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On circuits of atoms in atomistic lattices 

SHUICHIRO MAEDA 

Dedicated to the memory of Dr. András P. Huhn 

1. Introduction. In [2], an atomistic lattice with the covering property is called 
an AC-lattice and an upper continuous AC-lattice is called a matroid lattice. (In 
[1], [6] and [9], a matroid lattice is called a geometric lattice.) As shown in [9], Sec-
tion 3.3, a finite lattice is a matroid lattice if and only if it is isomorphic to the lattice 
of closed sets of a matroid. By this reason, the concept of circuits which plays an 
important role in matroid theory can be introduced in the theory of matroid lattices. 
The main purpose of this paper is to investigate lattice-theoretical properties of 
circuits. 

In Section 2, we shall show that the set of atoms of an atomistic join-semilattice 
L with the finite covering property forms a simple matroid. The set F(L) of all 
finite elements of L forms an AC-lattice, which will be called an FAC-lattice, and in 
Section 3, we define circuits of atoms in an FAC-lattice. 

In Section 4, we shall discuss a connection between the modularity of FAC-
lattices and the existence of special circuits, which will be called P-circuits. An 
important example of /o4C-lattice is a bond lattice associated with a non-oriented 
finite simple graph ([6], [8]). Such a lattice has a remarkable property, that is, it has 
no non-trivial P-circuit. 

Another important example is an affine matroid lattice whose properties are 
thoroughly investigated in [2], Chapter IV. This lattice always has a property called 
strongly planar. In Section 5, we shall show that almost all non-modular bond 
lattices are not strongly planar. From this we can see that, in the set of matroid 
lattices, there are three disjoint subsets: {non-modular affine matroid lattices}, 
{non-modular bond lattices} and {modular matroid lattices}. 

Received May 14, 1986. 



138 S. Maeda 

2. Atomistic join-semilattices and simple matroids. Let L be a join-semilattice 
with 0. The set of all atoms of L is denoted by Q(L). We put 

F(L) - {PiV •••Vp„', p,tQ(L\ n =1,2, ...}U{0}, 

and an element of F(L) is called a finite element. L is called atomistic when every 
non-zero element a of L is the least upper bound of {p£Q(L); p=a] (see [7]). 

Let L be an atomistic join-semilattice. For any subset co of Q(L), the closure 
of co is defined by 

Cl(©)= {p£Q(L); p^qiV...\lqn, q£a>} (C1(0) = 0). 

The following properties are easily verified. 
(CI 1) <bcC1(CQ). 
(CI 2) eojccoa imphes Cl(aj1)cCl(©2). 
(CI 3) Cl(Cl(co))=Cl(co). 
(CI 4) If pdC\(oi) then there exists a finite subset <o' of co such that pdCl(ca'). 
(CI 5) Cl({/>})={/?} for pdQ(L). 

P r o p o s i t i o n 1. Let L be an atomistic join-semilattice. 
(i) The following two statements are equivalent: 
(a) L has the finite covering property, i.e., if pfQ(L), ad F(L) and p^a then 

aMp covers a. 
OS) If p,qdQ(L), />6Cl(fflU{<7}) and p$C\(cS) then CI(coU{/>}). 
(ii) If L satisfies (a) (and(/?)), then F(L) is an AC-lattice and M(L) =(Q(L), CI) 

is a simple matroid. Moreover, the set L(M(L))~ {coc Q(L) ; CI (co)=co} forms a 
matroid lattice by set-inclusion, and F(L) is lattice-isomorphic to F(L(M(L))) by 
the mapping 

a >— co(a) = {pdQ(L); p ^ a}. 

Proof , (i) It follows from [7], Theorem 2.2 that (of) is equivalent to the following 
statement (exchange property): 

(aO If p,q£Q(L), a£F(L), p^aSJq and p^a then q^aNp. 
We shall prove (<x')=>(fi). If-/>£Cl(fflU{g}) and />$Cl(a>), then there exist 

rx, ..., r„£co such that p^rx\! . . . \Jrn \q and p^r^y ...Vrn. Hence, q^M...MrnMp 
by (of), and hence qdCI(coU{/>}). (P)=*(<x'). Let adF(L), p^aNq and p^a. 
We put a=r^ ...\]r„, r£Q(L), and o)={rx, ...,r„}. Then, />€Cl(<uUfe}) and 
/>§C](co). Hence, g€Cl(coU {/>}) by (fi), and hence q^aSJp. 

