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On circuits of atoms in atomistic lattices
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Dedicated to the memory of Dr. Andrds P. Huhn

1. Introduction. In [2], an atomistic lattice with the covering property is called
an AC-lattice and an upper continuous AC-lattice is called a matroid lattice. (In
[1], [6] and [9], 2 matroid lattice is called a geometric lattice.) As shown in [9], Sec-
tion 3.3, a finite lattice is a matroid lattice if and only if it is isomorphic to the lattice
of closed sets of a matroid. By this reason, the concept of circuits which plays an
important role in matroid theory can be introduced in the theory of matroid lattices.
The main purpose of this paper is to investigate lattice-theoretical properties of
circuits.

In Section 2, we shall show that the set of atoms of an atomistic join-semilattice
L with the finite covering property forms a simple matroid. The set F(L) of all
finite elements of L forms an AC-lattice, which will be called an FAC-lattice, and in
Section 3, we define circuits of atoms in an FAC-lattice.

In Section 4, we shall discuss a connection between the modularity of FAC-
lattices and the existence of special circuits, which will be called P-circuits. An
important example of FAC-lattice is a bond lattice associated with a non-oriented
finite simple graph ([6], [8]). Such a lattice has a remarkable property, that is, it has
no non-trivial P-circuit.

Another important example is an affine matroid lattice whose properties are
thoroughly investigated in [2], Chapter IV. This lattice always has a property called
strongly planar. In Section 5, we shall show that almost all non-modular bond
lattices are not strongly planar. From this we can see that, in the set of matroid
lattices, there are three disjoint subsets: {non-modular affine matroid lattices},
{non-modular bond lattices} and {modular matroid lattices}.
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2. Atomistic join-semilattices and simple matroids. Let L be a join-semilattice
with 0. The set of all atoms of L is denoted by Q(L). We put

F(L) = {pV..Vp; p€Q(L), n=1,2,..3U{0},

and an element of F(L) is called a finite element. L is called atomistic when every
non-zero element a of L is the least upper bound of {p€ Q(L); p=a} (see [7]).

Let L be an atomistic join-semilattice. For any subset w of Q(L), the closure
of w is defined by

Cl{w)={pcQ(L); p=q,V...Vq,, g;€w} (C1(8)=0).

The following properties are easily verified.
C11) ocCl(w).
(C12) w,cw, implies Cl(w,)cCl(w,).
(C13) Cl(Cl(w))= Cl(w).
(C14) If pcCl(w) then there exists a ﬁmte subset o’ of @ such that peCl(w’).
(C15) Ci({p})={p} for pcQ(L).

Proposition 1. Let L be an atomistic join-semilattice.

(i) The following two statements are equivalent:

(@) L has the ﬁnzte covermg property, Le. if peQ(L), ac F(L) and pﬁa then
aVp covers a.

B® If p, ¢ Q(L), peCl(wU{q}) and p¢Cl(w) then qECl(@U{p}). A

(i) If L satisfies (&) (and (B)), then F(L) is an AC-lattice and M(L)=(Q(L), Cl)
is a simple matroid. Moreover, the set L(M(L))={wcQ(L); Cl(0)=w} forms a
matroid - lattice by set-inclusion, and F(L) is lattice- zsomorphzc to F (L(M (L)) by
the mapptng

araa) = {peQ(L); p=a}.

