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Quasi-identities, Mal'cev conditions and congruence regularity 
B. A. DAVEY, K. R. MILES and V. J. SCHUMANN 

Dedicated to the memory of András P. Huhn 

This work grew out of our desire to present a uniform approach to the various 
forms of congruence regularity which have been studied in the literature. We were 
particularly interested in the result of GRÁTZER [ 8 ] that if every algebra in a variety 
Y contains an element a such that [a]oc=[a]p implies a=/? for all congruences 
a, fi on A, then the element a may be chosen from any subalgebra of A. We also 
wished to study the concept of subregularity introduced by TIMM [ 1 5 ] : an algebra 
A is subregular if for all subalgebras BsA and all congruences a, j8 on A we have 
a=•/? whenever [b]cr.=[b]f} for all b£B. In particular we wanted a characteriza-
tion of subregularity via simple identities and quasi-identities similar to those for 
regularity due to WILLE [ 1 6 ] and CSÁKÁNY [ 2 ] . These two topics turned out to be 
quite closely related (Theorem 2.3). 

In the first section the various types of regularity are defined and their local 
properties are investigated. In particular, we give characterizations in terms of 
principal congruences similar to those for regularity and weak regularity give in 
HASHIMOTO [ 1 2 ] and GRATZER [ 8 ] (Lemma 1 . 3 ) . We also apply GUMM'S Shifting 
Principle [9] to give local proofs of congruence modularity where possible (Theorem 
1 . 4 ) . 

The global relationships between the various forms of regularity are studied 
in Section 2. The section begins with a general translation principle for converting 
a Hashimoto-type principal-congruence property into a quasi-identity (Theorem 2.1) 
which is then applied to yield quasi-identity characterizations for each of the forms 
of regularity (Theorems 2.2, 2.3, 2.4, 2.5). 

The third section contains a general consideration of the relationships between 
quasi-identities, identities, congruence modularity and «-permutability. Several ways 
of translating quasi-identities into identities are given (Theorems 3.4, 3.5). We 
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also describe a large class of quasi-identities which imply both congruence modu-
larity and n-permutability for some n (Theorem 3.9). 

In Section 4 we see that the results of Sections 2 and 3 may be combined to 
yield identities characterizing each of the forms of regularity and show that, with 
one exception, each implies congruence modularity and /¡-permutability for some n. 

Our notation and terminology are fairly standard. Note in particular that the 
lattice of congruences of an algebra A is denoted by Con A with least element 0, 
the «-generated free algebra in a variety V is denoted by FY(n) and by a constant 
term we mean a nullary or constant unary term. 

1. Definitions and local relationships. In this section we introduce various degrees 
of regularity and study these at the local level. A Hashimoto-type principal-congru-
ence characterization is given for each and, where possible, a local proof of con-
gruence modularity is obtained via H. P. Gumm's Shifting Principle. 

An algebra A is regular with respect to ax, ...,a„£A if for all a, /idCon A 
we have 

R: A is regular if it is regular with respect to a for each ad A. 
R„: A is n-regular if there exist ax, ..., a„£A such that A is regular with respect to 

a,, ..., an. 
SR: A is subregular if it is regular with respect to each of its subalgebras, that is, 

for each B^A and all a, /?£Con A we have 

(6& [b]a = №)=>* = p. 

SR„: A is n-subregular if for all B^A there exist bx, ...,bn£B such that A is regular 
with respect to bx, ..., bn. 

Note that 1-regularity is usually referred to as weak regularity. Some authors have 
insisted that the elements ax, ...,an in the definition of «-regularity be constant 
terms: if there are constant terms o l5 ..., on such that A is regular with respect to 
ox, ...,on then we shall say that A satisfies R.(o1; ..., <?„). We say that a class y 
of algebras is regular (respectively, subregular, etc.) if every algebra in "V is regular 
(respectively,, subregular, etc.). 

In TIMM [ 1 5 ] it. is pointed out that the algebra (N; s), where s is the successor 
function,, is subregular and it is easily seen that it is not «-regular for any «£N. 
The non-zero congruences on (N; s) are all of the form 6(m, k) for some m, N 
where 

xQ (m, k)y o x = y < m or (x, y ^ m & x = y (mod fc)). 

e 
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Since 0(rn,k)-s.Q(ji,l)on^m and l\k, we have 

Con (N; s) as 1 ®[<N; ë)'x<N; f>d]. 

