal entries of ABC and r'0, ..., r'n_± 

are the entries of r'£R". For each /', the equation 0 either makes no restric-
tion on r\ or implies r't= 0. Really, if R is torsion free then g^O implies /¡=0; 
if S(0)=SR(0)=p is a prime and p does not divide gt then there is a g' such 
that g'g,=1 m o d ( p ) and g^-0 implies r[ = 1 r\ =g'gir.=g/0=0 while ^¡/-.=0 
holds for all r\£R when p divides Put 1= {/: and gj'^0 holds for any 
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r'^R}, and let hu, O^i, l-^n, be the entries of the matrix C. Then r~ 
= 2Q 1 n r ' i - l<n) and we have 

COD = 

= {2 (n 2 (cuff 1 ^ t): i < nc): (3r'€R")(r = Cr' 

and r't — 0 for all / )} = 

= {2 (2 (hu>'i: I 2 ( c t j f j : 1 s j s t): i < nc): r'dR" and r\ = 0 for / $ / } = 

= {2 (r'l 2 (2 (hucu: i < nc)fj: 1 ^ j ^ t ) : I ^ n): r'eR" and r,' = 0 for / $ / } -

= [ 2 ( 2 ( » n c y : i < "c ) / j : 1 =j ^ t): /€/], 
proving Claim 6.3. 

Now, returning to the proof of Proposition 6.2, we intend to show that it is 
possible to choose subsets Sm in Theorem 3.5 (B) so that Fm={fl,fa, ...,ft } be 
the same for R—Rx and R=R2 and, for x£U, Xm be given in a normal form 
independent of . R S ^ , Rz}. This is clearly true for m=0; to start our induction 
step let us assume that this is true for m—1, m S l . Then, by Claim 6.3, P™~1= 
=Pm(Xm~1' x£U) also has a normal form \_2(c<iffj- l=j=t

m-i)- *'<«(m)] which 
does not depend on R£{Rx, R2}. Put j<« (m)} where si=2(c^)fJ\ 
1 Then Fm does clearly not depend on R£{Rx, R2} and, by Claim 6.3, 

Xm = xm~1 + 2([v-u]: (u, x, v)£E(Gm)\E(Gm-1)) = 

= Xm-x + 2 ( 2 ( [ » - « ] : ("> x,v)£E({m}X{s,}XG(qm))): i < « W ) 

can be given by a normal form not depending on R2}. Now a final use of 
Claim 6.3 yields that, for all m, q(Xm: xd U) can be given by a normal form, say, 
[ 2 ( d i f f j : i ^ j - t m ) - i<k ( m )] which does not depend on R£{R1,R2}. Let y = 
=(yo>yu •••>y»<™)_i)» a n d observe that f£q(Xm: x£U) iff the following system 
Em of productless ring equations 

2 ( d l r ) y i : i < / c ( m > ) - l = 0 , . 

2 №yr- fc(m)) = 0 for 1 < ; =§ 

which does not depend on R£{RX, i?2}, is solvable in R. Based on the afore-men-
tioned result of Frobenius, it has been shown in [12] (cf. Theorem 2.1 (d) and [12, 
Theorem 3]) that the solvability of any system of productless ring equations in an 
arbitrary ring depends only on the spectrum of this ring. But now SR =S=SR^,' 
whence Em is solvable in R1 iff it is solvable in R2. Hence Theorem 3.5 (B) proves 
the proposition under the stronger assumption we considered. 

The case S(0) = 1 being trivial, consider the case S(0)=p0p1...p„ where 
Pa,Pi, are distinct primes. It is known that, for R£{Rt, i?2}, R is isomorphic' 
to a direct product ] J R & where SR«)(0)=Pi, i ^ n (cf., e.g., M C C O Y [ 1 4 , The-

isn 
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orem 28]). By Corollary 5.2, L(i?)= V L(ií(0), whence Proposition 6.2 follows 
ián 

from its special case we have already proved. 

7. Two sufficient conditions for regularity. Consider a Horn sentence x of the 
form (2.2). 

P ropos i t i on 7.1. If all O s / s / , are join-free then % is regular.. 

Proof . We will use Theorem 3.5 (B) with As G(qm) has no inner 
vertex, Fm—Fm~1—... = F°, if x£U occurs in qm then Xm=X™-1 + and 
Xm = Xm~1 if x£U does not occur in qm. Hence there are lattice terms q'm such 
that q(Xm: x£U)=q'm(X°: x£U), O^m, and these q'm do not depend on the ring 
in question. By Theorem 3.5 (B), L(/?) |= / is equivalent to (3m)(f1iq'm(X°: x£ £/)). 

