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Effective constructions of cutsets for finite and infinite ordered sets 

IVAN RIVAL and NEJIB ZAGUIA 

Dedicated to the memory of Andras P. Huhn 

Perhaps the most important result in the theory of ordered sets is the 'chain 
decomposition theorem' of R . P. DILWORTH [1] which states that in a finite ordered 
set the minimum number of maximal chains whose union is the set equals the maximum 
size of an antichain. However, this maximal antichain need not meet all of the maxi-
mal chains in the ordered set. For instance {a, d} is an antichain of maximum 
size in the ordered set N illustrated in Figure 1, and yet {a, d} does not meet the 
maximal chain {c, b}. 

Call a subset K of an ordered set P a cutset of P if every maximal chain of P 
meets K. If K is an antichain then we call it an antichain cutset of P. If K— {x} is 
not a cutset for every x in K then we call it a minimal cutset of P. 

The N illustrated in Figure 1 is the union of the antichain cutsets {a, b} and 
{c, d}. In contrast the ordered set illustrated in Figure 2 cannot be the union of 
antichain cutsets at all, since there is no antichain cutset which contains .v. 

I. RIVAL and N . ZAGUIA [4] have shown that a finite ordered set is the union of 
antichain cutsets if and only if it contains no alternating-cover cycle. For n s 2 , a 
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Figure 2 

subset {x, o1; c l9 ..., a„, c„} of an ordered set P is called a generalized alternating-
cover cycle (for x) provided that 

are covering relations in P itself. If these are the only comparabilities among the 
elements {x, at, cx a„, c„}, we call this ordered set an alternating-cover cycle 
(see Figure 3). For emphasis we sometimes indicate by 'double lines' in the figures 
the covering relations in an ordered set. We also say tha t* is contained in a general-
ized alternating-cover cycle. Actually I . RIVAL and N . ZAGUIA [4] prove this more 
general result. 

Theo rem I. In a finite ordered set an element is contained in an antichain cutset 
if and only if it is not contained in a generalized alternating-cover cycle. 

Here, we give an 'efficient' algorithm for the construction of an antichain cutset 
containing a given element, which is in effect another proof of the same theorem. 
From the ôrder-theoretical point of view, thé first proof in I . RIVAL and N . ZAGUIA 
[4] is certainly shorter and perhaps more elegant. Still, the algorithm for the con-
struction of the antichain cutset implicit in that proof, seems on the surface at least 
to perform in an 'exponential' number of steps, as a function of the; number of 

Ci > x > a„, cx > a i , c2 > a 2 , ..., c„ > a, 

c2 > cii, ...,<;„_!> a„_2, c„ > a n _j 

and provided that 
Ci > fli, c2 >- as, ..., c„ >- a„ 

Figure 3 
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elements of the ordered set. Another proof, presented here is algorithmically much 
better. Indeed, the algorithm for the construction of the antichain cutset, implicit 
in this proof, performs in a 'polynomial' number of steps as a function of the 
number of elements of the ordered set. 

In the ordered set illustrated in Figure 2, the element x is not contained in any 
antichain cutset. Still there is a minimal cutset {x, xx, x>, x3} which contains x. In 
a finite ordered set P, every element is contained in a minimal cutset, and thus a 
finite ordered set P is always the union of minimal cutsets. That is not always the 
case for infinite ordered sets though. For instance, in 2x(<w + l) (see Figure 4), 
there is no minimal cutset which contains x even though, for example every chain 
in 2x(co + l) has a supremum and an infimum. 

An ordered set P is regular if every nonempty chain C of P has a supremum 
and an infimum and, whenever x < s u p C (respectively, x> in fC) , x < c (respec-
tively x>c), for some element c in C. We expect that regular ordered sets can be 
expressed as the union of minimal cutsets but we are unable to prove that yet. Here 
is a partial solution. 

Theorem 2. A regular ordered set satisfying a chain condition is the union of 
minimal cutsets. 

An ordered set is said to satisfy a chain condition if it does not contain either 
an infinite, strictly descending chain x t >x 2 > . . . or it does not contain an infinite, 
strictly ascending chain x1 < x2 < . . . . 

