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Congruence relations and direct decompositions of ordered sets 

M. KOLIBIAR 

Dedicated to the memory of András Huhn 

1. Introduction 

Given an algebra stf=(A\ F), there is a one-one correspondence between 
direct product decompositions s/=JJ(s/s \ i£í) and families (0, |/ '£/) of con-
gruence relations of sé satisfying 

(1) n(ö,l i€l) = idA, 

(2) | / £ / ) = AXA, 

(3) given a family (xi \ id I) of elements of A, there exists an element x£A 
such that xQtXi for all /£/. 

The situation is more complicated in the case of relational systems. A method 
of characterization of direct product decompositions of such systems was given in 
the papers [1] and [3]. For the sake of simplicity we state the result for the case of 
ordered sets. (We use the term "ordered set" for partially ordered set.) 

There is a one-one correspondence between direct product decompositions of 
an ordered set ¿é=(A\ s=) and families (0; | ?'£/) of equivalence relations of A 
satisfying (1), (2), (3) and 

(4) given elements .r, y, xt, j>; (/£/) of A such that x^yt and xO-^Xj, j ö ^ 
for all i f j , then x^y. 

The condition (4) is a kind of "collective congruence property". Instead of a 
notion of an (individual) congruence relation we have to deal with a "congruence 
family". Recently an analogous characterization of subdirect decompositions of 
multialgebras was given by G. E. HANSOUL [2]. 

In the present note we study a notion of congruence relation in the class of 
ordered sets which enables the same characterization of direct decompositions of 
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directed ordered sets as in the case of algebras (conditions (1), (2), (3)) whenever 
the number of the decomposition factors is finite or the ordered set satisfies a chain 
condition. Moreover, we show that the congruence relations form a distributive 
lattice. Also some results on subdirect decompositions are given. 

2. Congruence relations 

2.1. Def in i t i on . Let ^"=(P; be a directed ordered set. An equivalence 
relation в on P will be called a congruence relation on SP if the following con-
ditions are satisfied. 

(i) For each a£P, [a]Q (={x£P | хва}) is a convex subset of P. 
(ii) If a,b,c(LP, a^c, b^c and adb, then there is dCP such that a^d^c, 

b^d and add. 
(iii) If a,b, u,v£P, u^a^v, u^b^v and ива (aOv), then there is t£P such 

that b^tSv, a^t, (u^t^b, t^a) and bOt. 
If 3P is a lattice then this notion coincides with the lattice congruence relation. 

2.2. It can be easily shown that the conditions (ii), (iii) are equivalent with the 
following one: 

(iv) If a,b, c, d£P, a^c^d, b^d (a^c^d, b^d) and a6b, then there is 
e£P such that c^e^d, b^e (cSe^d, b^e) and све. 

2.3. Let Con SP denote the set of all congruence relations of 3?. Eq P will 
denote the lattice of all equivalence relations on P. 

In what follows all ordered sets will be supposed to be (both up- and down-) 
directed (i.e. to any a, b there are u, v such that u^a^v, u^b^v). 0> will denote an 
ordered set (P; We say that 3? satisfies the restricted ascending chain condition 
(RACC) if every closed interval of & satisfies the ascending chain condition. 

The set {1, 2, ..., n} will be denoted by n. 

2.4. A congruence relation в on has the following property. 
(ii') If a, b, с£Р, аШс, b^c, a9b, then there exists e£P such that a^e^c, 

b^e and aQe. 

Proof . Using the fact that 3P is up-directed and (ii) we get that d£P exists 
such that flgrf, b ̂ d and bdd. The existence of the desired element e follows by (iii). 

2.5. Let 0£Con 3P, a,b£P, аШЬ. Then to any х£[а]в (j€[i>]0) there is 
уф]в (х£[а]0) such that xr^y. 
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Proof ; Let x6[a]0- Since S? is up-directed, there is c£P such that b ^ c , 
xSc . According to 2.2 there is y£P such that bOy and x^y. The second asser-
tion is symmetric. 

2.6. Let 0eCon 9. Given a, b£P, set [a] 0^[b]0 if there are x,y£P such that 
xOa,ydb and x^y. Then (P /0 ; = ) is an ordered set. 

The proof is straightforward. 

