The lattice variety $\mathbf{D} \circ \mathbf{D}$

GEORGE GRÄTZER and DAVID KELLY*

Dedicated to the memory of András P. Huhn

Section 1. Introduction. Let \mathbf{V} and \mathbf{W} be varieties of lattices. The product of \mathbf{V} and \mathbf{W}, denoted by $\mathbf{V} \circ \mathbf{W}$, consists of all lattices L for which there is a congruence relation Θ such that every congruence class of Θ (as a lattice) is in \mathbf{V} and L / Θ is in \mathbf{W}.

In this paper, we investigate in detail the class $\mathbf{D}^{2}=\mathbf{D} \circ \mathbf{D}$. This class first appeared in a paper of S. V. Polin [9]. \mathbf{D}^{2} is a curious class. Usually, one defines a class of algebras and aims at obtaining a structure theorem, while \mathbf{D}^{2} is defined via a structure theorem: members of \mathbf{D}^{2} are formed from distributive lattices over another distributive lattice.

In Section 2 we exhibit some lattices in \mathbf{D}^{2}. We describe a method to construct lattices freely generated by a poset over $\mathbf{D}^{\mathbf{2}}$; we apply this (Theorem 1, Figure 1) to obtain the free product over \mathbf{D}^{2} of the one-element and the four-element chain, and (Theorem 2) the free lattice over \mathbf{D}^{2} generated by the six-element partially ordered set H (see Figures 2 and 3). An example shows (Theorem 3, Figure 4) that \mathbf{D}^{2} is not locally finite.

In Section 3 we verify the most important property of \mathbf{D}^{2} : it is a variety. This result is a special case of the following result (Theorem 4): Let \mathbf{V} be a lattice variety closed under gluing; then $\mathbf{V} \circ \mathbf{D}$ is a variety. In particular, \mathbf{D}^{2} is a variety. As a corollary of this theorem, we get that there are continuumly many pairs of varieties whose product is a variety again.

While most known lattice varieties are either modular (contained in \mathbf{M}, the variety of modular lattices) or of small height (their height in the lattice of lattice varieties is 4 or less), \mathbf{D}^{2} is neither. We show that \mathbf{D}^{2} has large height (Theorem 5): There are continuumly many varieties contained in \mathbf{D}^{2}. Also, \mathbf{D}^{2} is very far from \mathbf{L} (the variety of all lattices): there are continuumly many varieties containing $\mathbf{D}^{\mathbf{2}}$. Finally, $\mathbf{D}^{\mathbf{2}}$ is almost disjoint from $\mathbf{M}: \mathbf{D}^{\mathbf{2}} \cap \mathbf{M}=\mathbf{D}$.

[^0]The results reported in this paper were discovered in the late seventies. There are some newer results (1982-1985) of the type covered in Section 3. Firstly, there is the result of R. McKenzie (see R. McKenzie and D. Hobby [9]) that D○V and $\mathbf{M} \circ \mathbf{V}$ are always varieties. The corollary of the main result of Section 3 also follows from McKenzie's result. The result of T. Harrison [6] shows that McKenzie's result is best possible: if \mathbf{W} is a non-modular lattice variety with the property that $\mathbf{W} \circ \mathbf{V}$ is a variety for any given non-modular lattice variety \mathbf{V}, then $\mathbf{W}=\mathbf{L}$, the variety of all lattices.

For the basic facts concerning products of lattice varieties, we refer to our paper [4]. For the basic concepts and notation, the reader is referred to [2].

Section 2. Examples. Although it may seem rather restrictive to require a lattice to be in \mathbf{D}^{2}, there are surprisingly many lattices in \mathbf{D}^{2}.

Let us start with small varieties. Obviously, N_{5} (the five-element nonmodular lattice) is in \mathbf{D}^{2}, hence \mathbf{N}_{5} (the variety generated by N_{5}) is contained in $\mathbf{D}^{2} . \mathbf{N}_{5}$ has 16 covers (B. Jónsson and I. Rival [7]; 15 of them are generated by the lattices of Figures 3-11 in Section V. 2 of [2] and their duals; the 16th is $\mathbf{N}_{5} \vee \mathbf{M}_{3}$). All but two are contained in D^{2}. The exceptions are the (self-dual) variety generated by Figure 11 and $\mathbf{N}_{5} \vee \mathbf{M}_{3} . M_{3}$ does not belong to \mathbf{D}^{2} because it is simple and it does not belong to \mathbf{D}. In fact, the only simple lattice in \mathbf{D}^{2} is the two-element chain. Which modular lattices belong to \mathbf{D}^{2} ? A modular lattice is non-distributive iff it contains M_{3}; hence, a modular lattice belongs to \mathbf{D}^{2} iff it is distributive.