Proof. (i) It follows from [7] Theorem 2.2 that (¢) is eqmvalent to the followin g
statement (exchange property):
() If p,q€Q2(L), acF(L), p=aVq and pZa then g=aVp. - .
. We shall prove (¢)=(f). If. peCl(wU{q}) and p¢Cl(w), then there exist
ryy .. F€w such that p=rV..Vr,Vg and p£rV...Vr,. Hence, g=rV...Vr,Vp
by (&), and hence g€Cl(wU{p}). (B)=(x"). Let acF(L), p=aVq and p=*a.
We put a=nV...Vr,, r€Q(L).and o={r,...,r,}. Then, péCl(wU{q}) and
p¢Cl{w). Hence, gcCl(wU{p}) by (B), and hence g=aVp.
(i) If L satisfies («), then F(L) is a lattice by [7], Theorem 2.5. Evidently, F(L)
is atomistic and has the covering property. Moreover, M(L)=(Q(L),Cl) is a
matroid, since the closure operator satisfies (Cl 1)~(Cl14) and (f) ([9], 1.2 and
20.2). M(L) is simple by (Cl1 5) and C1(#)=0 ([9], 1.4). The last.statement follows
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from [2], (15.5) and (15.7), since w is a subspace in the sense of [2], (15.1), if and only
if Cl{w)=o. :

Definition. If an AC-lattice L satisfies F(L)=L, we shall call it an FAC-
lattice.

The mapping L—F (L) is a bijection between the set of matr01d lattmes and
the set of FAC-lattices, because if L is a matroid lattice then F(L) is an FAC-lattice
and L is isomorphic to the lattice of all ideals of F(L) by [2], (15.5) and (15.7).

Hereafter, we shall investigate properties of FAC-lattices. We remark the fol-
lowing facts (see [2], (8.5) and (8.14)). Each element a of an FAC-lattice L has the
height h(a), and h(@)=n (a#0) if and only if there exist p,, ..., p,€ Q(L) such
that a=p,V...Vp, and (pV...Vp;_)Ap;=0 for i=2,...,n. For a,beL, we
have _ _ : :

h(aVb)+h(aAb) = h(a)+h(b),

and equality holds if and only if (a,b) is a modular pair (denoted by (4, b)) M).
3. Circuits of atoms. In this section, let L be an FAC-lattice.

‘Lemma 2. Let o={py, ..., p,} be a finite subset of Q(L). The following state-
ments are equivalent. ' . :

@) (1 V..VNpi_DAp;=0 for i=2, .., n.

() w is a semi-orthogonal family, i.e., if w,, w, are disjoint subsets of ® then
V(p; pew) L V(p; p€w,), where alb means aAb=0 and (a, b)M (121, . 2)
and (8.12)).

(y) o is an independent set of the matroid M (L)=(Q(L), qD, ie.,
pClw—{p,}) for every i (see [9], 1.7). _

©) h('p]V...Vpn)-—-n.

Proof. (y) is equivalent 1o the following statement: p,A \/ p, 0 for every i.

Hence, the implications (§)=(y)=(x) are evident. (€)=(B) follows from [2], Q. 5)
and (8.12). Finally, the equivalence of () and (8) follows from [2], (8. 4) ’

Definition. As in matroid theory, we call a finite subset w of 2(L) a circuit
when o is a minimal dependent set, ie., w—{p} is independent and =
=V(g; g¢w—{p)) for any p€w. For instance, if p, g, r are different atoms and
p=qVr then {p, g, r}is a circuit. The cardinality’|C| of a circuit C is not less than
3. The set of all c1rcu1ts of Q(L) is denoted by fg(L)

Proposition 3. Let a, b be elements of an FAC-lattlce L The followzng
statements are equivalent.
(@) @ and b are semz-orthogonal
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(B) h(aVb) = h(a)+h(b).
() @w(@Nw(b)=9 and thereisno C<E (L) such that Ccw(a)Uw(b), C ¢ w(a)
and C ¢ w(b).

Proof. (f)=(a). By (f) we have h(aVb)+h(aAby=h(a)+h(b)=h(aVb).
Hence, h(aAb)=0 and (a, b)) M, so thata] b.

(@)=). o@Naw@®)=0 is evident. Let Ce¥(L) with Ccw(a)Uw(b). If
both w(a)NC and w(b)NC were independent sets, then C=(w(@)NC)U(w(®d)NC)
would be a semi-orthogonal family by («) and {2], (2.4). This contradicts that C is
a dependent set. Hence, for instance, w(a)NC is dependent. Since C is minimal
dependent, we have C=w(@NCcw(a).