2.7. Let 06 C o n a , b , c , d , u £ P , a^b, aOc, bdd, c^u, d^u. Then there 
is v£P such that d^vSu, c^v and bOv. 

Proof . According to 2.5 there exists e£P such that eda and egrf. Using 
2.2 we get that v£P exists such that d^v^u, c^v and dOv. 

2.8. T h e o r e m 1. The congruence relations on SP correspond one-one to map-
pings f of P onto ordered sets (given uniquely up to isomorphism) such that 

(a) / is isotone, 
(b) if x, y, u£P, xSw, y^u (xSw, y?~u) and f ( x ) ^ f { y ) ( / ( x ) s / ( j ) ) 

then there is z £P such that x^z, y^z^u (x^z, y-=z=^ii) and f(y)—f(z). 

Proof . Let 0£Con 0>. The mapping / : P—P/0, xi-*[x]0, is obviously iso-
tone. Let / ( x )= / " ( j ) and x^u, y^u. Then a£[x]0 and b£[y]0 exist such that 
a ^ b . The existence of the desired element z follows by 2.7. The second assertion 
follows by symmetry. 

Conversely, let / : P—Q fulfil the conditions (a) and (b) and let 6=Ker f . 
The property (i) is obvious. Let a9b and a^c, b^c. Then f(a)=f(b) andaccording 
to (b) there is d£P sucht that a^d^c, b^d and f(a)=f(d) which proves (ii). 
If u^a^v, u^b^v^ and uOa, then f{a)^f(b) and, according to (b), t£P exists 
such that b^t^v, a^t and f(t)=f(b), hence tdb. The second part of (iii) 
follows by symmetry. 

Let F and G be the mappings Q>—f and />-»-0, respectively, described above. 
Obviously (GF)(9)=9. Let / : P - 0 be given. Then the mapping (FG)(f) is the 
canonical mapping P - P / 0 , 0 = K e r / . To prove ¡0 let us define h: P/9-Q 
by setting li([x]0)=f (x). h is suijective and well defined. If [x]6^[y]9 then z£[y]9 
exists such that x ^ z . Hence f(x)^f(z)=f(y). Conversely, let / ( x ) ^ / ( j ) . 
There is w£P such that xsSw, y ^ u . According to (b) z£P exists such that y ^ z S u , 
xSz , f(y)=f(z), hence [x]9^[z)9=[y)9. 

2.9. Let =x„, a ;6Con 3?, x^o^x,- for all i£n. Then 
there exists a sequence x0=y0^y1^...^yn=y such that yt g x ; and x a; yt for all i£ n. 

Proof . If n —1, it suffices to take y-i=y. Suppose the assertion holds for 
«—1^1. Using (iii) for the elements y, x„_!, x0, xn we get that y„-x exists such 
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that y„-j^.\„-i and yn-xany. By the induction assumption there 
are elements yx,...,y„-2 which together with J„_J give the desired sequence. 

2.10. Let u^a^v, u^b^v, w=«0=Wi = --- = " „ = a , "¡-la,",-, a,6Con ^ for 
all iÇrï. Then a sequence b — v e x i s t s Such that and 
Vi-iX^i for all i£n. 

Proo f . If «=1, the assertion follows by (iii). Assume the assertion holds for 
n—1. By (iii) there is vx such that u^v^v, b~vx and baxvx. By the induction 
assumption there exists a sequence such that a^v„ , and 
vi-ixivi f ° r i=2,...,n. 

2.11. Let a=t0, tx, ..., tn = b be elements of P, a ^ C o n and ti_1aiti for 
all i£n. Then there exist sequences a = w0=^... = un, b=v0^vxS...=v„ = un such 
that for each i£n, "¡-IO,-,-,)«,, vi_1ak(i)vi where j(i),k(i)£n. 

Proo f . In n=1, the assertion is trivial. Supposing the assertion holds for 
n—l we shall prove it for //. Using the induction assumption for the elements 
a,tx,...,tn_x we get sequences a=u0^u1^...^u„_x, i „_ 1 =vv 0 sw 1 i . . . ivv„_ j = 
= m„_3 such that, for each i£n— 1, "¡- i^ro" ' ' ' wi-iafci'oH'"'' 7(0-. k(i)£n—l. 
Using the fact that P is up-directed and (ii), (iii), we get that c, vx£P exist such 
that tn_x^v], bSvx^c, t„-xoinvxunb and un_x<xnc. According to 2.10 
there exists a sequence vxsv2s...^vn^c such that for idil and) u„_x^vn, 
vi-iak(ï)vi f ° r i = 2,...,n. Obviously un^x<xnu„, where u„=vn. 