It is easy to check whether a lattice belongs to \mathbf{D}^{2}. For a lattice variety \mathbf{V}, and a lattice L, let $\Theta(L, \mathbf{V})$ be the smallest congruence relation on L such that $L / \Theta(L, \mathbf{V})$ is in \mathbf{V}. Now, L belongs to \mathbf{D}^{2} iff all $\Theta(L, \mathbf{D})$ congruence classes are distributive. The "if" parts is obvious. Conversely, if L belongs to D^{2} by virtue of the congruence relation Θ, then $\Theta \geqq \Theta(L, \mathbf{D})$; since all Θ classes are distributive, so are the $\Theta(L, \mathbf{D})$ classes. $\Theta(L, \mathbf{D})$ can be described as follows: it is the join of all principal congruence relations $\Theta(a, b)$, where $a<b$ is a "violation of the distributive identity"; that is, there are $x, y, z \in L$ such that $(x \wedge y) \vee z=a$ and $(x \vee z) \wedge(y \vee z)=b$.

Using this, we can find the largest homomorphic image of a lattice that belongs to \mathbf{D}^{2}. Indeed, for a lattice L, first form $\Theta(L, \mathbf{D})$. Then form the join Φ of all $\Theta(a, b)$, where $a<b$ is a violation of the distributive law in some $\Theta(L, \mathbf{D})$ congruence class. Obviously, $\Phi \leqq \Theta(L, \mathrm{D})$; in $L / \Phi, \Theta(L, \mathrm{D}) / \Phi$ has distributive congruence classes, and $\Theta(L, \mathbf{D}) / \Phi=\Theta(L / \Phi, \mathbf{D})$. Hence Φ is the same as $\Theta\left(L, \mathbf{D}^{2}\right)$. (We can describe similarly the congruence $\Theta(L, V \circ W)$ for arbitrary lattice varieties \mathbf{V} and \mathbf{W}.)

We apply this observation to determine some lattices freely generated by partially ordered sets over D^{2}. Let C_{n} denote the n-element chain, and $A * B$ the free product of A and B. $L=C_{2} * C_{2}$ is in \mathbf{D}^{2}; so the \mathbf{D}^{2}-free product of C_{2} and C_{2} is L (see Figure 6 of Section VI. 1 of [2]). However, the free product of C_{1} and C_{4}
(see Figure 7 of Section VI. 1 of [2]) does not lie in \mathbf{D}^{2}. Applying the construction of $\Phi=\Theta\left(L, \mathbf{D}^{2}\right)$ to this lattice $L=C_{1} * C_{4}$ we obtain the lattice of Figure 1.

Figure 1
Theorem 1. The Iattice of Figure 1 is the \mathbf{D}^{2}-free product of C_{1} and C_{4}.
The free lattice L over the partially ordered set H (see Figure 2) plays an important role in [11] (see also [5]). Applying the method described above to this lattice L, we obtain the lattice freely generated by \mathbf{H} over \mathbf{D}^{2}; see Figure 3.

Figure 2

Figure 3

Theorem 2. The lattice of Figure 3 is the \mathbf{D}^{2}-free lattice over H.
Our final example of a lattice in \mathbf{D}^{2} is Figure 4. Since this is a 3-generated infinite lattice, we conclude that:

Figure 4

Theorem 3. $\mathbf{D}^{\mathbf{2}}$ is not locally finite.

Section 3. $D^{\mathbf{2}}$ is a variety. We proved in [4] that if VoD is a variety, then $\mathbf{V} \circ \mathbf{D}$ is closed under gluing. In this section we prove the following theorem:

Theorem 4. Let \mathbf{V} be a lattice variety. If \mathbf{V} is closed under gluing, then $\mathbf{V} \circ \mathbf{D}$ is a variety.