(y)=>(B). We may assume that a0 and b<0. We put h(@)=m and h(b)=n.
Since w(@)Nw(b)=H by (), there are disjoint independent sets {p;, ..., P n}
{01, ..., 4.} of Q(L) with a=p,V...Vp,,, b=q,V...Vgq,. If h(aVb)<m+n, then
{P1, --s Pms Q15 ---» 4oy Would be dependent, and hence there is C€% (L) such that

Cc {p1s s Pms 1> -s Gny € @(@)U (D).

But, Ca{py,....,pm} since {p, s Pm} Is independent. Hence, C contains some
g;» so that Cd w(a). Similarly, CCw(b), a contradiction. Therefore, h(aVb)=
=m-+n.

Lemma 4. Let wcQ(L) and peQ(L)—w. peClw) if and only if there
exsits CC€E (L) such that pcCcoU{p}.

Proof. If peCl(w), then there exist ¢, ..., ¢,€@ such that p=qV...Vg,.
Let @, be a minimal subset of {g,, ...,q,} such that p=V/(g; g€w,). Then, w,
must be independent by the minimality. Moreover, for any ¢,€w,, (w,— {g:})U{p}
is independent since p¥\/(g; g€wo—{g;}). Therefore, C=w,U{p} is a circuit
and peCcaoU{p}.

Conversely, if C€%(L) and pcCcwU{p}, then we have p=\/(g; g¢C—{p}),
and then p€Cl(w), since C—{p}cw.

4. Modularity of FAC-lattices. Let L be an atomistic lattice. For n=1,2, ...,

we put
={pV...Vp,; pi€Q(L)}.

Evidently, Q'=Q(L), Q"cQ"*! for every n, and U Q"= F(L)—{0}.

For two subsets 4, B of L, we write (4, B)\M (resp (A B) M*)if (a, b) is modular
(resp. dual-modular) for all a€ 4, béB. The following equivalences are proved in

{41 (or [7)).
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) (4, QM o (4, " HWM* (n=2,3,..), (4, L)M & (4, L)M*.
) (@, QM* o (!, BYM* ..o (%, @~HM* (n=3,4,..).
(F(L), @)M* & (F(L), FL)M* (n=1,2,..),
(@, F(L))M* & (F(L), FLD)M* (n=2,3,..).

If L is an FAC-lattice, then F(L)=L, and (Q, L)M* holds by the covering
property. For L, we have the following implications:

(%) (L, L)M* =...= (Q"*+1 Q) M* = (O™, Q) M* =...= (0, Q) M*.

We remark that each of (Q”, Q)M*, (Q", L)M* and (L, Q"YM* (m=2 and n=1)
is equivalent to some member of (x) by (2) and (3).

3

Lemma 5. Let L be an FAC-lattice and let pc Q(L) and m=2. The following
statements are equivalent.

(@) (a,p)M* for every acQ™.

B) If pcCec%(L) and |Cl=m+2, then for any qeC—{p} there exists
réClHC — {p, q}) such that {p, q,r}cE(L).

Proof. 1t follows from [3], Lemma 2 that () is equivalent to

(«") (a,p) P for every acQ™. '

((a, p) P means that if g€Q(L) and g=aVp then there exists r€Q(L) such that
g=rVp and r=a.) We shall prove («')=>(f). Let pcC<¥(L), |C|=m+2 and
geC—{p}. We put a=V(r; rcC—{p,q}). Then, acQ™ We have pAa=0,
since C—{q} is independent. Similarly, gAa=0. Since gcCcw(aVp)U{g}, it
follows from Lemma 4 that g€Cl{w(aVp))=w(aVp), so that g=aVp. By ()
there exists +€ Q(L) such that g=rVp and r=a. We have r=p, g since pAa=
=gAa=0. Hence, {p, q, r} is a circuit and réw(@)=CHC~{p, q}).