Note that <N; s) is congruence-distributive. 
The implications in the diagram below are trivial : 

RI R 2 — . . . 

t t 
R — SRI • S R 2 - . . . - S R 

t t 

In the presence of a one-element subalgebra many of these relations collapse. 

1.1. Lemma, (i) If A has a one-element subalgebra, then on A we have 
SR —Rx. 

(ii) If there is a constant term o such that {o}^A, then on A we have SR —R(o). 

The following characterizations using set inclusion rather than equality are 
often useful. If a^Con A and B^A then a\B denotes the restriction of a to B 
and [B]cc denotes the union over b£B of the a-blocks [b]a. 

1.2. Lemma, (i) A is regular if and only if 

(Va£v4)(Va, 0<ÈCon A)\[a]ct g [a]fi => a g fi\ 

(ii) A is n-regular if and only if 

(3alt .... a„ÇA)(Voc, fiÇCon A) [(.& [af]a g [ajfi)=> a g fi]. 
(iii) A is n-subregular if and only if 

(V-B S A)(3bu ..., &„€5)(Va, ptConA) [ ( . ¿ [ è j a g [b,]fi)=* a g fi]. 

(iv) The following are equivalent: 
(a) A is subregular; 

(b) (V* S A)(ya, fieCon A) [( & [b]a 

(c) (V5 = A)(ya, PiCon A)[(<x\B g fi\B&[B]a = B) =•« g 0]. 

Proof . These proofs are trivial once we observe that [a] a g [a]/? implies 
[a]a = [a](u№-

The version of subregularity given in 1.2 (iv) (c) has been useful in the study 
of injectivity : see, DAVEY and KOVÁCS [3] . 

We now give the Hashimoto-type principal-congruence characterizations of 
the various forms of regularity. The subalgebra generated by a£A is denoted by (a). 
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1.3. Lemma, (i) A is regular with respect to at. .... a„£A if and only if for all 
b,c£A there exist da, ..., dirn£A such that 

0(b,c)= V V 
¡ = i j = I 

m 
(ii) A l=R ~ c e ^ i B ^ , ..., dm£A) 0{b, c) = V ¿j). 

j = x 

(iii) ¿NR„ ~ ( 3 a l s ..., an£A)<yb, c<LA)Oda, dim£A) 
n m 

&(b, c)= \j v 0(ai,diJ). 
i=i j=i 

(iv) c^A)(3ax,..., a„€<a»(3ii1) ..., dn£A) 

0 ( 6 , c) = V 0 ( a ; , dd. 
i=1 

(v) ¿ N S R . « - ^ ^ ^ , . . . , a„€<a»(V&, c€^)(3d a , ..., 

6>(b,c) = V V 0(ai,dij). 

Proof , (ii) is due to HASHIMOTO [ 1 2 ] and GRATZER [ 8 ] . As all proofs are similar, 
we prove only (iv). 

Assume that A is subregular. Let a, b, c£A and let a be the smallest congru-
ence on A having [a'] 0 (b, c) as a block for all d £ (a). Then for all (a) we 
have [a]a=[a']0(b, c), whence a=0(b, c) by subregularity. Thus 

0(b, c) = V(0(a', d) | a'€(a) & de[a']0(b, c)). 

Since 0(b,c) is compact, there exist ax, ..., an£(a) and d£[ai\0(p, c) with 

0(b,c)= V 0(^,4). . 
¡= i 

Conversely, suppose that the principal-congruence condition holds. Let B ^ A 
and suppose that a, fidCon A satisfy otQ[b]fi for all b£B. Let a£B and 
b,c£A and let aid{a)(^B and d^A be given by the principal-congruence con-
dition. Now suppose that fc=c(a). Since 0(a f , d^Q0(b , c)Qa, we have 
d^laHocQiaiiP for all i and hence «¡=¿¡0?) for all i. Thus 0 (b , c)g/?, whence 
b=c(jf). Consequently a^jS. . 

While the proof below of congruence modularity uses Gumm's Shifting Prin-
ciple, it is closely related to the corresponding proof in BULMAN-FLEMING, D A Y 

a n d TAYLOR [1]. 
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1.4. Theorem. If every subalgebra of A2 is subregular, then Con A is mo-
dular. 

Proof . By Lemma 3 . 2 of GUMM [9] it suffices to prove that if a, y£Con A 
and A^A 2 is reflexive and symmetric with af]/1=7=0!, then whenever we have 

XQ 

yb 

it follows that xyy. Let a, y and A be as stated and assume that the relations indi-
cated in the diagram hold. 