Now let us fix a y£U and consider the Horn sentence ¿k: y^y=>p^q'k, A;S0. 
If we apply Theorem 3.5 (B) to /_k with Sm=0, l^m, then Xm=Xm~1=...=X° 
for every x£U. Hence fx£q'k(A"0: x£ U) is equivalent to L(i?)l=/fe. But / k , being 
modulo lattice theory equivalent to the lattice identity p=q'k, is regular by Theorem 
2.1 (a). We have seen that L(i?)|=x ¡s equivalent to (Bm)(L(i?)(=/„,), whence 
the regularity of %m completes the proof. 

Note that Proposition 7.1 applies for x(m> n, k) occurring in Theorem 4.1. 
We say that x satisfies the Whitman condition (W) if the finitely presented lattice 
FL(U;p0rSq0,pxtiqx, satisfies (W) (cf. [5]). 

P ropos i t i on 7.2. If x satisfies (W) then / is regular. 

Proof . By [5, Corollary 5.3] there are lattice identites xm, m<a>, such 
that, for any n-permutable variety - f , Con ( f ) l = x iff (3m)(Con (f)\=xm). 
In particular, L(R)\= /_ iff Con (i?-Mod) t= / iff (3 m) (Con (P-Mod) \= y.m) iff 
(3m)(L(P)i=y.m), whence the regularity of the lattice identites y.m (cf. Theorem 
2.1 (a)) completes the proof. 

8. Proof of Theorem 4.2. With the notations of Section 2, let us recall 

Claim 8.1. (HUTCHINSON [ 1 2 , Proposition 4 and the proof of Theorem 5 ] or, 
more explicitly, [ 2 , Proposition 6 . 2 ] ) . If Sx, S2£££s and S1^S2 then Rs> is a hom-
omorphic image of R s . 

Given a spectrum S££fs, let {p: p£P and 5,(/?)<o)} be denoted by T(S). 
Let S be called cofinite iff T(S) is finite. Note that 5 (0)=0 for any cofinite 
If S is an arbitrary spectrum and H is a finite subset of P then the spectrum 
defined by S[i/](0)=0, 5 [ ^ ] ( » = 5 ( » for p£H and S[ i i ] (»=co for p£P\H 
is cofinite, and we have S^S[H] and T(S[H])QH. 
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Now let us fix a regular Horn sentence / which holds in L(Jf?*) for some ring 
R* with SRt(0) = 0. Put S* = SRt. Since x is regular, it holds in L(i?s*) by The-
orem 2.1 (c). Let S° denote the zero spectrum, i.e., >S0(x)=0 for all xg{0}UP, 
and put R°=RS0. (Note that S° is not the smallest element of jSf.) Then 
whence, by Corollary 6.1 and Claim 8.1, x holds in L(R°). 

Now consider the system of ring equations E0,E1,E2,... associated with 
X by Lemma 5.1. 

Claim 8.2. Let 5*6 with S(0)=0 and let n be a non-negative integer. If 
E„ is solvable in Rs then there is a finite subset H of P such that E„ is solvable in 

P roof . Let E„ consist of the ring equations /¡( j^: j '<w)=0, i<v, and assume 
that f (aj +. / s : j<u)=0+Js, i.e., / ; (aj : jcu)£Js, i<v, for certain elements 

FR({xp: p£P}), i<v (cf. Section 2). As we have only finitely many /¡(a,-: j<w), 
there is a finite subset A of {ps(p)(pxp — 1): p£P and 5'(p)<aj} such that all the 
fiiaj'. u), i<v, belong to the ideal generated by A. Put H={p: p£P, S(p)<oj 
and pSip\pxp—l)£A}. Then H is finite, and A yields /¡(flj-: j^u)d-fSun 
for all /<i ' . Hence the system of aj+,Jsm, j < u , is a solution of En in RSyiy 

Since Edl Ex, E2, ... is a weakening sequence, the first «„ of its members can 
be omitted without the loss of generality, for any n0<(o. Therefore, by Lemma 5.1, 
we may assume that E0 is solvable in R°. Hence, by Claim 8.2, we can fix a cofinite 
spectrum S' such that E0, and therefore every E„, is solvable in Rs,. (Indeed, let 
S'=S°[H] for an appropriate HQP.) 

For co, let Uj:={SR: R is a ring and Ej is solvable in R}. Then Uj Q s . 
For each S£ Uj choose a ring Bj s such that Ej is solvable in Bj S and the spectrum 
of BJ S is S. Put Aj-.= IJ(Bj s: S£Uj), the direct product of BJS, SeUs, and 
let Sj:=\/(S: SfMj). 

Claim 8.3. The spectrum of Aj is Sj, Sj is cofinite, Ej is solvable in As, and, 
for any ring R, if Ej is solvable in R then SR^Sj. 