(B)=("). Let ac Q™ There is an independent set {ry, ..., r,} with a=rV...
..Vr,, and then n=m. Let g=aVp (q€ Q(L)) and we shall show the existence
of r¢Q(Ly with ¢=rVp, r=a. We may assume g¥a and g=p. The set
{p,q,rs, ....r,} is dependent since g=pVrV...Vr,. Hence, there is a circuit C
such that {p, q}cCc{p,q,rs,...,1,}. By (B) there exists rcCI(C—{p, gq}) such
that {p, q,r}¢%(L). Then, g=pVr, and we have r=a since C—{p, g}cw(a).

Definition. Let L be a FAC-lattice. A circuit C€¥% (L) is called a P-circuit
if for every p, gcC (p#gq) there exists réCl(C—{p, q}) such that {p, g, r}E%(L)
Evidently, if [C|=3 then C is a P-circuit.

Theorem 6. Let L be an FAC-lattice, and let m=2.

() L satisfies (Q", QM* if and only if every C€%(L) with |C|=m+2 is
a P-circuit.

@) L is modular (i.e., (L, LYM*) if and only if every C€%(L) is a P—czrcuzt
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Proof. (i) directly follows from Lemma 5. Since (L; QM*e(L, L)M*, (i)
follows from (i).

Definition. Let L be a lattice and let a, b¢ L. (a, b) is called a distributive
pair (a join-distributive pair in [5]), denoted by (a, b) D, when

(aVb)Ax = (aAx)V(bAx) for every x€L.

If L is atomistic, it is easy to verify that (a, b) D is equivalent to the following con-
dition:

If peQ(L) and p=aVb then p=a or p=b. Hence, (a, b)Dow(aVb)=

“=w(@)Uo®).

We shall now be interested in an FAC-lattice L satisfying the following con-
dition: -

(D) If Ce¥(L) and |C|=4 then for any peC there exists gc¢C—{p} such
that (p, g) D.

Lemma 7. If an FAC-lattice L satisfies (D), then Ce¥(L) is a P-circuit
only when |C|=3.

Proof. Let Cc%(L) with [C|=4, and let peC. By (D) there is ¢g€C—{p}
such that (p, g)D. Then, {p, g, r} is not a circuit for any r¢C—{p, g}, because
r=pVq implies r=p or r=gq. Hence, C is not a P-circuit.

Example 8. Let G be a non-oriented finite simple graph, and let E(G) be the
set of all edges of G. The cycle matroid M(G) is defined by the collection of inde-
pendent subsets of E(G), where S is an independent subset if and only if § does
not contain a cycle of G ({9], 1.3). A subset C of E(G) is minimal dependent if and

only if C is a cycle, and the closure operator in M(G) is defined as follows:

x€CI(S) < x€S or there exists a cycle C such that x€Cc SU{x}.
It is easy to verify in the same way as in Proposition 1 (ii) that the set
L(G) = {S c E(G); CI(S) =S}

forms an AC-lattice (cf. [9], 3.3). Since E(G) is a finite set, L(G) is an FAC-lattice,
and we call it a bond lattice associated with G ([6], [8]). We remark that the set €(L(G))
is just the set of all cycles of G. ’

We shall show that

(G) (S;, S2)D in L(G) if S, and S, has no common .vertex.
Let x€8,VS.=CI(S;US;). If x¢S,US, then there is a cycle C such that
x€Cc S, US.U{x}. Since S, and S, has no common vertex, we have CcS;U{x}
for some i. Then, x€CI(S;)=S;. Therefore, (S,, S,)D holds.
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It is easy to show by (G) that any bond lattice satisfies the condition (D). In
fact, if C is a cycle with C={4| and if x€C, then there exists y€C such that x and
y have no common vertex.

Theorem 9. Let L be an FAC-lattice satisfying (D) (for instance, a bond lat-
tice), and let m=2. o By

() L satisfies (@™, Q)M* if and only if there is no Cc%(L) such that 4=
=|Cl=m+2.

(i) L satisfies (Q™, Q)M* but does not satisfy (Qm*%, QM* if and only if
thereis Cyc 6 (L) with |Col=m+3 and thereisno Cc¥ (L) suchthat 4=|C|=m+2.