Consider aXy and yXy as congruences on the subregular algebra A: note 
that yXy^ocXy. Denote the diagonal of A2 by A and consider (a, a)£A. Let 
(b, c)£A with (b, c) ocXy (a, a). Then 

baa & cya & b A c => baf]Ac as j S a 

=>• b y c as aV\A y 

=»• by a as cya 

=>• (b, c)yXy(a,a). 
Thus [(a,a)LyXy=[(a,fl)LaX7. 

Hence B:=[A]AyXy=[A]Aa.Xy and (yXy)\B=(aXy)\B. Consequently yXy = 
=aXT on A as A is subregular. Since (x, z), (y, u)£A with (x,z) aXy ( j , u) 
we have xyy, as required. (Note that the symmetry of A was not required.) 

Similarly it can be proved that if S ( A 2 ) |= R(ol5 ..., o„) then Con A is modular. 
It follows trivially from Theorem 1.4 that if S(^2)t=SR„ for some n, then Con A 
is modular; it seems highly unlikely that a similar conclusion can be made about 
R„ since the elements with respect to which A is regular, cannot be forced into the 
diagonal. 

2. Global relationships. In [2], CSAKANY characterized regularity for varieties via 
a quasi-identity: a variety "V is regular if and only if there are ternary terms px, ...,pn 

such that 
n 

"V |= X — y ** Pi(xyz) = z. 

Much earlier, THURSTON [14] showed that V is regular if and only if for all AZY, 
all aGCon A and all a£A we have that |[a]a| = l implies a=0 . We now give the 
corresponding characterizations for our more general forms of regularity. Along 
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the way we shall see that at the global level the various regularities come closer 
together. 

The following translation principle allows us to convert a Hashimoto-type 
principal-congruence property directly into a quasi-identity. 

2.1. T h e o r e m . Let Y be a variety and let fi,g„r and s be n-ary terms. 
Then the following are equivalent: 

(i) -r\= ( J / i C i ) = *«(*)) - r(x) = S(x)-
(ii) for all A£Y and all a£An 

m 
V 0 ( f , ( S ) , gi(3)) i 0(r{8), s(3)); 

i=l 

(in) the elements /¡(x), g;(x), r(x) and s(5c) of FY(«) satisfy 

m 
V 0{fi(x), gi(xj) 3 &(r(x), s(x)). 

i=1 
m 

Proo f . (i)==>(ii). Let ACT and a£An and define a to be V @{fi(fl), giifl)). 
i — 1 

In A/a we have fi(b)=gi(b) for all i where bj:=[aj]<x. Thus, by (i), r(S)—s($), 
whence r(a) a s (a) as required. 

(ii)=>(iii) is trivial. 
(iii)=Ki). Let A£Y and a£An with fi(a)=gi(a) for all i. Let q>: FY(n)-»A 

m 
be a homomorphism with Xj<p = aj . Then V ©(/;(*)> Si00)Q ker (/> and so 

i = l 
r(x) ker q> s(5c) by (iii). Thus r(a)—s(a), as required. 

In the following result we require the observation that if A is regular with 
respect to ax,...,an£A and cp: A-+B is a surjective homomorphism with b~at(p, 
then B is regular with respect to bx, ..., bn. 

2.2. T h e o r e m . The following are equivalent for any variety V: 
(i) ^ S R „ ; 

( i i )T|=R„; 
(iii)' there exist unary terms ux, ...,«„ such that for all A£Y and all a£A, 

A is regular with respect to ux(a), ..., u„(a); 
(iv) there exist unary terms ux, ..., u„ such that for all Ad Y , all a£A and all 

a€Con A if |[M1(a)]aj = ... = |[wn(a)]a| = l , then a = 0 ; 
(v) there exist unary terms ux, ...,u„ and ternary terms pxl, ...,pnm such that 

n m 
.^Pijixyz) = Ui(z)) ~x = y; 
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(vi) there exist unary terms ux, ..., un and ternary terms px,...,pm and a 
selection function j>-~ij such that 

m 

Proof . That (i) implies (ii) is trivial. Assume that f t=R„- Then there exist 
..., vn£FY(N) such that FY(N) is regular with respect to vx, ...,vn. Assume 

that vx, ...,v„ depend only upon xx, ..., xk; then we can find an onto homo-
morphism i¡/: FY(N) — FY({x,y, z}) with x^=z for i—l,...,k. Thus the 
image itt of under <p depends only upon 2 and FY{3) is regular with respect to 
uu...,ua. 