Proof . E j is clearly solvable in Aj as it is solvable in all the direct factors of Aj. 
Similarly, a divisibility condition D(m, n), which is a particular ring equation, holds 
in Aj iff D{m, n) holds in every BjS, StUj. As S'tUj and S"(0)=0, Sj{0)=0 and 
the characteristic of Aj = Bj S.X[[ (BJ S: S€Uj\{S'}) is also 0. Further, by 
Theorem 2.1 (d), we have 

min{i: AJ\=D(pi+1,pi)} = mmC]({i: BJ,s1=D(j>1+\/)}: S£Uj) = 

= min f)({i: i = exp (p\ p) i? S(p)}: Uj) = sup {S(p): S£ V,) = Sj(p) 
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for any p£P. Consequently, Sj is the spectrum of Aj. From S'^Sj we obtain 
r ( 5 0 3 r ( 5 j ) , whence SJ is cofinite. Finally, if EJ is solvable in a ring R then 
SREUJ yields that SR^\/(S: S£UJ)=SJ. 

Now let / : = { £ € JS?s: x holds in L(i?5)}, and let (5,-] denote {S6i? s : S^Sj), 
the principal ideal of <£?s generated by Sj. 

Claim 8.4. 1= U ((^l: j^co). 

P r o o f . If S£I then, by Lemma 5.1, there is a j<co such that Es is solvable 
in RS. Hence S—SRs£(SJ] by Claim 8.3. Conversely, assume that S^ iS j ] for 
some y<a>. By Lemma 5.1 and Claim 8.3, y holds in L (AY) . By Theorem 2.1 (c) 
and Claim 8.3, A} and RS have the same spectrum SJ. The regularity of y yields 
that X holds in L(RSJ), too. Now follows from S ^ S J , Claim 8.1 and Corol-
lary 6.1. 

Now we obtain from the fact that E0, Ex, E2, ... is a weaken-
ing sequence. Hence T(5"0) 3 TiS^ T(S2) ¡2.. . . Since T{SQ) is finite, so is 
H:=f] (T(Sj): j^co). Put S:=\f (Sj-. j « u ) , then T(S)QH. D e f i n e ^ , nx and 
kx as follows: 

m x n ( p s w + 1 - P£T(S)), nx-.= n(p• peH\T(S)) 
and 

kx:=n(Psip)- PiT(S)). 

Then mx, nx and kx are positive integers. 
Assume that D(mxnx

+1, kxnl
x) holds in a ring R for some Then, by 

Theorem 2.1 (d), we have S(p)=exp (k xn ' x ,p)^SR (p) for p£T(S) and S(p) = 
= t o > / = e x p (kxnx, p)~SR(j>) for p£H\T(S). For p£H, S(p) is the limit of the 
increasing sequence S0(p), Sx(j)), S2(p), whence the finiteness of H yields the 
existence of a j<co such that T(Sj)=H and SR(p)^Sj(p) for all p^H. Then 
SR^Sj, and Claim 8.4 yields that SR£l. I.e., y holds in L(RSR). Since RSr and 
R have the same spectrum and X is regular, % holds in L(i?). 

Conversely, assume that R is a ring and X holds in L(2?). As RSr and R have 
the same spectrum and y is regular, SR£I. By Claim 8.4, there is a y<ct> such that 
T(Sj)=H and Put z'=max { S ; 0 ) : p£H\T(S)}, then i is a non-
negative integer. (Here max 0—0.) For p£T(S), exp (Jcxnl

x,p)=S(p)^SR(p) 
while, for peH\T(S), exp (kxn\, p)=i^Sj(p)=sSR(p). Hence, by Theorem 2.1 
(d), D(mxr^x

+1, kxrfx) holds in R. This completes the proof of Theorem 4.2. 

9. On a problem of Jonsson. In this section we will give a negative answer 
to (1.4), the afore-mentioned problem of J6NSSON [13]. Let N S 2 be an integer, 
and consider /(0, n, 1) from Theorem 4.1. Then we have 
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P r o p o s i t i o n 9.1. There is no strong Mal'tsev condition U such that, for any 
congruence permutable variety ' f , /(0, n, 1) holds in Con (V) i f f U holds in ir. 

Proof . Assume the contrary, and let E be a system of ring equations such 
that, for any ring R, U holds in i?-Mod iff £ is solvable in R (cf. the proof of Lemma 
5.1). Since D(0, «'") holds in Za„ x(P, n, 1) holds in L(Znl) by Theorem 4.1, and we 
infer that E is solvable in Zni, i<co. Therefore E is solvable in the direct product 
R—JJ (Z„,: i<cu), whence %(Q, n, 1) holds in L(i?). It follows from Theorem 4.1 
that there is a _/<co such that D(0, n') holds in R. Consequently, D(0, nJ) holds 
in every direct factor Z„, of R. In particular, D(0, n') holds in Z„J+,, which is a 
contradiction. 
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