An irregular Horn sentence in submodule lattices

GÁBOR CZÉDLI*) and GEORGE HUTCHINSON
Dedicated to the memory of András P. Huhn

For a ring R, always with 1 , a lattice is said to be representable by R-modules if it is embeddable in the lattice of submodules of some unital left R-module. Let $\mathbf{L}(R)$ denote the class of lattices representable by R-modules. Then $\mathbf{L}(R)$ is known to be a quasivariety, i.e., to be axiomatizable by (universal) Horn sentences (cf. e.g., [5]). Let $\mathbf{H L}(R)$ denote the lattice variety generated by $\mathbf{L}(R)$. A Horn sentence χ is called irregular (cf. [1]) if there are rings R_{1} and R_{2} such that $\mathbf{H L}\left(R_{1}\right)=\mathbf{H L}\left(R_{2}\right)$ and χ holds in $\mathbf{L}\left(R_{1}\right)$ but χ does not hold in $\mathbf{L}\left(R_{2}\right)$. Although the existence of irregular Horn sentences follows from [4, p. 92], no concrete irregular Horn sentence was known previously. The aim of the present note is to give an irregular Horn sentence $\hat{\chi}$. This $\hat{\chi}$ was found by applying the techniques of [1] and generalizing the methods of Herrmann and Huhn [3] and [8]. Note that regular Horn sentences are much easier to handle, cf. [1].

Consider the following lattice terms on the set $U=\{x, y, z, t\}$ of variables:

$$
\begin{array}{ll}
p=(x+y)(z+t), & h_{0}=(x+z)(y+t), \\
h_{1}=(x+t)(y+z), & h_{2}=(x+t)\left(p+h_{0}\right), \\
h_{3}=(y+t)\left(h_{1}+p\right), & p_{0}=\left(h_{2}+z\right) y, \\
q_{0}=x+z+h_{3}, & q=p_{0}+x,
\end{array}
$$

and let $\hat{\chi}$ be the Horn sentence

$$
p_{0} \leqq q_{0} \Rightarrow p \leqq q .
$$

Theorem. $\hat{\chi}$ is irregular.

Received April 29, 1986.
${ }^{*)}$ Research partially supported by Hungarian National Foundation for Scientific Research grant no. 1813.

Proof. Let \mathbf{Z}_{4} stand for the factor ring of the ring of integers modulo 4. Let I_{1} and I_{2} denote the ideals of $Z_{4}[x]$ generated by $\left\{x^{2}-2,2 x\right\}$ and $\left\{x^{2}, 2 x\right\}$, respectively. The rings $R_{1}=\mathbf{Z}_{4}[x] / I_{1}$ and $R_{2}=\mathbf{Z}_{4}[x] / I_{2}$ consist of eight elements. With the notations $a=x+I_{1}$ and $b=x+I_{2}$, we have

$$
R_{1}=\{i+j a: 0 \leqq i \leqq 3,0 \leqq j \leqq 1\} \text { and } R_{2}=\{i+j b: 0 \leqq i \leqq 3,0 \leqq j \leqq 1\} .
$$

Moreover, the bijection $\varphi: R_{1} \rightarrow R_{2}, i+j a \mapsto i+j b$ preserves the unit element and the additive structure. Therefore, $\mathbf{H L}\left(R_{1}\right)=\mathbf{H L}\left(R_{2}\right)$ (cf. [8, Prop. 3]). So, it suffices to show that $\hat{\chi}$ holds in $L\left(R_{1}\right)$ but does not hold in $\mathbf{L}\left(R_{2}\right)$.