In general, though, a minimal cutset need not be an antichain and, of course, 
an antichain need not be a (minimal) cutset. I . RIVAL and N . ZAGUIA [4] have shown 
that, in an ordered set which contains no subset isomorphic to N, every finite, minimal 
cutset is an antichain. D. HIGGS [3] has extended this result to arbitrary minimal 
cutsets, and has also proved the converse in the case of finite ordered sets. As a 
consequence of Theorem 2, we can extend Higgs's result. 

Figure 4 

13 
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Theorem 3: Let P be a regular ordered set satisfying a chain condition. Then, 
every minimal cutset in P is an antichain if and only if P contains no subset iso-
morphic to N. 

D . HIGGS [3] was the first to give an example of an ordered set which contains 
subsets isomorphic to N and in which every minimal cutset is an antichain. 

A related question is whether every maximal antichain meets every maximal 
chain, that is, whether every maximal antichain is a cutset? The ordered set illustrated 
in Figure 5, has a maximal antichain which is not a cutset. 

An early result of P . A. GRILLET [2] shows that, for a regular ordered set P, 
every maximal antichain meets every maximal chain if and only if P contains no 
subdiagram isomorphic to N. We extend this result in terms of 'generalized' N's. 
This gives a characterization of those ordered sets in which every maximal antichain 
is a cutset. 

Let Ax and A2 be subsets of an ordered set P. Write AX<A2 if, for every u£Ax 

and v£A2, IKV. We say that A2 covers Aj (or Ax is covered by A2) and write 
AX<A2 if AX<A2 and there is no .v in P such that Ax<- {x}<A2. Also, we use 
the convention that 0<A for every subset A of P. We say that Ax is cofinal for A2 

(respectively coinitial) provided that, for every v€A2, there exists u£Ax such that 
v=u (respectively u^v). Let Cx, C2, and A2 be subsets of P such that Cx and 
C2 are chains in P and AX{JA2 is an antichain in P. We call the four-tuple (Cx, 
C2, Ax, Ao) a generalized N provided that CX<C2 and Ax is cofinal for Cx and A2 

is coinitial for C2. In Figure 6, we illustrate basic examples of generalized TV's. An 
N, too, is a generalized N. Also, in a regular ordered set, it is easy to see that every 
generalized N must be an N in the diagram itself. 

Theorem 4. In an ordered set every maximal antichain meets every maximal 
chain if and only if it contains no generalized N as a subdiagram. 
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(a) (c) 

Proof of Theo rem 1. For purposes of the proof it is convenient to speak 
of cutsets "for" elements. Say that a subset S is a cutset for x if SU {x} is a cutset 
and each s£ S is noncomparable with x. We shall prove, by induction on the car-
dinality of P, that every element has an antichain cutset provided that no element 
of P is contained in a generalized alternating-cover cycle. To this end let x be an 
element of P with no antichain cutset in P. Then x cannot be a maximal element 
of P for then we could choose A{x) to be the set of maximal elements of P distinct 
from x. Let u be a maximal of P, u>x, and put P'—P—{u}. Notice that no ele-
ment of P' is contained in a generalized alternating-cover cycle so, by the induction 
hypothesis, x must have an antichain cutset A'(x) in P'. We may suppose that A'(x) 
is not an antichain cutset for x in P. Then there is a maximal chain C(u) of P which 
contains it but no element from A'(x){J{x). Let u' be the lower cover of u in C(u). 
According to the induction hypothesis any maximal chain in P' containing C(u) — {«} 
must contain some element from A'(x)U {x}. Therefore, u^x or u'^v for some 
v belonging to A'(x). But it'-^x since u>x and u'<u; therefore, u'^v for 
some v in A'(x). Our aim is to construct, starting from A'(x), an antichain cutset 
for x in P. We cannot hope to use u in an antichain cutset for x. In order to "account" 
for the maximal chain C(w) we may, however, try to use u', but then we could not 
use v in an antichain cutset for x. Then we may seek to replace v by other elements, 
each noncomparable to x and to the members of the "current" cutset for x. 

