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Section 1. Introduction. Let V and W be varieties of lattices. The product of 
V and W, denoted by Vo W, consists of all lattices L for which there is a congruence 
relation 0 such that every congruence class of 0 (as a lattice) is in V and L/0 is in W. 

In this paper, we investigate in detail the class D 2 =DoD. This class first 
appeared in a paper of S. V. POLIN [9]. D2 is a curious class. Usually, one defines a 
class of algebras and aims at obtaining a structure theorem, while D2 is defined via 
a structure theorem: members of D2 are formed from distributive lattices over 
another distributive lattice. 

In Section 2 we exhibit some lattices in D2. We describe a method to construct 
lattices freely generated by a poset over D2; we apply this (Theorem 1, Figure 1) 
to obtain the free product over D2 of the one-element and the four-element chain, 
and (Theorem 2) the free lattice over D2 generated by the six-element partially or-
dered set H (see Figures 2 and 3). An example shows (Theorem 3, Figure 4) that 
D2 is not locally finite. 

In Section 3 we verify the most important property of D2: it is a variety. This 
result is a special case of the following result (Theorem 4): Let V be a lattice variety 
closed under gluing; then VoD is a variety. In particular, D2 is a variety. As a 
corollary of this theorem, we get that there are continuumly many pairs of varieties 
whose product is a variety again. 

While most known lattice varieties are either modular (contained in M, the 
variety of modular lattices) or of small height (their height in the lattice of lattice 
varieties is 4 or less), D2 is neither. We show that D2 has large height (Theorem 5): 
There are continuumly many varieties contained in D2. Also, D2 is very far from L 
(the variety of all lattices): there are continuumly many varieties containing D2. 
Finally, D2 is almost disjoint from M: D 2 f l M = D . 
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The results reported in this paper were discovered in the late seventies. There 
are some newer results ( 1 9 8 2 — 1 9 8 5 ) of the type covered in Section 3. Firstly, there 
is the result of R . McKenzie (see R . M C K E N Z I E and D . HOBBY [ 9 ] ) that Do V and 
MoV are always varieties. The corollary of the main result of Section 3 also follows 
from McKenzie's result. The result of T. HARRISON [6] shows that McKenzie's result 
is best possible: if W is a non-modular lattice variety with the property that Wo V 
is a variety for any given non-modular lattice variety V, then W=L, the variety of 
all lattices. 

For the basic facts concerning products of lattice varieties, we refer to our 
paper [4]. For the basic concepts and notation, the reader is referred to [2]. 

Section 2. Examples. Although it may seem rather restrictive to require a lattice 
to be in D2, there are surprisingly many lattices in D2. 

Let us start with small varieties. Obviously, Ns (the five-element nonmodular 
lattice) is in D2, hence Ns (the variety generated by N.) is contained in D2. N5 has 
16 covers ( B . JÓNSSON and I . RIVAL [ 7 ] ; 15 of them are generated by the lattices of 
Figures 3—11 in Section V.2 of [2] and their duals; the 16th is N5VM3). All but 
two are contained in D2. The exceptions are the (self-dual) variety generated by 
Figure 11 and N5VM3. M3 does not belong to D2 because it is simple and it does 
not belong to D. In fact, the only simple lattice in D2 is the two-element chain. 
Which modular lattices belong to D2? A modular lattice is non-distributive iff it 
contains M3; hence, a modular lattice belongs to D2 iff it is distributive. 

It is easy to check whether a lattice belongs to D2. For a lattice variety V, and a 
lattice L, let 0 (L , V) be the smallest congruence relation on L such that L/0(L, V) 
is in V. Now, L belongs to D2 iff all 0(L, D) congruence classes are distributive. 
The "if" parts is obvious. Conversely, if L belongs to D2 by virtue of the congruence 
relation 0, then 0 £ 0 ( I , D); since all 0 classes are distributive, so are the 0{L, D) 
classes. 0{L, D) can be described as follows: it is the join of all principal congru-
ence relations 0(a,b), where is a "violation of the distributive identity"; 
that is, there are x,y,z£L such that (xAy)V z=a and (x\/ z)A(yV z)=b. 

Using this, we can find the largest homomorphic image of a lattice that belongs 
to D2. Indeed, for a lattice L, first form 0(L, D). Then form the join <P of all 0(a, b), 
where a<b is a violation of the distributive law in some 0{L, D) congruence class. 
Obviously, $ ^ 0 (L, D); in L/<£, 0 (L , D)/<5 has distributive congruence classes, 
and 0 ( £ , D)/<Z>=<9(L/í>, D). Hence <t> is the same as 0(L, D2). (We can describe 
similarly the congruence 0{L, VoW) for arbitrary lattice varieties V and W.) 