Proof. Let V be a lattice variety closed under gluing, let $L \in V \circ D$, and let Φ be a congruence relation of L. Given such an L, there is a smallest congruence relation Θ establishing that $L \in \mathbf{V} \circ \mathbf{D}$. To show that $\mathbf{V} \circ \mathbf{D}$ is a variety it is sufficient to show that for all choices of L and $\Phi, L / \Phi \in \mathbf{V} \circ \mathbf{D}$. Since $\mathbf{V} \circ \mathbf{D}$ is a quasi-variety, L / Φ belongs to it iff all finitely generated sublattices of L / Φ belong. Hence we can assume that L is finitely generated. Therefore, L / Φ is a finite distributive lattice. In [4] we have observed that it is sufficient to prove that $L / \Phi \in \mathbf{V} \circ \mathbf{D}$ for Φ satisfying $\Theta \wedge \Phi=\omega$.

Since L / Θ is finite, Φ can be written as the join of n congruences of the form $\Theta(a, b)$ (called minimal), where $[a] \Theta$ covers $[b] \Theta$ in L / Θ. We prove that $L / \Phi \in \mathbf{V} \circ \mathbf{D}$ by induction on n. Let $\Phi=\Phi^{\prime} \vee \Theta(a, b)$. Since L / Φ is isomorphic to $\left(L / \Phi^{\prime}\right) /\left(\Phi / \Phi^{\prime}\right)$, and Φ / Φ^{\prime} is minimal in L / Φ^{\prime}, we can assume without loss of generality that $\Phi=\Theta(a, b)$ for such a pair a, b.

We claim that $L / \Phi \in \mathbf{V} \circ \mathbf{D}$ is established by the congruence relation $(\Theta \vee \Phi) / \Phi$. By the Second Isomorphism Theorem (see [2]) ($L / \Phi) /(\Theta \vee \Phi / \Phi)$ is a homomorphic image of L / Θ, hence this lattice is distributive. The behavior of a $\Theta(u, v), u$ covers v, in a distributive lattice is well known (see [2], Chapter II); in particular, every congruence class is a singleton or a covering pair. Each congruence class of L / Φ modulo $\Theta \vee \Phi / \Phi$ lies in V because it is either isomorphic to a congruence class of L modulo Θ or it is isomorphic to a lattice described in the following lemma.

Lemma 1. Let K be a lattice, and let \mathbf{V} be a lattice variety closed under gluing. Let Θ be a congruence relation on K with two congruence classes which as lattices are in \mathbf{V}. Let Φ be a congruence relation on K satisfying $\Theta \wedge \Phi=\omega$. Then $K / \Phi \in \mathbf{V}$.

Proof. Let A and B be the congruence classes of K, with A the zero of L / Θ. Let D be the set of those elements of A that are congruent to some element of B modulo Φ. Let I be the set of those elements of B that are congruent to some element of A. We claim that D is a dual ideal of A, and I is an ideal of B.

Let $a_{1}, a_{2} \in D$. There are $b_{1}, b_{2} \in B$ satisfying $a_{1} \equiv b_{1}(\Phi)$ and $a_{2} \equiv b_{2}(\Phi)$. Then

$$
a_{1} \wedge a_{2} \equiv b_{1} \wedge b_{2}(\Phi)
$$

Since $b_{1} \wedge b_{2} \in B$, we conclude that $a_{1} \wedge a_{2} \in D$. Also, if $a \in D$ and $x \in A$, then there is a $b \in B$ satisfying $a \equiv b(\Phi)$. Hence,

$$
a \vee x \equiv b \vee x(\Phi)
$$

and $b \vee x \in B$, verifying that D is a dual ideal.
Similarly, I is an ideal of B.
Now if $a \in D$, then there is a unique $b \in I$ satisfying $a \equiv b(\Phi)$ (otherwise, $\Theta \wedge \Phi=\omega$ would be contradicted). Thus, we have a mapping φ from D to I. It is easy to verify that φ is an isomorphism. Moreover, it is clear that the Φ classes with more that one element are exactly: $\{a, a \varphi\}, a \in D$. Thus, A and B glued over I and D is isomorphic to K / Φ, and hence is in V , as claimed.