We shall introduce and develop a "two-player game" which we use later to 
effect the construction of an antichain cutset. Meet our players: C H A I N — the 
villain—and, ANTICHAIN—our hero—. 

13* 
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The setting for our spectacle is a finite ordered set P which contains no alter-
nating-cover cycle. Let x belong to P and let A(x) be a minimal cutset for x (that 
is, a cutset for x such that, for each y in A(x), A(x) — {>>} is not a cutset for x in P). 
Notice that for each y in .4(x) there is a maximal chain C(y) in P such that 
C(y)DA(x) = {y}. Call such a maximal chain in P essential for y in A(x). 

A down game between CHAIN and ANTICHAIN. (in P for x) is played as 
follows. CHAIN is the first to move: CHAIN selects an element cx from Ax=A(x), 
for which there is another element a0 in Ax such that cx>a0, if one exists. (In effect, 
CHAIN "uncovers" evidence why Ax is not an antichain cutset for x.) If CHAIN 
has no such move then we say that ANTICHAIN wins the down game (indeed, 
this must mean that Ax is an antichain cutset for x). Otherwise ANTICHAIN responds 
in this down game by identifying all lower covers of cx on essential chains for cx 

in Ax, each of which is not below x itself: call these elements a\,a\, . . . . These 
elements constitute ANTICHAIN's first move in reply to CHAIN'S move cx. We 
now "reform" the cutset Ax by constructing a minimal cutset A2 for x contained in 

Evidently, A2 consists of two disjoint subsets: the first consists of the sequence 
a j , a\, ... which is an antichain; the second is a subet of Ax—{cx}, which together 
with the sequence of elements constituting ANTICHAIN's move is a minimal 
cutset for x. Notice that just as CHAIN may not be able to move (if Ax is already 
an antichain cutset), it may be that ANTICHAIN cannot respond to CHAIN'S 
move cx: this would be the case if some lower cover of cx on an essential chain for 
cx in Ax is itself below x, such an element cannot be in a cutset for x. If, then, ANTI-
CHAIN cannot move we say that CHAIN wins the down game. If both first moves 
can be made then the down game continues. CHAIN selects an element c2 from A2 

such that c 2 >a 1 , where belongs to {aj, a\, ...}. If CHAIN has no such move 
then ANTICHAIN wins the down game. Otherwise, ANTICHAIN again responds 
by selecting all lower covers of c2 on essential chains for c2 in As, each of which is 
not below x, say ¿4, a2 , ... CHAIN'S move c? . Again the cutset A2 is altered to 
construct a minimal cutset A3 for x contained in 

{ < M , . . . } U 0 4 2 - { C 2 } ) 

(see Figure 7). Again the minimal cutset contains the antichain consisting of the 
elements in ANTICHAIN's second move and, as well, a subset of A2 — {c2}. If 
CHAIN can now move then CHAIN will choose an element c3 from A3 such that 
c3>a2, where 02 belongs to {a\, a\,...}. And so on. 

Furthermore, by a sequence GX,G2, ... of down games.we mean that each of 
the down games Gt begins with a comparability taken from the current cutset at 
the end of the preceding down game G,-x , for each. ¿=2,3, . 
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Construction in the proof of Theorem 1. 
Figure 7 

We call the cutset Ak, k=l, 2, ..., the current cutset for .v at CHAIN'S kth 

move, and then ANTICHAIN's kth move. We say that ANTICHAIN wins this 
clown game if, for some k^\P\, CHAIN cannot make a kth move in this down 
game; otherwise, we say that CHAIN wins this down game. 

An up game between CHAIN and ANTICHAIN is defined dually. In an up 
game CHAIN'S ktb move is to select an element c'k from the current cutset A'k such 
that where a'k_1 is one of the elements 

n'1 n'Z ak-1> "k-1> ••• 

chosen by ANTICHAIN in the A:-1th move. 
Let G be a down game for jc in P and let cx >a 0 be the first move for CHAIN. 

We say that the down game G is linked to x provided that there are sequences 

X — Xo, Xi, X2, ..., xk = OQ, yx, ..., yk 

in P such that 
xi < and -< 

for each /=0, 1, 2, ..., k—1 (see Figure 8). The notion of an up game linked to 
x is defined dually. 