(ii) If L satisfies (a), then F(L) is a lattice by [7], Theorem 2.5. Evidently, F(L) 
is atomistic and has the covering property. Moreover, M(L)=(Q(L), CI) is a 
matroid, since the closure operator satisfies (CI 1)~(C14) and (fi) ([9], 1.2 and 
20.2). M(L) is simple by (CI 5) and C1(0)=0 ([9], 1.4). The last-statement follows 
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from [2], (15.5) and (15.7), since co is a subspace in the sense of [2], (15.1), if and only 
if CI (©)—a). 

Def in i t ion . If an AC-lattice L satisfies F(L)=L, we shall call it an FAC-
lattice. 

The mapping L>—F(L) is a bijection between the set of matroid lattices and 
the set of Z^C-lattices, because if L is a matroid lattice then F(L) is an /vlC-lattice 
and L is isomorphic to the lattice of all ideals of F(L) by [2], (15.5) and (15.7). 

Hereafter, we shall investigate properties of F^C-lattices. We remark the fol-
lowing facts (see [2], (8.5) and (8.14)). Each element a of an FAC-lzAXict L has the 
height h(a), and h(a)=n (a^O) if and only if there exist px, ...,pn£Q(L) such 
that a=pi\/ ...Vpn and (/^V... V/>i_1)A/'i=0 for i=2,...,n. For a,b£L, we 
have 

h(aVb) + h(aAb) ^ h(a)+h(b), 

and equality holds if and only if (a, b) is a modular pair (denoted by (a, b)M). 
3. Circuits of atoms. In this section, let L be an FAC-lattice. 

Lemma 2. Let co={p1, ...,p„} be a finite subset of Q(L). The following state-
ments are equivalent. 

(a) {jpxM ...ypi-^hpi—0 for i=2, ...,«. 
(/?) co is a semi-orthogonal family, i.e., if cox, co2 are disjoint subsets of co then 

V(p; />€<»!) lVCp; />€co2), where a Lb means aAb=0 and (a,b)M ([2], (2.2) 
and (8.12)). 

(y) co is an independent set of the matroid M(L)=(Q(L), CI), i.e., 
PdCl(a-{Pi}) for every i (see [9], 1.7). 

(8) h(p{\l ...\lp„)—n. 

Proof . (7) is equivalent to the following statement: ptA V Pj=0 for every i. 

Hence, the implications (P)=>(y)=>-(a) are evident. («)=>•(/?) follows from [2], (2.5) 
and (8.12). Finally, the equivalence of (a) and (<5) follows from [2], (8.4). 

Def in i t ion . As in matroid theory, we call a finite subset co of Q(L) a circuit 
when co is a minimal dependent set, i.e., co — {p} is independent and p^ 
— ?€co—{/>}) for any p£co. For instance, if p, q, r are different atoms and 

p^qVr then {p, q, r} is a circuit. The cardinality '|C| of a circuit C is not less than 
3. The set of all circuits of Q(L) is denoted by ^(L). 

P r o p o s i t i o n 3. Let a,b be elements of an FAC-lattice. L. The, following 
statements are equivalent. 

(a) a and b are semi-orthogonal. 
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(fi) h(a\!b) = h(a)+h(b). 
(y) (o(a)na>(b)=Q and there is no such that Ccco(a)Uco(b), C<tco(a) 

and C <t co (b). 

Proof . 0?)=>(a). By 0?) we have /1 (aV6) +h(aAb)^h(a) +h(b)=h(ay b). 
Hence, h(aAb)=0 and (a, b)M, so that ¡116. 

(<x)=>(y). w(fl)flcu(fc)=0 is evident. Let <g(L) with Cczu>(a)\Jco(b). If 
both co(a)C\C and co(b)dC were independent sets, then C=(co(a)nC)U(w(6)nC) 
would be a semi-orthogonal family by (a) and [2], (2.4). This contradicts that C is 
a dependent set. Hence, for instance, £o(a)flC is dependent. Since C is minimal 
dependent, we have C=co(a)f]Cczca(a). 