Section 4. Subvarieties. In this section, we construct continuumly many distinct subvarieties of \mathbf{D}^{2}.

Let A be an atomic Boolean lattice, $|A| \geqq 8$. We construct the lattices $K(A)$ and $L(A)$ as follows (see Figure 5). We take a disjoint copy A^{\prime} of A. The zero and

Figure 5
unit of A and A^{\prime} are denoted by $0(A), 1(A), 0\left(A^{\prime}\right), 1\left(A^{\prime}\right)$, respectively. Let $a_{1}(A), a_{2}(A), \ldots$ be the atoms of A, and $d_{1}\left(A^{\prime}\right), d_{2}\left(A^{\prime}\right), \ldots$ be the dual atoms of A^{\prime}; if it is clear from the context, we may write a_{i} for $a_{i}(A)$ and d_{i} for $d_{i}\left(A^{\prime}\right) . K(A)$ is defined on $A \cup A^{\prime} ; A$ and A^{\prime} are subposets of $K(A)$; for $x \in A$ and $y \in A^{\prime}, x<y$ iff $x=0(A)$, or $y=1\left(A^{\prime}\right)$, or $x=a_{i}(A), y=b_{i}\left(A^{\prime}\right)$ for some i; for $x \in A$ and
$y \in A^{\prime}, x>y$ never holds. $L(A)$ is defined on $K(A)$ and two new elements: $u(A)$ and $v(A) . v(A)$ is the unit element of $L(A) ; 0(A), 0\left(A^{\prime}\right)<u(A) ; u(A)$ is only comparable to $0(A), 0\left(A^{\prime}\right)$ and $v(A)$.

Lemma 2. Let A be an atomic Boolean lattice. Then $K(A)$ and $L(A)$ are lattices. $K(A)$ is a sublattice of $L(A)$. Both lattices are subdirectly irreducible. In both lattices, $0(A)$ and $1(A)$ form a critical edge.

Proof. Obvious.
Lemma 3. Let A and B be atomic Boolean lattices with A finite. If $K(A) \in$ $\epsilon \mathrm{HS}(K(B))$, then $K(A)$ is isomorphic to the sublattice of $K(B)$ generated by some subset of the form $\left\{a_{i}(A) \mid i \in I\right\} \cup\left\{d_{i}\left(A^{\prime}\right) \mid i \in I\right\}$ for some set I: In particular, $|A| \leqq|B|$.

Proof. Let $K(A)$ be isomorphic under φ to S / Θ, where S is a sublattice of $K(B)$, and let Θ be a congruence of S. We claim that for any atom $a_{i}(A)$ of $K(A)$, $a_{i}(A) \varphi=\left\{a_{j}(B)\right\}$ for some atom $a_{j}(B)$ of $K(B)$. Indeed, let $a_{i}(A) \varphi=[x] \Theta$ for some x in S. Suppose that the claim fails. Since $a_{i}(A)$ is not the zero of $K(A), x$ can be chosen so that $x>a_{j}(B)$ for some $a_{j}(B)$ in $K(B)$ or $x \geqq 0\left(B^{\prime}\right)$. But $[x)$ is distributive in $K(B)$, which would imply that $\left[a_{i}(A)\right)$ is distributive in $K(A)$, contradicting $|A| \geqq 8$, and verifying the claim. Similarly, for a dual atom $d_{i}\left(A^{\prime}\right)$ of $K(A), d_{i}\left(A^{\prime}\right) \varphi=$ $=\left\{d_{j}\left(B^{\prime}\right)\right\}$ for some dual atom $d_{j}\left(B^{\prime}\right)$ of $K(B)$. The lemma now follows.

Lemma 4. If A and B are atomic Boolean lattices with A finite, then $L(A) \notin$ ${ }_{G} \mathbf{H S}(K(B))$.

Proof. Indeed, if $L(A) \in \mathbf{H S}(K(B))$, then $K(A) \in \mathbf{H S}(K(B))$. By Lemma 3, $K(A)$ is embedded into $K(B)$, with the unit of $K(A)$ going into the unit of $K(B)$. So there is no room for $u(A)$ and $v(A)$ in $K(B)$.

Lemma 5. Let A and B be atomic Boolean lattices with A finite. If $L(A) \in$ $\in \operatorname{HS}(L(B))$, then A and B are isomorphic.