We shall now establish two technical lemmas needed for the proof of the Theo-
rem. The first shows that once CHAIN moves in a down game, that move can never 
be repeated in that down game. Moreover, in any sequence of down games, once 
CHAIN moves in one of the down games, that move can never be repeated in any 
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Л У 2 У к-i У к Л + 1 = Ci 

АЛ, 
л' = л'о л'1 Хо хк _ 1 хк — а0 

Construction in the proof of Theorem 1. 
Figure 8 

later move of any later down game. To this end we write (m, / )<(« , k) for integers 
m, n,j, к provided that, either m<n, or else, m=n and j<k (the usual lexico-
graphic order). 

Lemma 1. Let P be a finite ordered set and let x belong to P. Let C l 5 G2, ... 
be a sequence of down games in P for x. Let A™, A™, ... be the current cutsets 
for x in the game Gm. Then 

cj(£ Ak whenever (m, j ) < (и, к). 

Proo f of Lemma 1. According to the rules of play, cj does not belong to 
A™+1. Suppose, however, that there are integers m,n,j, к such that c™£An

k. Sup-
pose that (к, n) is chosen least with this property in the lexicographic order. This 
means that cj is an element of the 1th move of ANTICHAIN, that is, cj<ck_1. 
Let denote the essential chain (containing c f ) for ck_t in Ak_x and similarly, 
let CJ denote the essential chain (containing d f ) for c" in A"'. We use these maximal 
chains С£_х and CJ to construct another maximal chain С defined by 

С = (Q_x П (cJ]) U (Cf П [cf)) 

(see Figure 9). (For у in P, ( j ] = {x£P | x ^ y } and | » = [x£P | Let 

U = СП [сJ) and V\= CQ(cJ] 

Suppose the chain U contains an element of Ак_г. Let т^рШп be the least in-
teger for which there is some i such that A? contains an element of U. Let i, too, 
be the least integer with this property and choose и a maximal element belonging 
to U(~)A?. Note that и does not belong to A™. Let Cf_x be the essential chain 
(containing u) for cf_x in А?_г. Now construct 

С ' = (C^iiKwDUiCZ-nM). 

Evidently Af_x cannot contain any element of Cf_xП(м] and, by the maximality 
of и it cannot contain any element of CJC\[u), either. That is impossible. It follows 
that U cannot contain any member of A^^. 
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Construction in the proof of Lemma 1. 
Figure 9 

On the other hand, V cannot contain any element of either. This, in 
turn, implies that C contains no element of which is a contradiction. 

The next lemma indicates just how the play of games between CHAIN and 
ANTICHAIN is affected by generalized alternating-cover cycles. Absence of gener-
alized alternating-cover cycles gives ANTICHAIN decided advantage. 

Lemma 2. Let P be a finite ordered set and let x be an element of P which 
is contained in no generalized alternating-cover cycle. Then ANTICHAIN wins 
every down game (in P for x) linked to x. 

P r o o f of Lemma 2. Let G be a down game. The first move for.CHAIN is 
an element cx for which there is an element a0 in the current cutset A1 for x. Suppose 
that CHAIN wins some down game G. Then, according to Lemma 1, there are 
(finitely many) distinct elements 

Ci, C2, Cj 

(the sequence of CHAIN'S moves) and there are elements 

ai> a2> •••> aj-1 
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(the sequence of ANTICHAIN's moves) such that CHAIN wins this down game 
in j moves. Therefore, there must be a lower cover a} on an essential chain for Cj 
in Aj such that a^x. Let 

x = xg, x l 5 x2, ..., xk = ag, v l5 y2, •••, + i = Ci 

be elements satisfying 

1 and xi+1<yi+1, i = 0, ],..., k-\. 