We apply this observation to determine some lattices freely generated by par-
tially ordered sets over D2. Let C„ denote the /¡-element chain, and A*B the free 
product of A and B. L—C2*C2 is in D2, so the D2-free product of C2 and C2 is 
L (see Figure 6 of Section VI. 1 of [2]). However, the free product of Cx and C4 
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(see Figure 7 of Section VI. 1 of [2]) does not lie in D2. Applying the construction 
of <P=0(L, D2) to this lattice L-C1*C4 we obtain the lattice of Figure 1. 

Theorem 1. The lattice of Figure 1 is the W-free product of Cx and C4. 

The free lattice L over the partially ordered set H (see Figure 2) plays an im-
portant role in [11] (see also [5]). Applying the method described above to this lattice 
L, we obtain the lattice freely generated by H over D2; see Figure 3. 
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Figure 3 

Theorem 2. The lattice of Figure 3 is the TP-free lattice over H. 

Our final example of a lattice in D2 is Figure 4. Since this is a 3-generated 
finite lattice, we conclude that: 

Figure 4 
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T h e o r e m 3. D s is not locally finite. 

Section 3. D2 is a variety. We proved in [4] that if VoD is a variety, then 
VoD is closed under gluing. In this section we prove the following theorem: 

T h e o r e m 4. Let V be a lattice variety. If V is closed under gluing, then 
VoD is a variety. 

Proof . Let V be a lattice variety closed under gluing, let £€VoD, and let 
$ be a congruence relation of L. Given such an L, there is a smallest congruence 
relation 0 establishing that LCVoD. To show that VoD is a variety it is sufficient 
to show that for all choices of L and <f>, L/$£VoD. Since VoD is a quasi-variety, 
L/<P belongs to it iff all finitely generated sublattices of belong. Hence we can 
assume that L is finitely generated. Therefore, LI $ is a. finite distributive lattice. 
In [4] we have observed that it is sufficient to prove that Z,/$€VoD for <P satis-
fying 0A $=co. 

Since L / 0 is finite, 0 can be written as the join of n congruences of the form 
0(a, b) (called minimal), where [a]0 covers [b]0 in L/0. We prove that Z,/$£VoD 
by induction on n. Let b). Since is isomorphic to (L/$')l(<P/$'), 
and is minimal in L/ we can assume without loss of generality that <P=0(a, b) 
for such a pair a, b. 

We claim that oD is established by the congruence relation (6>V <P)J<P. 
By the Second Isomorphism Theorem (see [ 2 ] ) ( J L / 3 > ) / ( 0 V (P/<P) is a homomorphic 
image of L/0, hence this lattice is distributive. The behavior of a 0 (u, v), u covers 
v, in a distributive lattice is well known (see [2], Chapter II); in particular, every 
congruence class is a singleton or a covering pair. Each congruence class of Z,/<£ 
modulo 0V$l<I> lies in V because it is either isomorphic to a congruence class 
of L modulo 0 or it is isomorphic to a lattice described in the following lemma. 

Lemma 1. Let K be a lattice, and let V be a lattice variety closed under 
gluing. Let 0 be a congruence relation on K with two congruence classes which 
as lattices are in V. Let $ be a congruence relation on K satisfying 0A$=a). 
Then K/$£V. 

Proof . Let A and B be the congruence classes of K, with A the zero of L/0. 
Let D be the set of those elements of A that are congruent to some element of B 
modulo Let / be the set of those elements of B that are congruent to some element 
of A. We claim that D is a dual ideal of A, and I is an ideal of B. 

Let a1,a2eD. There are bt, b2£B satisfying a^b^^) and a2=b2(<P). 
Then 

a,Aa2 = 
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Since b^Ab^B, we conclude that GxAa%(zD. Also, if a£D and x£A, then 
there is a b£B satisfying a=b(<I>). Hence, 

aVx = bVx($) 

and b\lx£B, verifying that D is a dual ideal. 
Similarly, I is an ideal of B. 
Now if a£D, then there is a unique ¿£7 satisfying a=b(<P) (otherwise, 

0A <P=£o would be contradicted). Thus, we have a mapping (p from D to I. It is 
easy to verify that <p is an isomorphism. Moreover, it is clear that the <P classes 
with more that one element are exactly: {a, a<p}, a£D. Thus, A and B glued over 
/ and D is isomorphic to K/<I>, and hence is in V, as claimed. 

Section 4. Subvarieties. In this section, we construct continuumly many distinct 
subvarieties of D2. 