Proof. Let $L(A)$ be represented as S / Θ, where S is a sublattice of $L(B)$ and let Θ be a congruence relation of $S . u(B) \in S$, because otherwise S is a sublattice of $K(A)$, contradicting Lemma 4. Again, by Lemma 4, $u(B)$ cannot be congruent to an element of B^{\prime} under Θ; nor can it be congruent to $v(B)$ because then the quotient could not contain $L(A)$. Thus $[u(B)] \Theta=\{u(B)\}$ represents $u(A)$; it follows, that $(S-\{u(B), v(B)\}) / \Theta$ represents $K(A)$, hence $K(A) \in \mathbf{H S}(K(B))$. By Lemma 3, $K(A)$ is a specific type of sublattice of $K(B)$, the dual atoms $d_{1}\left(A^{\prime}\right), d_{2}\left(A^{\prime}\right), \ldots$ of A^{\prime} correspond to dual atoms of B^{\prime}. If A and B are not isomorphic, then A has fewer atoms, so their meet, $0\left(A^{\prime}\right)$ will not map onto $0\left(B^{\prime}\right)$, and will not be below $u(B)$, a contradiction.

Now we can state and prove the theorem of this section:
Theorem 4. D^{2} has continuumly many subvarieties.
Proof. Let N be a set of natural numbers $\geqq 3$. Let $\mathbf{V}(N)$ be the variety of lattices generated by the $L(A)$, where $|A|=2^{n}$ for some $n \in N$. We claim that for a finite Boolean lattice $B, L(B) \in \mathbf{V}(N)$ iff $|B|=2^{m}$ for some $m \in N$. This claim proves the theorem.

To verify the claim, let $L(B) \in \mathbf{V}(N)$. By Lemma 2, $L(B)$ is subdirectly irreducible, hence by Jónsson's Lemma, $L(B) \in \mathbf{H S}(L)$, where L is an ultraproduct of • $L(A)$ with $|A|=2^{n}, n \in N$. However, the class of all $L(A)$, where A is an atomic Boolean lattice, is first-order definable. Hence, $L=L(A) . L(A) \in \mathbf{H S}(L(B))$ contradicts Lemma 5, unless A and B are isomorphic. This verifies the claim.

References

[1] R. Freese, Projective geometries as projective modular lattices, Trans. Amer. Math. Soc., 251 (1979), 329-342.
[2] G. Grätzer, General Lattice Theory, Pure and Applied Mathematics series, Academic Press (New York, N. Y., 1978).
[3] G. Grätzer and D. Kelly, A survey of products of lattice varieties, in: Contributions to lattice theory (Proc. Conf. Szeged, 1980), Colloq. Math. Soc. J. Bolyai, vol. 33, North-Holland (Amsterdam, 1983); pp. 457-472.
[4] G. Grätzer and D. Kelly, Products of lattice varieties, Algebra Universalis, 21 (1986), 33-45.
[5] G. Grätzer and D. Kelly, The free m-lattice on the poset H, Order, 1 (1984), 47-65.
[6] T. A. Harrison, P a nontrivial modular lattice variety and V a nonmodular lattice variety such that $V \circ P$ is a variety implies V is the variety of all lattices, $\mathrm{Ph} . \mathrm{D}$. Thesis, University of Hawaii (1985).
[7] B. Jónsson and I. Rival, Lattice varieties covering the smallest non-modular variety, Pacific J. Math., 82 (1979), 463-478.
[8] V. B. Lender, The groupoid of prevarieties of lattices, Sibirsk. Mat. Zh., 16 (1975), 1214-1223. (Russian) (English translation: Siberian Math. J., 16 (1975), 930-937.)
[9] R. McKenzir and D. Hobby, The structure of finite algebras (tame congruence theory), Manuscript, 1985.
[10] S. V. Polin, On identities in congruence lattices of universal algebras, Mat. Zametki, 22 (1977), 443-451. (Russian)
[11] I. Rival and R. Wille, Lattices freely generated by partially ordered sets: which can be drawn? J. Reine Angew. Math., 310 (1979), 55-80.

[^0]: Received May 4, 1986.

 * The research of both authors is supported by the NSERC of Canada.