Then x is contained in the generalized alternating-cover cycle 

We are now ready to proceed directly with the proof of Theorem 1. 
Let P be a finite ordered set and let .v be an element of P contained in no gen-

eralized alternating-cover cycles. We shall show by induction on the cardinality 
of P, that x has an antichain cutset. If, for instance, x is a maximal element of P 
then the remaining maximal elements of P distinct from x constitute an antichain 
cutset (possibly empty) for x. Let us suppose, then, that x is not a maximal element 
of P. Let u be a maximal element of P satisfying w>x and put P'=P—{u). Of 
course, P\ too, does not contain any generalized alternating-cover cycles for x, 
so we may apply the induction hypothesis to P' to obtain an antichain cutset A' 
for x in P. We may suppose that A' is not an antichain cutset for x in P. Then there 
are maximal chains in P, each containing u and each disjoint from A'. Let u' be 
the unique lower cover of li on some such maximal chain C. Now C—{u} is not 
a maximal chain in P', for otherwise C—{«}, whence C itself, contains an element 
of A'. Then, for every such u' there is some v in A' satisfying u'<v. 

Since H>X, no lower cover of u can lie below x. In fact 

x — x0, Xj, ylt x2, y2, -.., xt, yk, aj, Ci — yk+15 a2, c2, ..., aj, Cj 

a contradiction (see Figure 10). 
yi, 

Construction in the proof of Lemma 2. 
Figure 10 

A'\J{u'\u' < v for some v in A'} 
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is a cutset for x in P. Let A be a minimal cutset for x in P contained in this set. 
Notice that A contains each of these elements «'. We may suppose that A is not 
an antichain. 

Our aim now is to successively construct new cutsets, at each stage eliminating 
comparabilities of the form u'-^z where u'<u, u'<v for some v in A' and z 
belongs to the current cutset. As there are only finitely many such comparabilities 
and there can be no repetitions this construction must terminate with an antichain 
cutset. 

Here is the first step in the construction. We begin with the comparabilities 
ux<zx in the current cutset A—A1,0. Put c\,1=zx and a j ' ^ w i - Since x-=w 
and u>u'x, ux<zx , then according to Lemma 2, ANTICHAIN wins a down game 
G* which begins with «o 1 < c i ' 1 - Let A1,1 be the current cutset at the end of such 
a down game. Let c f c ^ U ^ - A 1 ' 0 ) and c^ZA1-1 satisfy a j ' 2 « ^ 2 and let 
G\ be a down game which begins with flj'2<c};2. As there are sequences 

v , / _ „1,1 -1,1 „1,1 „1,2 A, «I — U0 , AX , A2 , . . . , «O 
and 

U, Zx = Cx' , , ..., cx 

G\ is linked to x and so ANTICHAIN wins G\. In general, let a^CA^ ' -A 1 - 0 

and cl'^A1'1 satisfy where A1'1 is the current cutset at the end of the 
down game Gj_x, and let G) be a down game which begins with aj-'ccj'1 . Again, 
G] is linked to x, so ANTICHAIN wins G). By Lemma 1, this sequence terminates 
after m(l) such successive games. Let A1,mW be the current cutset at the end of 
this sequence of down games. 

We may suppose that A1,mW is not an antichain. We show that any compara-
bility in y41'm(1) satisfies y=u' for some u'<u and for some v£A'. 
By Lemma 1, z?±zx. If y$A1,0 then this sequence 

Gi, G| , . . . , GJ,(1) 

can be extended by a down game G*(1)+x which begins with aJ 'm ( 1 ) + 1=j<z=cJ , ," i l ) + 1 . 
We may suppose therefore that y£A1,0r\A1,mW. Next observe that each element 
in every move for ANTICHAIN is below some element in A=A1 , 0 . To see this 
we proceed by induction. Evidently, al'°=ux-=:zx and z1€A=A1,0. In general, let 

a\'l< 4' '-

If c^'^A1,0 then we are done. Otherwise, cl,i=a\'J for (./', l)-=(i, k) in the lexico-
graphic order. By induction a\'J is below some element of A1'0 and so, a^', too, is 
below some element of A1'0. This means that, in particular, there is t£A1,0 satis-
fying z ^ i and so in A1'0. That in turn, implies that y is a lower cover of 
u and so y is some u', where u'-^v for some v£A1,0. 
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Let us suppose that we have completed k — 1 steps in this construction. Let 
Jik-°=Ak-1,m(k-1) be the current cutset, let u'k<zk be a comparability in Ak,° and 
let Gj be a down game beginning with 