(y)=>(/J). We may assume that a^O and b?±0. We put h(a)=m and h(b)=n. 
Since oj(a)r\cD(b)=9 by (y), there are disjoint independent sets {px, ...,/>,„}, 
{?i>->9.} of 0(L) with a=p1V...Vpm, b=qxV ...Vq„. If A(aVft)</w+n, then 
{Pi, ...,pm, qx, . ., q„} would be dependent, and hence there is C£(6(L) such that 

C <= {/»J, ...,pm, qx, ..., q„} c a>(a)Uco(b). 

But, C<t{p\, • -,pm} since {px, ...,pm) is independent. Hence, C contains some 
qh so that C<tco(a). Similarly, C<tco(b), a contradiction. Therefore, h(a\/b) = 
=m+n. 

Lemma 4. Let coaQ(L) and p£Q(L)—a>. p£Cl(co) if and only if there 
exsits C£<g(L) such that p£C<zcol){p}. 

Proof . If />£Cl(co), then there exist qx, ..., q„£co such that p^qxy ...Vq„. 
Let co0 be a minimal subset of {qx, .... q„) such that p^\J(q\ qdco0). Then, co0 

must be independent by the minimality. Moreover, for any q^o)0, (cu0— {¿7,}) U {p} 
is independent since p^\/{q', q£co0— Therefore, C=co0U {pj is a circuit 
and p€Cca>U{p}. 

Conversely, if C€&(L) and pgCczcoU {p}, then we have p ^ \ / ( q ; q£C—{p}), 
and then p€Cl(co), since C— {pjaco. 

4. Modularity of Fi4C-lattices. Let L be an atomistic lattice. For /7=1,2, ..., 
we put 

0'={Pi)/...\/pH;pi€Q(L)}. 

Evidently, Q^QiL), Qn<zQn+1 for every n, and Q i2"=F(L)-{0}. n — 1 
For two subsets A, B of L, we write (A, B)M(resp. (A, B)M*) if (a, b) is modular 

(resp. dual-modular) for all a£A, b£B. The following equivalences are proved in 
[4] (or [7]). 
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(1) (A, Q")M <=y (A, OT-^M* (n = 2,3,...), (A, L)M <=• (A, L)M*. 

(2) (Qn,Q)M*o(Qn-1,Q2)M**>...o(Q\Q—1)M* (n = 3,4, . . .) . 

(F(L), Q")M* o (F(L), F(L))M* (n = 1, 2, ...), 

(fi", F(L))M* (F(L), F(L))M* (n = 2,3,...). 

If L is an FAC-lattice, then F(L)=L, and (Q,L)M* holds by the covering 
property. For L, we have the following implications: 

(*) (L, L)M* ^...=>(Qm+1, Q)M* =>(Qm, Q)M* =>...=>(i22, Q)M*. 

We remark that each of (Qm, Q")M*, (i2m, L)M* and (L, Q")M* (wis2 and ni=l) 
is equivalent to some member of (* ) by (2) and (3). 

Lemma 5. Let L be an FAC-lattice and let p£Q(L) and m^2. The following 
statements are equivalent. 

(a) (a,p)M* for every a£Qm. 
(fi) If peCeV(L) and \C\^m+2, then for any q£C-{p} there exists 

/ •£C1(C-{p, q}) such that {p,q,r}£<g(L). 

Proof . It follows from [3], Lemma 2 that (a) is equivalent to 
(a') (a,p)P for every a£Qm. 

((a,p)P means that if q^Q(L) and q^aSjp then there exists r£Q(L) such that 
q^rMp and r^a.) We shall prove (V) =>(/?)• Let p^CfJ&{L), \C\^m+2 and 
qiC-{p). We put a=\/(r; r£C-{p,q}). Then, a€i2m. We have pAa=0, 
since C — {q} is independent. Similarly, qha=0. Since q^Cca>(a\Jp){J{q}, it 
follows from Lemma 4 that i?£Cl(co(aV/?)) = a>(aVp), so that q-^aMp. By (a') 
there exists r£S2(L) such that q^r\Jp and r^a. We have r^p, q since pAa = 
=qAa=0. Hence, {p, q, r} is a circuit and r€a(a)=Cl(C— {p, q}). 