Suppose that A£Y, a£A and a, fit Con A with [«¡(tf)]ag[i',(a)]/? for all i. 
Let J, t(iA with sat and define q>: FY({x, y, z})-~A by x<p=s, y<p — t, z<p=a. 
Then x a y where a denotes the inverse image of a under <p. Now v a w;(z) implies 
vq> a «¡(a); hence vcp ft ut(a) and so v /? «¡(z). Thus [«¡(z^agD^z)]/? for all i and 
consequently A G / ? since FY({x, y, z}) is regular with respect to M1(Z), . . . , un(z). 
Hence 

sa t => x a y => xjS y => s fi t 

and thus otQf}. Hence (ii) implies (iii). 
That (v) follows from (iii) is a direct consequence of the principal-congruence 

characterization of regularity with respect to ax, ..., a„ given in Lemma 1.3 (i) 
and the translation to quasi-identities given in Theorem 2.1: take A = FY ({x, y, z}), 
ai—Ui(z), b—x, c=y and dij=pij(xyz). The equivalence of (v) and (vi) is clear. 

The combination of Theorem 2.1 and Lemma 1.3 (v) shows that (v) implies (i). 
It remains to prove that (iv) implies (iii). 

Suppose that [W;(a)]ag[w;(a)]/? for / = 1 , . . . , « ; then [Mi(a)]a=[«i(a)]aA/?. 
Consider the congruence A / ( A A / J ) on Aj{AAJS). The block of [ I / I (A)]AAJ8 in A / ( A A / 0 

is a singleton for all i and hence, by (iv), we have A / ( A A ) 8 ) = 0 in Con AjiaAJS). 
Thus A = A A J 8 and so otQfi, as required. 

The choice between (v) and (vi) is a matter of taste: in (v) the emphasis is on 
the unary terms while the emphasis in (vi) is on the ternary terms. The equivalence 
of S R X and R X was observed by GRATZER [8]. It is tempting to replace (iv) by 

(iv)' (\JA£Y){3ax, . . „ a ^ X V a i C o n ^ O f l f a J a l |[a„]a| = 1) =*a - 0. 

An algebra A with this property might be called regular at 0 with respect to ax, ..., an. 
But this property is not preserved by homomorphisms and so the proof method 
used above is not applicable. The lattice L drawn below is regular at 0 with respect 
to a as it is subdirectly irreducible and both ab and ac are critical edges (that is, 
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@(a, b)=0(a, c) is the monolith of L). Since L/6(a, b) is a four-element chain it 
is not regular at 0 with respect to any one of its elements. 

The proof of our next result is now easy and is omitted. 

2.3. Theorem. The following are equivalent for any variety V: 
(i) 1T|=SR; 
(ii) (ii)' 

(iii) ( 3 K € N ) - T N R „ ; (iii)' ( V ^ T O ( 3 « € N ) ^ N R N ; 

(i v) for all A f T , all BsA and all a£Con A if |[&]a| = l for all b£B, 
then a = 0 ; 

(v) there exist n£N, unary terms ux, ...,u„ and ternary terms p1,...,pn 

such that 

r\=(iipi(xyz) = ui(z))~x = y. 

Call a variety Y locally regular with respect to unary terms ux, ..., w„ (and write 
*->LR(W l , ...,«„)) if 

[(.& [M,-(a)]a = [«¡(a)]^) =>[a]a = [«]/}]. 

This concept was introduced, under a different name, in the important but un-
published paper H A G E M A N N [ 1 0 ] where a characterization via identities was obtained; 
no quasi-identity characterization was given. It is clear from Theorem 2.2 that, at 
the varietal level, we have R N - » L R N . The proof of the following result should by 
now be an easy exercise. 