(iii) L does not satisfy (2%, Q)M™ if and only if there is Co€€(L). with |Cy}=4.

(iv) L is modular if and only if there is no C€¥4(L) such that |C|=4.

Proof. Evidently, the statements (i) and (iv) follow from Theorem 6 and
Lemma 7, and (i) and (iii) follow from (i). (The statement (iv) was proved in [8],
in case L=L(G).)

We remark that if a graph G is a cycle with n+3 edges then L(G) is isomorphic
to the lattice given in [4], Example 3.

5. Strongly planar lattices. An AC-lattice L is called strongly planar when it
satisfies the following condition ({2], (14.3)):

(SP) If p,q,reQ(L), acL andif p=qVa and r=a then there exists s¢ Q(L)
such that p=¢VrVs and s=a.

It follows from [2], (14.4) that an AC-lattice is strongly planar if either L is
modular or the length of L is 3 (i.e., L has 1 and h(1)=3). We call such a lattice a
trivial strongly planar lattice. It is well-known that non-modular affine matroid
lattices are non-trivial strongly planar lattices (see [2], (18.3) and (14.5)). Here we
shall show that if a bond lattice L(G) is strongly planar then it is a trivial one. (Hence,
the set of non-modular affine matroid lattices and the set of bond lattices have no
common element.)

Firstly we remark that any bond lattice L=L(G) satisfies the following two
conditions by the property (G):

(D) If Ce¥(L) and |C|=5 then there exist three different elements p, g, r¢C
such that (p, gVr)D.

(D”) If peQ(L), Ce¥(L), |C|=4 and p=\V(g; q€C) then there exist
q15 42:€C (g17#¢,) such that (pVas, ¢2) D.

Theorem 10. Let L be a FAC-lattice satisfying (') and (D") (for instance,
a bond lattice). If L is strongly planar and non-modular then the length of L is 3.

Proof. Since L is non-modular, by Theorem 6 (ii) there is C¢%(L) which is
not a P-circuit. Then, |C|=4. Suppose |C|=5, then by (D’) there exist three
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different elements p,q,r¢C such that (p,qVr)D. Put a=V/(i; tcC—{p, q}).
Since p=qVa and r=a, by (SP) there exists s¢ Q(L) such that p=gVrVs and
s=a. Theset {p, ¢, r}is independent, since C is minimal dependent. Hence, p$£qVr,
and then we have s=qVrVp by (') in the proof of Proposition 1. Since C—{q}
is independent, we have pZa, sothat s#p. Hence, by (p, gVr)D we have s=¢Vr.
This implies p=¢Vr, a contradiction. Therefore, we obtain that |C|=4.

Next we shall show that \/(¢; t€C)=1. Suppose there is p€ Q(L) such that
pEV(, t€C). By (D”) there exist ¢,,¢.,€C such that (pVg¢,,9.)D. We put
C={41,92, 95, 9a} and b=pVgyVg,. Since ¢.=¢,Vq3Vg,=q,Vb and p=b, by
(SP) there exists s€Q(L) such that g,=q,VpVs and s=b. We have ¢, %pVq,,
since the set {p, g1, g»} is independent by p=gq,V¢,. Hence, we have s=pVq,Vg,
by («), and then either s=g, or s=pVq, by (pVq,,¢q.)D. But, s=pVq, implies
g.=q,Vp, a contradiction. Moreover, since {g;, ¢s; 4.} is independent and p=%
£¢4,VqsVqs, {Dsgs, gss ga} Is independent and hence g,%b. Thus, s=¢g, con-
tradicts that s=b. Therefore, we obtain \/(¢; t€¢C)=1, and then h(1)=|C|—-1=3.

Corollary 11. If a bond lattice L(G) is strongly planar and non-modular then
G is isomorphic to one of the following three graphs:

Proof. By the proof of the theorem, there is a cycle CCE(G) such that
|C|=4 and CI(C)=E(G).
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