([!)=>(a'). Let a£ Qm. There is an independent set , ..., rn} with a — r^-J... 
...V/*,,, and then nSm. Let qSa\/p (c]£{2(L)) and we shall show the existence 
of r£Q(L) with q-^r\Jp, r^a. We may assume q^a and q^p. The set 
{p, q, rx, . . . ,/„} is dependent since q^p'Mrx\J ...Mr„. Hence, there is a circuit C 
such that {p,q}czCd{p,q,r1,...,rn}. By (/?) there exists r£Cl(C— {p, #}) such 
that {p, q, r }£#(£). Then, q=p\Jr, and we have r S a since C — {p, q}cco(a). 

Def in i t ion . Let L be a FAC-lattice. A circuit is called a P-circuit 
if for every p,q£C (p^q) there exists r£Cl(C— {/?, q}) such that {p. q, r}^(L). 
Evidently, if | C | = 3 then C is a P-circuit. 

Theo rem 6. Let L be an FAC-lattice, and let m^2. 
(i) L satisfies (Qm, Q)M* if and only if every C£<$(L) with \C\^m+2 is 

a P-circuit. 
(ii) L is modular (i.e., (L, L)M*) if and only if every Cd^(L) is a P-circuit. 
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Proof , (i) directly follows from Lemma 5. Since (L, Q)M*o(L, L)M*, (ii) 
follows from (i). 

Def in i t ion . Let L be a lattice and let a, b£L. (a, b) is called a distributive 
pair (a join-distributive pair in [5]), denoted by (a, b)D, when 

(aVb)Ax = (aAx)V(bAx) for every x£L. 

If L is atomistic, it is easy to verify that (a, b)D is equivalent to the following con-
dition : 

If p£Q(L) and p^aSJb then p^a or p^b. Hence, (a,b)D-exo(a\Jb) = 
=ft) (a) U co (ft). 

We shall now be interested in an FAC-lattice L satisfying the following con-
dition: 

(D) If C£<tf(L) and |C|=£4 then for any p£C there exists q£C-{p} such 
that (p , q)D. 

Lemma 7. If an FAC-lattice L satisfies (D), then C£<$(L) is a P-circuit 
only when |C| =3. 

Proof . Let C£<&(L) with |C|=s4, and let p£C. By (D) there is q£C-{p} 
such that (p,q)D. Then, {p, q,r} is not a circuit for any r£C — {p, q), because 
r^p\Jq implies r=p or r=q. Hence, C is not a P-circuit. 

Example 8. Let G be a non-oriented finite simple graph, and let E(G) be the 
set of all edges of G. The cycle matroid M(G) is defined by the collection of inde-
pendent subsets of E(G), where S is an independent subset if and only if S does 
not contain a cycle of G ([9], 1.3). A subset C of E(G) is minimal dependent if and 
only if C is a cycle, and the closure operator in M(G) is defined as follows: 

x€C10S) x£S or there exists a cycle C such that x ( C c S U { x } . 

It is easy to verify in the same way as in Proposition 1 (ii) that the set 

L(G) = { S c E(G)\ CI (S) = S) 

forms an AC-lattice (cf. [9], 3.3). Since E{G) is a finite set, L(G) is an FAC-lattice, 
and we call it a bond lattice associated with G ([6], [8]). We remark that the set <£(L(G)) 
is just the set of all cycles of G. 

We shall show that 
(G) (Si, S2)D in L(G) if Si and S2 has no common vertex. 

Let X € S ' 1 V S ' 2 = C L ( S ' 1 U S ' 2 ) . If X ^ U S - J then there is a cycle C such that 
X £ C < Z S ' 1 U S ' 2 U { X } . Since S ^ and S2 has no common vertex, we have C C S J U F X } 

for some i. Then, x e C l ^ ^ ^ . Therefore, S2)D holds. 
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It is easy to show by (G) that any bond lattice satisfies the condition (D). In 
fact, if C is a cycle with C ^ | 4 | and if x£C, then there exists y£C such that x and 
y have no common vertex. 

Theorem 9. Let L be an FAC-lattice satisfying (D) (for instance, a bond lat-
tice), and let m^2. 