As Theorem 3.5 of [1] will be our main tool, we adopt the notations preceeding the theorem in [1, §3]. First, by [1, Thm. $3.5(\mathrm{~A})$], we prove that $\hat{\chi}$ holds in $L\left(R_{1}\right)$. Now $p_{j}=p_{0}$ and $q_{j}=q_{0}$ for $j \geqq 1$, and $F^{0}=\left\{f_{1}, f_{2}, f_{3}\right\}$ according to Figure 1. We have $X^{0}=\left[f_{2}\right], \quad Y^{0}=\left[f_{1}-f_{2}\right], Z^{0}=\left[f_{3}\right]$ and $T^{0}=\left[f_{1}-f_{3}\right]$. Denoting $k\left(C^{m}\right.$: $c \in U)$ by K^{m} for $m \geqq 0$ and $k \in\left\{p, q, p_{0}, q_{0}, h_{0}, h_{1}, h_{2}, h_{3}\right\}$, an elementary calculation in $\operatorname{Su}\left(M^{0}\right)$ shows that $P^{0}=\left[f_{1}\right], H_{0}^{0}=\left[f_{2}-f_{3}\right], H_{2}^{0}=\left[f_{1}+f_{2}-f_{3}\right]$ and $P_{1}^{0}=$ $=P_{0}^{0}=\left\{r\left(f_{1}-f_{2}\right): r \in R_{1}\right.$ and $\left.2 r=0\right\}$. Since $2 a=0$, we may choose $S_{1}=\left\{a\left(f_{1}-f_{2}\right)\right\}$. Let $F^{1}=\left\{f_{1}, f_{2}, f_{3}, e_{1}, e_{2}, \ldots, e_{8}\right\}$ according to Figure 2.

Figure 1
G^{1} :

Figure 2

We obtain the following formulas, each of them an easy consequence of the previous ones or Figure 2.

$$
\begin{aligned}
& X^{1}=\left[f_{2}, e_{1}, e_{2}-e_{3}, e_{5}-e_{6}\right], \\
& Y^{1}=\left[f_{1}-f_{2}, e_{2}-e_{4}, e_{2}-e_{8}, e_{6}\right], \\
& Z^{1}=\left[f_{3}, e_{1}-e_{2}, e_{4}-e_{5}, e_{5}-e_{7}\right], \\
& T^{1}=\left[f_{1}-f_{3}, e_{3}-e_{5}, e_{7}-e_{8}, a\left(f_{1}-f_{2}\right)-e_{7}\right], \\
& P^{1} \supseteq\left[f_{1}, e_{3}-e_{4}, a f_{2}+e_{5}\right], \\
& H_{0}^{1} \supseteqq\left[f_{2}-f_{3}, e_{3}-e_{5}+e_{6}, e_{4}-e_{6}\right], \\
& H_{2}^{1} \supseteqq\left[f_{1}+f_{2}-f_{3}, e_{3}-e_{6}, a\left(f_{1}-f_{3}\right)+e_{3}-2 e_{5}+e_{6}\right] .
\end{aligned}
$$

Since $a^{2}=2$ and $2 a=0$,

$$
f_{1}-f_{2}=-\left(f_{1}+f_{2}-f_{3}\right)+a\left(e_{3}-e_{6}\right)+a\left(a\left(f_{1}-f_{3}\right)+e_{3}-2 e_{5}+e_{6}\right)+f_{3} \in H_{2}^{1}+Z^{1} .
$$

Therefore, we have $f_{1}=\left(f_{1}-f_{2}\right)+f_{2} \in P_{0}^{1}+X^{1}=Q^{1}=q\left(C^{1}: c \in U\right)$. Hence $\hat{\ell}$ holds in $\mathbf{L}\left(R_{1}\right)$ by [1, Thm. 3.5 (A)].