2.4. Theorem. The following are equivalent for any variety Y and unary terms 

(i) 1TNLR(U1, ...,«„); 
(ii) for all A£Y, all a€A and all a, /?£Con A 

([«,.(a)]a g [«¡(a)])?) => [a]a Q [a]/S; 
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(m) for all A^Y and all a, be A there exist da, ..., dim£A such that 

n m 
0(a,b)= V V 0(Mi(a),dy); 

£=1 1 

(iv) for all Aer, all aÇA and all aÇCon A if |[M1(a)]a| = ... = |[w„(a)]a| = l, 
then |[a]a| = l ; 

(v) there exist binary terms pn,..-,p„m such that 

n m 

^ .^Pijixy) = «,(*)) = y\ 

(vi) there exist binary terms px, ..., pk and a selection function j*-*ij such that 

r N ( A = "»/*)) = y-

Note that R ( o l s ...,o„) for constant terms ox, ...,on impUes LR„ and if the 
terms in the definition of LR„ can be chosen to be constants then we obtain the 
reverse implication. Thus Theorem 2.4 yields the quasi-identity characterization of 
R(Oi, ...,on). 

2.5. Coro l l a ry . The following are equivalent for any variety "V and constant 
terms Oi, ..., on\ 

(i) TTNRK, ... ,on); 
(ii) there exist binary terms pn, ...,pnm such that 

n m 

-r N(.^Pijixy) = 0i)~x = y; 

(iii) there exist binary terms px, ...,pk and a selection function j<-*ij such that 

"n=(lipJ(xy) = oij)^x = y. 

3. Quasi-identities, congruence modularity and permutability. In this section we 
give the general translation from quasi-identities to identities and investigate the 
relationship between quasi-identities, congruence modularity and «-permutability. 

Lemmas 3.1 and 3.2 are simply restatements of Mal'cev's description of 
principal congruences. If ZQA2, then 0 ( Z ) denotes the smallest congruence 
containing Z. 

3.1. Lemma. Let ZQA2 and let (c, d)£A2. Then (c,d)£0(Z) if and only 
if for some k, /£N there exist (l+2)-ary terms wx, ...,wk, there exists êÇA' and 
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there are pears (a,, b,) such that 

c = Wi(ai,&i> e) 

Wi(.b1,a1, e) = w2(a1,bl, e) 

™k(bk,ak, e) = d, 
and (a,-, fcj)€Z for all i. 

3.2. Lemma. Let ZQA2 and let (c, d)£A2. Then (c,d)£0(Z) if and only 
if for some k, l£ N there exist (l+\)-ary terms N-j, .... wk, there exists e£Al and 
there are pairs (a;, bt) such that 

c = e) 

wi(bi, e) = w2(a2, e) 

wk(bk, e) = d, 

and (ah bi)ZZ or ( , at)£Z for all i. 

Recall that A is called k-permutable if for all a, /?£Con A. we have aVP = 
= ao /?oa . . . (with k factors). 

Clearly the last line of Lemma 3.2 is needed to guarantee symmetry. HAGEMANN 
[10] showed that if -V is a A>permutable variety then for all if R is a reflexive 
subalgebra of A2, then R0...0R (with k — 1 factors) is a congruence. Using this 
we can simplify Lemma 3.2. The result was rediscovered by LAKSER [13] and DUDA [5]. 

3.3. Lemma. Assume that A belongs to a (k + l)-permutable variety. Let 
ZQA2 and let (c,d)£A2. Then (c,d)£Q(Z) if and only if for some N there 
exist (I +1 )-ary terms wx, ..., wk, there exists e£Al and there are pairs (a^bf) 
Such that 

c = Wiifli, e) 

Wi(bi, e) = w2(a2, e) 

™k(bk,e) = d, 
and (af, bt)£Z for all i. 

The translation from quasi-identities to identities is obtained by combining 
one of these lemmas with the principal-congruence translation given in the previous 
section. 
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3.4. Theorem. Let Y be a variety and let f,gi,r and s be n-ary terms. 
Then the following are equivalent: 

(i) * > ( £ / , ( * ) = gi(x)) - r(x) = s(x); 
(ii) for some k£N there exist (n+2)-ary terms tx, ..., tk and pairs 

(«/ ,«;)£{(/ ; ,g ,) | /=l , ...,m) such that "V satisfies the identities 

r(x) = ^ ( x ) , x ) 

^(^(x), u^x), x) = t2(u2(x), v2(x), x) 

h(vi(x), u2(x), x) = s(x); 

(iii) for some there exist {n+\)-ary terms tl,..., tk and pairs 
(uj, Vj)e{(f, gi), (gh fd I i=U • m) such that "V satisfies 

r(x) = t^u^x), x) 

ti(vi(x), x) = t2(u2(x), x) 

tk(vk(x), x) = s(x). 