ao'1 = ll'k < = ci'1-

Now x<u, u>uk and so Gk is linked to x whence ANTICHAIN wins this down 
game. Let Ak>1 be the current cutset at the end of G*. Let 

aQ,2€(Ak,1 — Ak,°), tt^A"-1 

satisfy a^'2<ck'2. Again ANTICHAIN wins any down game Gk beginning with 

In general, let 
a*.>e(Ak'l-1-A*-0), c^A"'1-1 

satisfy c$''<ck'' where Ak,t is the current cutset at the end of the down game 
G*_i- As before the down game G* beginning with d'Q•*-<.ck•' is linked to x, so 
ANTICHAIN wins this down game. By Lemma 1, this sequence 

Gk, Gk,..., G* ... 

terminates after finitely many such successive down games, m(k) say. 
We may suppose that Ak,m(k\ the current cutset at the end of the down game 

G*№), is not an antichain. Let y<z in Ak,m(k\ As the sequence 

Gk,Gk,...,G]jn^k-) 

cannot be extended, y£(Ak'°r\Ak,mW). Again as above, each element in every 
move for ANTICHAIN in every game Gk, is below some element in Ak,°. There-
fore, there is t£Ak-° satisfying z^t, so t in Ak'°. By induction, y must be 
some u', where u'<u and u'<v for some v in A1,0. 

By Lemma 1, there can be no repetition of the comparabilities y < z where 
y is of the form u' with u'<u and u'<v for some v in A1'0. As there are only fini-
tely many comparabilities of this type the process must end and the current cutset 
at the end of this construction must be an antichain. This completes the proof. 

Implicit in this proof of Theorem 1 is an effective procedure to construct an 
antichain cutset. We do this, as in the proof, by a sequence of 'moves'. Every move 
begins with a comparability in P. According to Lemma 1, two different moves al-
ways begin with different comparabilities; thus, at most n2 moves are needed to 
produce an antichain cutset. It remains, therefore, 

to prove that a move can be 
effected in a polynomial (in n) number of steps. This is the outline of a move. 

(i) Find a comparability a < b in the current cutset. 
(ii) Replace b in the current cutset by all of its lower covers. 
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(iii) Remove; from among these lower covers those, nonessential to the new 
cutset. 

(iv) Remove any further elements nonessential to the new cutset. 
(v) The new minimal cutset is the current cutset for the next move. 

The only outstanding item is how to decide effectively whether or not an element 
is essential, in a cutset. 

Let K be a cutset of an ordered set P and let x£K. Then x is essential in K if 
there is a maximal chain C in P such that CC\K={x). Let = either 
y<x or >'=-x}. Then x is essential in AT if and only if Kf)I(x) is not a cutset in 
7(x). Our problem therefore reduces (is polynomially equivalent to) the following. 

Given a subset K in P is there an effective procedure 
to decide whether or not K is a cutset of P? 

If the subset K is an antichain, then, as is well known, K is a cutset in P if and 
only if P does not contain an N={a<c, b<d, b<c}, such that {a, d}gK. Obvi-
ously this can be decided in a polynomial number of steps too. 

If K is not an antichain, we can transform (polynomially) P to an ordered set 
P' and K to an antichain K' of P' such that K is a cutset of P if and only if K' is a 
cutset of P'. To see this we consider several cases. Let x, y£K satisfy x<y in 
K. If x<y in P too then we may delete the covering edge x<y to obtain P' and 
K'. Let us suppose that x<z<y in P for some z and suppose that there is no / < z 
with t^x. In this case we construct P' by only removing the element z and we 
choose K' in P' to be the same set as K. If, for each x<z<y, there is i < z with 
t^x, then we remove the edge x<z again to produce the ordered set P', and K' 
is the same set as K. 

Proof of Theo rem 2. The proof consists in showing that every element 
in P is in some minimal cutset of P. Let x£ P and let Cx be a maximal chain of P 
such that x£Cx. 