Let A be an atomic Boolean lattice, We construct the lattices K(A) 
and L(A) as follows (see Figure 5). We take a disjoint copy A' of A. The zero and 

v(A) 

Figure 5 

unit of A and A' are denoted by 0(A), 1(A), 0(/!'), HA'), respectively. Let 
ax(A), a2(A), ... be the atoms of A, and dx(A'), d2(A'), ... be the dual atoms of A'; 
if it is clear from the context, we may write ai for a{(A) and di for dt(A'). K(A) is 
defined on A (J A'; A and A' are subposets of K(A); for x£A and yd A', x<y 
iff x=0(A), or y=\(A'), or x=at(A), y=bi(A') for some /; for x£A and 
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y£A', x>_y never holds. L(A) is defined on K(A) and two new elements: u(A) 
and v(A). v(A) is the unit element of L(A); 0(A), 0(A')<u(A); u(A) is only 
comparable to 0(A), O(A') and v(A). 

Lemma 2. Let A be an atomic Boolean lattice. Then K(A) and L(A) are 
lattices. K(A) is a sublattice of L(A). Both lattices are subdirectly irreducible. 
In both lattices, 0(A) and 1(A) form a critical edge. 

Proof . Obvious. 

Lemma 3. Let A and B be atomic Boolean lattices with A finite. If K(A)£ 
£HS(K(B)), then K(A) is isomorphic to the sublattice of K(B) generated by some 
subset of the form {ai(A)\i£I}U{di(A')\i£l} for some set I: In particular, 

Proof . Let K(A) be isomorphic under <p to S/0, where S is a sublattice of 
K(B), and let 0 be a congruence of S. We claim that for any atom a¡(A) of K(A), 
ai(A)(p = {aJ(B)} for some atom a¡(B) of K(B). Indeed, let ai(A)q>=[x\© for 
some x in S. Suppose that the claim fails. Since a¡(Á) is not the zero of K(A), x can 
be chosen so that x>a,(J3) for some a¡(B) in K(B) or x^O(B'). But [x) is distri-
butive in K(B), which would imply that [a¡(A)) is distributive in K(A), contradicting 
\A\and verifying the claim. Similarly, for a dual atom d¡(A') of K(A), di(A')<p = 
— {dj(B')} for some dual atom dj(B') of K(B). The lemma now follows. 

Lemma 4. If A and B are atomic Boolean lattices with A finite, then L(A)$ 
iHS(K(B)). 

Proof . Indeed, if L(A)€HS(K(B)), then ^(/l)€HS(Ar(B)). By Lemma 3, 
K(A) is embedded into K(B), with the unit of K(A) going into the unit of K(B). 
So there is no room for u(A) and v(A) in K(B). 

Lemma 5. Let A and B be atomic Boolean lattices with A finite. If L(A)£ 
€HS(L(2?)), then A and B are isomorphic. 

Proof . Let L(A) be represented as S/0, where S is a sublattice of L(B) and 
let 0 be a congruence relation of S. u(B)£S, because otherwise S is a sublattice of 
K(A), contradicting Lemma 4. Again, by Lemma 4, u(B) cannot be congruent to 
an element of B' under 0 ; nor can it be congruent to v(B) because then the quotient 
could not contain L(A). Thus [u(B)]0 = {u(B)} represents u(A); it follows, that 
(S-{u(B), v(B)})/0 represents K(A), hence By Lemma 3, K(A) 
is a specific type of sublattice of K(B), the dual atoms dx(A'), d2(A'),... of A' 
correspond to dual atoms of B'. If A and B are not isomorphic, then A has fewer 
atoms, so their meet, 0(A') will not map onto 0(B'), and will not be below u(B), 
a contradiction. 
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Now we can state and prove the theorem of this section: 

T h e o r e m 4. D2 has continuumly many subvarieties. 

Proof . Let N be a set of natural numbers s 3 . Let Y(N) be the variety of 
lattices generated by the L(A), where \A\ =2" for some n(LN. We claim that for 
a finite Boolean lattice B, L(B)£V(N) iff \B\=2m for some m^N. This claim 
proves the theorem. 

To verify the claim, let L(B)£\(N). By Lemma 2, L(B) is subdirectly irre-
ducible, hence by J6nsson's Lemma, £(B)€|HS(£), where L is an ultraproduct of ' 
L(A) with \A\=2", n£N. However, the class of all L(A), where A is an atomic 
Boolean lattice, is first-order definable. Hence, L=L(A). L(A)dHS(L(B)) con-
tradicts Lemma 5, unless A and B are isomorphic. This verifies the claim. 
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