Proof . Assume that (i) holds. Then by Theorem 2.1 we have r(x)=j(x)(@(Z)) 
on FY(n) where Z={(f, g,) \ i= 1, ..., m}. Thus by Lemma 3.1, for some k, /£N 
there exist (/+2)-ary terms vvx, ...,wk and «-ary terms hx, ...,ht and pairs (Uj,Vj)£Z 
such that (in FY (n)) 

r(x) = w^Mj(x), Vi(x), hx(x),..., ht(x)) 

Wi(»i(^), UI(X), hX(X), ..., hT(X)) = w2(u2(x), V2(X), h^x),..., h,(x)) 

wk (vk (x), uk (x), hi (x), ..., h, (x)) = s (x). 

Thus (ii) holds: define tj{y,z,x) = wJ{y,z,h1{x),...,hl{x)). That (ii) implies (i) is 
trivial. In the same way, Lemma 3.2 yields the equivalence of (i) and (iii). 

In just the same way, Theorem 2.1 and Lemma 3.3 combine to yield a simpler 
Mal'cev condition in the (k + l)-permutable case. 

3.5. Theorem. Let Y be a (k+\)-permutable variety and let f , gt, r and 
s be n-ary terms. Then the following are equivalent: 

m 
(i) r H = g,(x)) - r{x) = s(x); 

(ii)" there exist (n+l)-ary terms tx, ..., tk andpairs (uj, i?j)e{(/t, g|) | i = l , ..., m} 
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such that Y satisfies.the .identities 

r(x) = ¡¡(u^x), x) 

'iM*)> x) = t2(u2(x), x) 

tk(vk(x), x) = s(x). 

If a variety Y is ^-permutable we shall write Y \=?k and if Y is ¿-permutable 
for some k£N then we write Y Whenever every algebra in Y has a modular 
congruence lattice we write Y \= CM. We require the identities for ¿-permutability 
(HAGEMANN and MITSCHKE [ 1 1 ] ) and for congruence modularity DAY [ 4 ] . 

,. 3.6. Lemma. Let Y be a variety. 
(a) Let Then Y\=?k if and only if there are 3-ary terms px, ...,pk_1 

such that Y satisfies 
x = p1(xzz), 

Pi(xxz) = pi+1(xzz) for all i, 

PK-i(xxz) = z. 

(b) Y f=CM if and only if for some H S 2 there exist 4-ary terms m0, ..., mn 

such that Y satisfies 

m0(xyzw) — x, 
mi(xyyx) — x for all i, 

mt(xxww) = mi+1(xxww) for even i, 
mi(xyyw) — mi+1(xyyw) for odd i, 

m„(xyzw) — w. 

(c) Y |=CM if and only if for some n^2 there exist 4-ary terms m'0, ...,m'n 

such that Y satisfies 

m'0(xyzw) = x, 

m'i(xyyx) = x for all i, 

m'i(xyyw) = m'i+i(xyyw) for even i, 

m[(xxww) = m'i+l(xxww) for odd i, 

• ' m'„(xyzw) = w. 

When the condition given in (b) above holds we shall write Y NCM„. Simi-
larly for the condition in (c) we write Y t=CM^. For n=2 the w,- and m\ are 
interdefinable but do not seem to be for n^3 . Clearly CM„=>CM^+1=>CMn+2 
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and hence VCMn=VCM^ = CM. We shall refer to the terms mi and the terms m\ 
as the Day terms. 

3.7. Lemma. Let Y be a variety. If Y h=CM„ and the Day terms satisfy 
mi(xxxz) = mi(xzzz) for all (even or odd) i, then /ft=Pj. Similarly if fNCM^ 
and the Day terms satisfy m'i (xxxz)—m\(xzzz) for all (even or odd) then Yt= P„. 

Proof . Assume that YN CM„ with m-(xxxz)=mi(xzzz) for all i. Define 
3-ary terms px, ...,p„-x by 

/ s imAxxyz) for odd i, Pi(xyz) = \ ' ' . • : im^xyzz) for even i. 

Then by Lemma 3.6 (b) and our extra assumption, we have 

Pi(xzz) — mx(xxzz) = m0(xxzz) = x, 

(i odd) Pi(xxz) — m;(xxxz) = niiixzzz) = mi+1(xzzz) = pi+1(xzz), 

(/even) Pi(xxz) — m^xxzz) = mi+l(xxzz) = pi+1(xzz), 

Pn -1 (xx z) = p„(xzz) = m„(...z) = z. 