We suppose that the ordered set P has no infinite decreasing chains. (Other-
wise, if P has no infinite increasing chains then we apply dual arguments.) Let 

= {y(LP—Cx\y > z for some z in Cx and z < x} 
and 

B% — {y£P—Cx\y is minimal in P}. 

The subset A=B1UB2U {*} of P is a cutset. Indeed, let C be a maximal chain in 
P. If C n B 2 = 0 then inf CX£C. Therefore CxDCV0. We set 

u = sup {t£CxC\C\t x). 

Since P is chain complete, u£CxC\C. If u=x then x€C, otherwise there is v an 
upper cover of u such that v£C—Cx. Thus v^COBx. Also, x is essential in A 
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since v4flCJ(={x}. The ordered set P contains no infinite descending chains, so 
we can consider a well ordering of 

ByUB2 = {xl5 x 2 , . . . , xa, 

which is an extension of the order on -Bj U B2 • Thus x f<x,- in P implies / < / . 
Now, we define an algorithm which transforms the cutset A to a minimal cutset 

of P containing x. Let {Ay, A2, ..., Ax, be a sequence of cutsets of P, defined 
inductively as follows. If XX is essential in A then A=Ay. Otherwise Aa —A — {JCx}. 
Assume we have already defined If the ordinal a is isolated a = f i + \, and 
x* is essential in Ap then Aa—A^. Otherwise Ax—Ap— {xa }. If the ordinal ct is a 
limit a = s u p /}, then Ax= f ) -<V 

fi<x fi<a 

First of all, we prove by induction on a that Ax is a cutset of P for every 
Suppose that a. is the least ordinal such that Ax is not a cutset of P. Let C be a maxi-
mal chain in P such that Ci)Ax=0. If oc=fi + l, then Afi is a cutset of P, thus 
Apf~)C^0. From the inductive construction of Ax, Ax—AfiQ{xx}, therefore 
Afinc={xx} which means that xx is essential in Afi. So xx€Ax, which is a contra-
diction. If a = s u p j i , then Ax= f ] Afi and CDAfi^0 for every /?<a. (Thus 

fi<x 0<x 

\A f l C | is infinite, for otherwise, let xM be in A C\C with a largest index ft, thus 
x^A^ which gives AltOC=0.) Also A DC contains infinitely many elements in 
By, since C cannot contain more than one element in B2 (B2 is an antichain). Let 

CO By = {yy, y2, ...,yh ...}. 

Then for every i, yt covers t^ for some /¡in Cx and /¡<x. Let j = s u p and / = s u p /¡. 
Since y>t-, for every i and P is chain complete, yfef. If y>t, then from the 
regularity of P, t<yj for some j. Therefore tj^t^yj which contradicts tj <yj-
Thus y=t and y£CxC\C. Obviously y^x since CDAX=Q and x£Ax. Also 
if y>x, then from the regularity of P, x<yj for some j, thus tj<x<y}, which 
contradicts y j > t j • Therefore j < x . Now consider the maximal chain 

of P. Obviously KDA=0, which contradicts that A is a cutset of P. 
The subset Ax is a minimal cutset. Indeed let xa^A? then xx£Afi, for every 

In particular xx€Ax, which implies the existence of a maximal chain C of 
P such that CDAX= {x}. Since A}QAX, CDAX= {xa}. This completes the proof. 

The proof of Theorem 2, does not extend to the case that P does not satisfy 
a chain condition. Indeed, in the example illustrated in Figure 11, {xJUBjUZ^ 
is not a cutset. 

In general, it need not be the case that a cutset always contains a minimal one, 
even for regular ordered sets. For instance, the ordered set illustrated in Figure 12 
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Figure 11 
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is regular and {ax, a2, ...} is a cutset which does not contain a minimal one. A re-
lated question is this. Which ordered sets contain at least one minimal cutset? 

P roof of Theorem 3. Suppose that P contains a subset {a, b, c, d} iso-
morphic to N, that is, a<c , b<c, b<d are the only comparabilities among the 
elements {a, b, c, d}. Without loss of generality, we may assume that c>- a and 
d>b. Consider maximal chains C and D of P such that {a, c } g C and {b, d}QD. 
Obviously CC\{b, d}=0 and DO {a, c}=0. Assume that for every x in D and 
x^d, x does not cover in P any element y such that y£C and y^a. Thus {c, b} 
is a cutset in P0—C U D. 