2.12. Let / t c C o n 0>. Then \j(a \ a£A) = fi has the property (ii). 

Proof . Let a i e , b^Lc, a fib. According to the proposition dual to 2.11 there 
exists a sequence such that and wi_1aiMi, <xt£A for 
each i£n. According to 2.10 there exists a sequence a=v0^vx^...^v„^c such 
that b^vn and vi_1aivi for all i£n. Hence afivn (and bfivn). 

2.13. Let AaCon (x, y)£\/(a | a£A) and x^y. Then there exists a se-
quence .v=-T0 = .V] =... Sx„ = y such that x^^iXi, c/.^A for all i£n. 

Proo f . According to 2.11 there exists a sequence x = u 0 ^ u x ^ . . . ^ u „ such that 
y^u„ and «i-iOi^i)»,-, <Xj(i)£A for all i£n. According to 2.9 there exists a sequence 
x= Z0— ti= - —tn =y such that ia7(i)t-, for all i£n. 

2.14. If y4cCon & then /? = V(« I a£A) has the property (i). 

P r o o f . Let x^zSy and xBy. Using 2.13 and 2.9 we get x9z. 

2.15. If AczCon & then V(a I a€/l)eCon &>. 
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Proof . The property (iii) of the join follows immediately from 2.13 and 2.10 
(and from its duals), while (i) and (ii) were proved in 2.14 and 2.12. 

2.16. If a, PzCon & then a D ^ C o n ^ . 

Proof . Obviously aDj8 has the property (i). The properties (ii) and (iii) can 
be easily checked. 

2.17. From 2.15 and 2.16 we get 

Theorem 2. Con 0> forms a complete lattice which is a sublattice of the lattice 
Eq P. Moreover for any Set AczCon HP, Vcon^(a I = VEq p(a I «€-<4). 

Remark . Unfortunately, the set-theoretic intersection fl(a | a£A) need not 
belong to Con 9 if A is an infinite subset of Con SP, as the following simple example 
shows. Let N be the set of all negative integers with the natural order and P= 
= {u,a,b}UN, u<a<n and u<b<n for all n£N. For each n£N, let a„ be the 
equivalence relation on P with the blocks («] and [« + 1) (0 if n= — 1). Then a„6Con SP 
but D(an | n£N)$Con SP. 

Hence it can occur that Acon3»(a I a€A)< AnqpO* I if A is infinite. 

Theorem 3. The lattice Con SP is distributive. If Con SP and B e Con SP 
then OL A | = V(A A P \ P<ZB). 

Proof . Set (p—ot. A V(J? | P£B), $ = V(a A P | P£B). Obviously ij/^tp. To 
prove the converse we first notice that xepy and x^y imply xij/y. Indeed, from the 
assumption we get xay and the existence of a sequence x=x0^x1S...Sxn=y, 
x ; - i P i x i , PfiB, for all /6« (2.13). Then x ^ aAPi xt hence xtj/y. To get the implica-
tion for arbitrary x, y£P, observe that if xepy then zdP exists such that x s z , ySz 
and x<pz, yepz. 

2.18. Let SP satisfy RACC and let «¡GCon SP (/£/), f l f o | / 6 / )= id , . If a 
and af (/€/) are elements of P such that aStf; and a a,a; for all i£l, then a= 
= i n f ( I 7 ; | / € / ) . 

Proof . Let b ^ a t for all id I. Choose /(1)6/. According to (iii) there is bx£P 
such that b x ^a , b ^ b and ¿ai(1)i>j. Choose /(2)6/-{/(1)}. Then there exists 
b2dP such that bx^b2^a, b2~b and i>ai(2)62. By induction we get a sequence 

bj-^a, bj^b, balU)bj, which ends with some member bm by virtue of 
RACC. Then ba.} bm for each j£I hence b—bm so that b^a. 

By an analogous argument we get the following proposition. 

Let & be an arbitrary directed ordered set. If there are given a, ax, ..., a„£P 
and otjiCon ^ with o^A ...Aa„=idP such that flSa, and a a ;a ; for each i£n 
then a=inf ((?!,..., an). 
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Remark . Without the condition RACC the first proposition would not be true 
as the following example shows. 