Thus, by Lemma 3.6 (a), we have Yt=P„. The proof for is similar. 

3.8. Lemma. On any variety we have: 
(i) C M 2 - C M ^ P 2 ; 

(ii) C M ^ P 3 . 

Proof , (i) Let mx be the nontrivial term for CM2. Then m'x(xyzw)\=mx(wzyx) 
is the corresponding term for CM2. Thus CM2—CM2 and similarly CM2—CM2. 
The term for P2 is given by px(xyz):—mx(xxyz). Thus CM2—P2 and the converse 
holds by the previous lemma since ' mx (xxxz)—m2 (xxxz)=z—m2(xzzz)=mx (xzzz). 

(ii) It is easily seen that the Day terms for CM3 satisfy w- (xxxz)=m't (xzzz) 
and hence CM3->-P3 by the previous lemma. If px and p2 are the terms for P3 then 
terms m[ and w2 for CM^ may be defined by m'1(xyzw):=p1(xyz) and m'2(xyzw):= 
:=p2(yzw); the identities for CM2 are easily checked. Thus P3-*CM3. 

HAGEMANN [ 1 0 ] observed that for varieties we have R —CM and R—P^. Since 
regularity is given by a quasi-identity, it is natural to ask which quasi-identities 
yield CM and P*. 

3.9. Theorem. Lei Y be a variety, let f , gi be (n+2)-ary terms ( nS 0) 
and let hi be unary terms such that Y satisfies 

' m ' 

= gi(xyz)) ~X = y 

4* 
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and 
ftixxz) = gi(xxz) = hi(z), 

where z=(z...z). Then T T N C M & P , . 

Proo f . Assume that "V satisfies the quasi-identity and identities above, and 
let tx, ..., tk be the (n+4)-ary terms given by Theorem 3.4. Thus there are pairs 
(Uj, Vj)e {(/¡, gt) | i = l , . . . , m} such that "V satisfies 

x = hfaixyz), (xyz), xyz) 

h(vi(xyz), Ulixyz), xyz) = t2(u2(xyz), v2(xyz), xyz) 

tk(vk(xyz), uk(xyz), xyz) = y, 

and there exist unary terms Wj£ (hly ..., hm} such that 

Uj(xxz) — Vj(xxz) = Wj(z). 

We shall prove that Y(= CM2£+1&Pat+i- Define the Day terms as follows: 

m0(xyzw) = x, 

mzj-i(xyzw) - tj(uj(yzw), vjiyzw), xww), 

m2j(xyzw) = tj(vj(yzw), Ujiyzw), xww), 
m2k + l(xyzw) = W. 

Rather than introduce Wj into the calculations we shall repeatedly use the fact that 
Uj(xxz) and Vj(xxz) are equal and independent of x. For 0 w e have 

m2J-i(xyyx) = tj(uj(yyx), vjiyyx), xxx) = 

= tjipjiyyx), Ujiyyx), xxx) = m2j(xyyx) = 

= tj(vj(xxx), Uj(xxx), xxx) = tj+1{uj + 1(xxx), I>7+1(xxx, XXX) = 

= tj+i(»j+i(yyx), Vj+1(yyx),xxx) = m2j+1(xyyx). 
A similar calculation shows that m1(xyyx)=x and it follows by induction that 
mi(xyyx)=x for all i. Now 

m0(xxww) = x — ii(wi(xww), UI(jcww), xww) = m^xxww) 
and similarly 

m2k(xxww) — tk(vk(xww), uk(xww), xww) = w = m^+^xxww), 

and for we find 

m2j(xxww) = tj(vj(xww), Uj(xww), xww) = 

= tJ+1(uJ+1(xww), vj+1(xww), xww) = m2J+1(xxww). 
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Hence mi(xxww)=mi+1(xxww) for / even. Finally, for l^j^k we have 

m2J-x(xyyw) = tj(uj(yyw), vj(yyw), xwvv) = 

= 'j(vj(yyw), Uj(yyw), xww) = m2J(xyyw), 
and thus mi(xyyw)=mi+l(xyyw) for i odd. Consequently "V(=CMa+1 by Lemma 
3.6 (b). 