From the proof of Theorem 2, there is a minimal cutset K of P containing c 
such that KQ{C}UB1UB2 with 

— { j ^ — C l j >- z for some z in C and z < c} 
and 

= {y£P—C\y is minimal in P}. 
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Since K is a cutset, KClD^Q. Let x£KC\D. If x£Bx, then x>-z in P for some 
z in C and z<c. By assumption x^b, so x-=c. If x£B2, then x=inf D thus 
x<c . Therefore K is not an antichain. 

Assume that there exists x in D with x~d and such that x covers y in P for 
some y£C and j>Sa. Necessarily, either xj^d or y^a. So, without loss of 
generality, we can assume that x?±d and c covers b in P (otherwise we start with 
{d, y, x, c} as an N in P). From Theorem 2, d is contained in a minimal cutset K of 
P. Suppose that AT is an antichain and let 

X = { U(x) HZ»} U {D 00 0 C} and Y = { U{c) D C} U {D (b) HZ»}. 

Since C and D are maximal chains and c>-b, x>y in P, the chains X and Y are 
maximal in P. Therefore and KPiY^Q. Let u£KC\X and v^KHY. 
Since iTis an antichain, v ^ c and »Sa . Thus v<u. This contradiction completes 
the proof. 

P roo f of Theorem 4. Suppose that P is an ordered set which contains 
a generalized N—{CX, C2, AX, A2). Let A be a maximal antichain in P. containing 
AJUA2 and let C be a maximal chain in P such that C x UC 2 gC. Since Q < C 2 

and there is no x such that Cx-= {x}<C2, for every element y in C—(CXUC2), 
either y>c2 for some element c2 in C2 or y<cx for some element ct in Cx. But As 

is coinitial in C2 and AX is cofinal in Cx, thus either y>a2 for some a2 in A2 or >'<ax 

for some ax in AX. Therefore y$A and C(1A = 0, which contradicts that A is an 
antichain cutset in P. 

To prove the converse assume that P contains a maximal antichain A and a 
maximal chain C such that A(1C=0. Let 

Cx = { J C £ C | X < a for some a in A} 
and let 

C2 = {x£ C | x > a for some a in A}. 

Since A f i C = 0 and A is a maximal antichain, CxC\C2=0 and CXUC2—C. If 
C x = 0 then (0, C2, 0, A) is a generahzed N, and the dual argument applies if C 2 =0. 
So, we assume that C j^O^Cg. 

Let a and /? be ordinals such that a=cf (Cx) and p=ci (C2). (The cofinality 
of a chain C of order type y, denoted by cf (C) or cf (y) too, is the least ordinal a 
such that there is a subchain C' of C of order type a and cofinal in C. The coinitial-
ity of a chain C of order type y, denoted by ci (C) or ci (y) too, is the least ordinal 
fi such that there is a subchain C' of C of order type fid, the dual of /?, and coinitial 
in C.) Let 

F = { x 0 < x 1 < . . . < x i < . . . } ; < a 

be a cofinal subset of Cx and 
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be a coinitial subset of C2. Now, we construct, simultaneously, the antichains (A[)^y 

and in P, where y = min (a, /?), as follows. 
Let a0 be in A such that a0>.xn, and let b0 in A —{aa} such that b0<y0. We 

set A$={a0} and A°2={b0}. 
Suppose we have already constructed (^i)i<:(S and (A'„)a. If d=d' + l, an isolated 

ordinal, then let a^A—(A%UA%) such that as>xd. And let bs7±as in A— 
-(A*VA$) such that b6^ys. We set 

Ai = Af\J{a,} and A's = Af\J{b,}. 

If 5 is a limit ordinal then we set 

A{ = f]A[ and A\= 0 4 -

Since the antichain A is cofinal in C t and coinitial in C2, this construction is 
possible until A\ and A\. Without loss of generality we can assume that 
Let Ax =A\ and AS = A—Al. The four-tuple (C\, C2, Ax, A2) is a generalized 
N in P. 
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