(i) L satisfies (Qm, Q)M* if and only if there is no C£%(L) such that 4 s 

(ii) L satisfies (Qm,Q)M* but does not satisfy (Qm+1, Q)M* if and only if 
thereis C0^(L) with |C0 |=m + 3 andthereisno Ce^(L) suchthat A^\C\^m+2. 

(iii) L does not satisfy (Q2, Q)M* if and only if there is C0f^(L) with |C0|—4. 
(iv) L is modular if and only if there is no C^(L) suchthat | C | ^ 4 . 

Proof . Evidently, the statements (i) and (iv) follow from Theorem 6 and 
Lemma 7, and (ii) and (iii) follow from (i). (The statement (iv) was proved in [8], 
in case L=L(G).) 

We remark that if a graph G is a cycle with n+3 edges then L(G) is isomorphic 
to the lattice given in [4], Example 3. 

5. Strongly planar lattices. An AC-lattice L is called strongly planar when it 
satisfies the following condition ([2], (14.3)): 

(SP) If p, q, r£Q(L), a£L and if p^q\la and r^a then there exists s£Q(L) 
such that p ^ q V r y s and s ^ a . 

It follows from [2], (14.4) that an yiC-lattice is strongly planar if either L is 
modular or the length of L is 3 (i.e., L has 1 and /i(l)=3). We call such a lattice a 
trivial strongly planar lattice. It is well-known that non-modular affine matroid 
lattices are non-trivial strongly planar lattices (see [2], (18.3) and (14.5)). Here we 
shall show that if a bond lattice L{G) is strongly planar then it is a trivial one. (Hence, 
the set of non-modular affine matroid lattices and the set of bond lattices have no 
common element.) 

Firstly we remark that any bond lattice L=L(G) satisfies the following two 
conditions by the property (G): 

(D') If CiV(L) and |C |S5 then there exist three different elements p,q,r£C 
such that (p , q\!r)D. 

(D") If p£Q(L), C£V(L), |C|—4 and p^\J(q; q£C) then there exist 
<7i, VidC (q1?iq2) suchthat {pM q-^, q2)D. 

Theorem 10. Let L be a FAC-lattice satisfying (D') and (D") (for instance, 
a bond lattice). If L is strongly planar and non-modular then the length of L is 3. 

Proof . Since L is non-modular, by Theorem 6 (ii) there is C£t?(L) which is 
not a P-circuit. Then, |C | ^4 . Suppose | C | s 5 , then by (D') there exist three 
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different elements p,q,r£C such that (p ,q \Jr )D. Put a= V('; t£C — {p, q)). 
Since p^q\Ja and r^a, by (SP) there exists s£Q(L) such that p^q\Jr\js and 
s S a. The set {p, q, r} is independent, since C is minimal dependent. Hence, p^qV r, 
and then we have s^q\lr\lp by (a')-in the proof of Proposition 1. Since C — {q) 
is independent, we have p^a, so that s^p. Hence, by (p, q\Jr)D we have s^q\jr. 
This implies p^qWr, a contradiction. Therefore, we obtain that |C |=4. 

Next we shall show that V('; KC)=1. Suppose there is p£Q(L) such that 
p^\J(t,t£C). By (D") there exist qu q«£C such that (pVqx, q2)D. We put 

and b=pVq3Vqi. Since q2^qxWq3Vb and p^b, by 
(SP) there exists s£Q(L) such that q2=qiVpVs and iSfe. We have q2^pWqx, 
since the set {p, qx, q2} is independent by p^qx\lq2. Hence, we have s^p\Jqx\¡q2 

by (a'), and then either s—q2 or s^p\/qx by (pVqx, q2) D- But, s^p\fqx implies 
q2Sqx\/p, a contradiction. Moreover, since {q2,q3,q4} is independent and p^ 
í <72V<73V<74, {p, q2, <?3, #4} is independent and hence q20b. Thus, s=q2 con-
tradictsthat s^b. Therefore, we obtain \/(t; t£C) = 1, and then /Î(1) = |C| - 1 =3. 

Coro l l a ry 11. If a bond lattice L(G) is strongly planar and non-modular then 
G is isomorphic to one of the following three graphs: 

|C| = 4 and CI(C)=£(G). 
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