By Lemma 3.7, to show that Y N P a + 1 it suffices to show that the Day terms 
defined above satisfy mi(xxxz)=mi(xzzz) for odd i (and hence for all i). But for 
1 ^ j s k we find 

m2j-i(xxxz) = tj(uj(xxz), Vj(xxz), xzz) = 

= tj(uj(zzz), Vy(zzz), xzz) = m2j_1(xzzz), as required. 

These considerations lead us to ask for compact collections of identities char-
acterizing CM&P* and CM&P t . Note that CM&P* is equivalent to CMfc&Pt. 
Our Lemma 3.7 gives a useful set of identities which imply CMfc & Pk while Lemma 
3.8 shows that there is noting to do for k=2, 3. 

4. Applications to congruence regularity. It is a simple exercise to apply the 
results of Section 3 to the various forms of regularity (and we leave all of the details 
to the reader). For example, we obtain at once that, at the varietal level, 

(R(0 l , ...,o„) or R„ or SR) -»- CM & P*. 

Since every variety satisfies LR(x), Theorem 2.4 shows that in Theorem 3.9 we 
cannot drop the additional assumption that ft(xxz) and gt(xxz) are independ-
ent of x. 

Combining Theorems 2.2 and 2.3 with Theorem 3.5 gives the identities which 
characterize R„ and SR. 

4.1. T h e o r e m . Let "V be a variety. Then Vl=R„ if and only if there exist 
unary terms ux, ...,«„, and for some k£N there are A-ary terms tx, ..., tk and3-ary 
terms px,...,pk and there is a selection function j^ij such that "V satisfies 

X = tx(px(xyz), xyz) 

'l(",,(z), xyz) = t2(p2(xyz), xyz) 

'*(«ik(z)> xyz) = y, 

and pj(xxz)=uij(z) for all j. 

4.2. T h e o r e m . Let Y be a variety. Then Y (=SR if and only if for some 
n£N there exist unary terms ux,..:,u„, A-ary terms tx, ..., tn and 3-ary terms 
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PI,...,P„ such that Y satisfies 
x = t^p^xyz), xyz) 

0), xyz) = t2(p2(xyz), xyz) 

tn{un(z),xyz) = y, 

and pj(xxz)=Uj(z) for all j. 

This characterization of subregularity and the quasi-identity characterization 
from Theorem 2.3 were obtained independently by D U D A [6, 7]. 

If we combine Theorems 2.4 and 3.4 to give identities for LR(ux, ..., u„) we 
do not immediately obtain the identities given by HAGEMANN [10]. Theorem 3.4 and 
the following lemma, whose proof we leave to the reader, provide the translation 
from our identities to his. 

4.3. Lemma. Let n^2 and /SO. The following are equivalent for a variety Y: 
(i) there exist (n+l)-ary terms px, ...,ps and qt, ...,qs such that Y satisfies 

s 
(.&1Pi(x1...x„y1...yl) = qi(x1...xny1...y,))^x1 = ...= xn; 

(ii) there exist (n+f)-ary terms uy, ..., u, and (l+\)-ary terms vx, ..., vt such 
that Y satisfies 

t 
uj(xl...x„y1...y,) = Vjix^.-.y,)) — xx = ...= xn. 

Moreover the translation between (i) and (ii) can be achieved in such a way that on 
Y we have 

{pi(x...xyl...yi) = qi(x...xyl...yi)\i=\,...,s} = 

= {«;(*... ^...j,) = Vjixyx — y,) | j = 1, ..., /}. 
4.4. T h e o r e m . Let Y be a variety. Then the following are equivalent: 
(i) -)Tt= LR(Wl, ...,»„); 
(ii) for some N there exist 4-ary terms ix, ..., tk and binary terms p1; ...,pk 

and a selection function j<-+ij such that Y satisfies 

X = h(p1(xy), uil(x), xy) 
hiUnix),Piixy), xy) = t2(p2(xy), Ui,(x), xy) 

>k(uik(x), pk(xy), xy) = y, 

and pj(xx) = uij(x).for all j; 
(in) for some fc£N there exist 3-ary terms tt, ...,tk and binary terms px, ...,pk 
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and qx, ...,qk and a selection function such that Y satisfies 

X = tx(px(xy), xy) 
h{qAxy\ xy) = t2(p2(xy), xy) 

h{qk{xy), xy) = y, 
and pJ(xx) = qj(xx) = uji(x) for all j. 

Condition (iii) of this theorem is precisely the characterization of L R ^ , ..., uH) 
given in H A G E M A N N [10]. 
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