Let P be the set A(JB(J {a, b} where A (B) is the set of all positive (negative) 
integers with its natural order and for any m£A and n£B let m^a^n, m<b~^n. 
Then tP—(P; =) is a directed ordered set. For each m£A, let am be the equiva-
lence relation on P i n which the only non-singleton blocks are the intervals [a, — m] 
and [m,b\. Then am£Con SP, D(am | m£A) = '\6P, a^n, b^n and aa_„n for each 
n£B but fcSfl does not hold. 

3. Direct and snbdirect representations 

3.1. De f in i t i on . A subdirect product i£J) will be called a full 
subdirect product whenever to each i£Tand any a, b£P there is c£P such that ci=ai 

and Cj=bj for all yVz. 

3.2. T h e o r e m 4. Let SP^JJi&i \ i£l) be a full subdirect product of ordered 
sets and let, for each i£l, Qt be the kernel of the projection SP . Then 0t£ Con SP. 

Proof . Obviously 9t fulfils (i). Let a^c, b^c and aOfi, i.e., a^b^ Let d 
be the element of P with and dj=Cj for jj^i. Then d is the element needed 
for (ii). The dual part of (ii) is analogous. Finally, let the elements a,b,u,v£P 
satisfy u^a^v, u^b^v, uQ.a and let d be the element fulfilling d—bi and dj=Vj 
for /VzV Then d dulfils the condition of (iii). The dual part is analogous. 

Remark . The theorem would not be true if the word "full" was omitted. 
This is shown by the following example. Let L={o, i,q, b, c} be the five-element 
modular and non-distributive lattice and C the chain 0 < 1 <2. Then / : L—CXC, 
where o>->-(0, 0), a>-»(0, 2), £>>—,1), c>-*(2, 0), iW(2, 2), gives a subdirect decom-
position of the ordered set L but the kernels of the corresponding projections do not 
fulfil condition (iii). 

3.3. T h e o r e m 5. Let, for each i£n, txfcConSP and aXAA2A...AA„=idP. 
Then SP is a subdirect product of the ordered sets SPja-^ where jc->-([x]ai | i£n). 

. . P roof . It suffices to show that for all i£n implies; x^y. For 
each i£n there exists yt£P such that y^yt, ja,-^ and x^yt (see 2.5). According 
to the second proposition in 2.18, j>=inf(jY5 •••, y„), Hence x ^ y . .... 

By an analogous argument (using the first proposition 2.18) we'get , 

T h e o r e m 6. Let & satisfy the RACC and let A be a subset of Con SP such 
that Pi (0 | 6£A) = idP. Then SP is a subdirect product of the ordered sets • 0>\9 
(0£A), where x~([x]9 \ 9£A). 
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Theorem 7. Let SP be a (directed) ordered set. There is a one-one correspond-
ence between direct product decompositions of SP into finitely many (say n) factors 
and the families (6t | id n) of congruence relations of & satisfying (1), (2) and (3) 
(see the introduction). 

Proof . The theorem is an easy consequence of Theorems 4 and 5. 
Analogously (using Theorem 6) the following theorem can be proved. 

Theo rem 8. Let & satisfy RACC. 
(a) There is a one-one correspondence between the direct product decompositions 

¡P-^JJi&i | id I) and the families (6t | /"€/) of congruence relations satisfying (1), 
(2) and (3). 

(b) There is a one-one correspondence between the full' subdirect product de-
compositions SP-~[J(SPi I id I) and the families | id I) of congruence relations 
satisfying (1) and 

(5) for each /£/, OfiCKOj \jdj, j^i)=PxP. 

The orem 9. Let SP satisfy RACC and let (0; | /£/) be a family of congruence 
relations of SP satisfying (1) and (5). Then, for any subset Jcl, f)(0j \ jdJ) (set-
theoretic intersection) belongs to Con SP. 

Proof . According to Theorem 8 the family (6t \ id I) gives a full subdirect 
product decomposition of SP. Then <p = H | jdJ) and \jt=C\(8k\ kdl—J) are 
equivalence relations corresponding to the direct product 0>l<pX0>/ij/, hence they 
belong to Con SP (see Theorem 4). 

Added in proof. 1. Recently J. Jakubik showed that the condition RACC in 
Theorem 8 cannot be omitted. 

2. The condition (i) in 2.1 is an easy consequence of (iii) (this was observed 
by Mrs. J. Lihova). Also the condition (2) in the introduction may be omitted. 
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