Now observe that I_{2} is included in the ideal I of $\mathbf{Z}_{4}[x]$ generated by x, whence $\mathbf{Z}_{4} \approx \mathbf{Z}_{4}[x] / I$ is a homomorphic image of R_{2}. Therefore, if $\hat{\chi}$ held in $\mathbf{L}\left(R_{2}\right)$, it would also hold in $\mathbf{L}\left(\mathbf{Z}_{4}\right)$ by [4, Prop. 2] (or by [1, Cor. 6.1]). Hence it suffices to show that χ does not hold in $\mathbf{L}\left(\mathbf{Z}_{4}\right)$. As suggested by [1, Thm. 3.5 (B)], we let $x=\mathbf{Z}_{4} f_{2}, y=$ $=\mathbf{Z}_{4}\left(f_{1}-f_{2}\right), z=\mathbf{Z}_{4} f_{3}$ and $t=\mathbf{Z}_{4}\left(f_{1}-f_{3}\right)$ in a free \mathbf{Z}_{4}-module with three generators f_{1}, f_{2} and f_{3}. Calculation shows that $p_{0}=\mathbf{Z}_{4}\left(2 f_{1}+2 f_{2}\right), q_{0}=\mathbf{Z}_{4} 2 f_{1}+\mathbf{Z}_{4} f_{2}+\mathbf{Z}_{4} f_{3}$, $p=\mathbf{Z}_{4} f_{1}$ and $q=\mathbf{Z}_{4} 2 f_{1}+\mathbf{Z}_{4} f_{2}$. Therefore, $\hat{\chi}$ fails in $\mathbf{L}\left(\mathbf{Z}_{4}\right)$, proving the theorem.

In [4, p. 92], it was shown that no R_{1}-module is a free Z_{4}-module (a direct sum of cyclic groups of order 4). This is the key property allowing construction of an irregular Horn sentence, as observed below.

Let S denote $\mathbf{Z} / p^{k} \mathbf{Z}$, the ring of integers modulo p^{k} for p prime and $k \geqq 2$. We show that $\mathbf{L}(R)=\mathbf{L}(S)$ if and only if R has characteristic p^{k} and some (nontrivial) R-module M is free as an S-module (that is, M is a direct sum of cyclic groups of order p^{k}).

Supposing $\mathbf{L}(R)=\mathbf{L}(S), R$ has characteristic p^{k} (cf. [1, Thm. 2.1]). By [6, Thm. 1, p. 108], there is an exact embedding functor F from S-Mod into R-Mod. For $n \cdot f=f+\ldots+f$ (n times), we see that $\left\langle p \cdot 1_{A}, p^{k-1} \cdot 1_{A}\right\rangle$ is exact in R-Mod for $A=F(s S) \neq 0$. Since A is a direct sum of cyclic groups, each with order dividing p^{k} (Prüfer, see [2, Thm. 17.2, p. 88], it follows that A is free as an S-module.

For the converse, note that an R-module M which is free as an S-module can be regarded as a bimodule ${ }_{R} M_{S}$, which induces an exact embedding S-Mod $\rightarrow R$-Mod by the tensor product functor ${ }_{R} M_{S} \otimes_{S}-$, yielding $\mathrm{L}(S) \subseteq \mathrm{L}(R)$ by [6, Thm. 1,
p. 108]. Since R has characteristic p^{k}, there is a ring homomorphism $S \rightarrow R$. Then $\mathbf{L}(R)=\mathbf{L}(S)$ (cf. [1, Cor. 6.1]).

This result can be regarded as a corollary of the ring theory result proved in [7]: If R and S are nontrivial rings with S left artinian, then there exists an exact embedding functor S-Mod $\rightarrow R$-Mod if and only if there exists a nontrivial bimodule ${ }_{R} A_{S}$ such that A_{S} is a free right S-module.

References

[1] G. Czédu, Horn sentences in submodule lattices, Acta Sci. Math., 51 (1987), 17-33.
[2] L. Fuchs, Infinite Abelian Groups, Vol. I, Academic Press (New York, 1970).
[3] C. Herrmann and A. P. Huhn, Zum Begriff der Charakteristik modularer Verbande, Math. Z., 144 (1975), 185-194.
[4] G. Hutchinson, On classes of lattices representable by modules, in: Proc. Univ. of Houston Lattice Theory Conference (Houston, 1973); pp. 69-94.
[5] G. Hutchinson, On the representation of lattices by modules, Trans. Amer. Math. Soc., 209 (1975), 311-351.
[6] G. Hutchinson, Exact embedding functors between categories of modules;' J. Pure Appl. Algebra; 25 (1982), 107-111.
[7] G. Hutchinson, Addendum to exact embedding functors between categories of modules, J. Pure Appl. Algebra, to appear.
[8] G. Hutceinson and G. Czédle, A test for identities satisfied in lattices of submodules, Algebra Universalis, 8 (1978), 269-309.

