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Homomorphism of distributive lattices as restriction of congruences 

E. TAMÁS SCHMIDT 

Dedicated to the memory of András Huhn 

1. Introduction. Let / be an ideal of a lattice L. Then the map Q-.O — OJ, 
restricting a congruence relation <9 to / is a 0 and 1 preserving lattice-homomorphism 
of the congruence lattice Con L into Con I. G . GRATZER and H . LAKSER [1] have 
proved the converse for finite lattices: 

Theorem A. Let D and E be finite distributive lattices, and let (p: D->-E 
be a 0 and 1 preserving homomorphism of D into E. Then there exist a finite lattice 
i , and an ideal I of L, such that there are isomorphisms a: D —Con L, /?: is—Con I, 
satisfying p(p — Qa, where q: is the restriction of ©£Con L to I. (See 
Figure 1.) 

p 

e * Con L * Con / 

Figure 1 

The purpose of this paper is twofold. Firstly, we generalize Theorem A for 
distributive algebraic lattices satisfying the following condition 

(* ) for all compact x, JCVA(*iI = A W X T \ *'€/), 
which is a weaker form of the infinite meet distributivity. Secondly, we win a 
short proof of Theorem A, which uses a construction given in SCHMIDT [3] and [4] 

2. Dual Heyting algebras. Let L be a lattice. The dual pseudocomplement of a 
relative to b is an element a*b of L satisfying aSJx^b iff x^a*b. A dual Heyting 
algebra is a distributive lattice with 1 in which a*b exists for all a, b(LL. The subset 
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of all compact elements of an algebraic lattice A is denoted by K(A). This K(A) is 
a join-subsemilattice with smallest element 0. A lattice A is called arithmetic iff it is 
algebraic and K(A) is a sublattice of L. 

Lemma 1. Let L be a distributive arithmetic lattice, whose unit element is 
compact. L satisfies the condition (*) if and only if K(L) is a dual Hey ting algebra. 

Proof . First, let K(L) be a dual Heyting algebra. Then L is isomorphic to 
the lattice of all ideals of K(L), and the compact elements of the ideal lattice are 
precisely the principal ideals. Therefore we have to show that 

W V A W - | i € / ) = A ( W V J , | i € / ) 

where the /¡-s are ideals of K(L). It is enough to verify that the right side is contained 
in the left side. Let a€ A((*]V-/,-l «'€/), then a€(A-]V/,- for all i£l, i.e., a^xV}'; 
for suitable y£Ji- K(L) is a dual Heyting algebra, therefore x*a exists and 
x*a^yt implies x i £ l . Thus x*a£/\(Ji /£/). By the definition of x * a 
we have a^xV(x*a) , i.e. a€(x]V A OA! 

By assumption L is a distributive arithmetic lattice with compact unit element, 
thus K(L) is a bounded distributive lattice. Consider all wrs such that aVu^b. 
Then b£ A((a]V(«,])- Applying (*) we obtain ¿6(a]V A(w;l- i-e- there exists a 
z€A(Mf] such that aVz^b. Obviously z=a*b. 

By Lemma 1, we can work with dual Heyting algebras, namely L is determined 
by K(L). 

Let L be a {0, l}-sublattice of the Boolean lattice B. Then L is said to 7?-gen-
erate B if L generates Basa ring. The following lemma is due to H. M. MacNeille 
(see G . GRATZER [2]). 

Lemma 2. Let B be R-generated by L. Then every a£B can be expressed 
in the form 

a0 + a1+...+a„_1, a0 = a0, ..., a^^L, 

A sublattice L' of a dual Heyting algebra L is called a subalgebra if for every 
x(LL there exists a smallest x£L' that x^x. 

Lemma 3. A subalgebra of a dual Heyting algebra is a dual Heyting algebra. 

Proof . Let L' be a subalgebra of L and let a, b£L\ a^b. Then a*b exists 
in L, and it is easy to verify that a*b is the dual pseudocomplement of a relative 
to b in L'. It is clear that if the dual pseudocomplement exists for comparable pairs 
then there exists for arbitrary pairs. 

For a bounded distributive lattice L we shall denote by B(L) the Boolean lat-
tice .R-generated by Z,. 
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Lemma 4. Lét L be a dual Hey ting algebra. Then L is a subalgebra of B(L). 

Proof . Let L be a dual Heyting algebra. Then by Lemma 2 every x can be 
expressed in the form x = a 0 + . . . +a„_1. We prove the existence of 5c by induction 
on«. If n—1, i.e. x=a0 then x£L hence x=x. For n—2, i.e. x=a1)+a1, x is 
the relative complement of a0 in the interval [0, a j . Then a^My^a-x and y£L 
imply thus exists and at>+b1=a0*a1. Let us assume that 

2. an_2+a„-1 is the relative complement of an_2 in the interval [0, «„_]], hence 
an-3A(an-2+an-.1)7San_2A(an„2+an-1)=0. Obviously a0 + ... +an_3^an_2, thus 
(a0+... +«„_3)A(a„_2+an_x)=0. This implies that a0+...+an^=(a0+... + crn_3) + 
+(i7„_2+a„_1)=(a0+...+a„_3)V(a„-2+an-i)-

Let x, y be arbitrary elements of B(L) such that x and y exist. We prove that 
x\Jy exists and x\Jy—x\Jy. Let x\lySzSx\l y, z£L. Then we get from x, j = x V j 
that xSxAz^L, y^yAz^L, and we conclude that x^z, ySz, i.e. z=xVy, 
which proves xyy=x\/y. Applying this equality for x=a0+... +o„_3 and y— 
=i7n_2+fl„_i we obtain that x\Jy=x+y exists. 

Lemma 5. Let © be a compact congruence relation of a dual Heyting algebra 
L. Then LI© is a dual Heyting algebra. 

Proof. The compact congruence relations are exactly the finite joins of prin-
cipal congruence relations. To prove the lemma, by the Second Isomorphism Theorem 
we may assume that 0 is a principal congruence relation, i.e. © = ©(u,v), aSt). 

Let L be a dual Heyting algebra. We prove that each congruence class of © (u, v) 
contains a smallest element. In distributive lattices 0 («, v) has the following de-
scription (see [2], p. 74): asfe (0 (u , ?;)) iff v\!a=v\Jb and uAa=uAb. Let b 
be a fixed element of L. Then v\Ja=v\jb implies that amv*(v\Jb). Therefore 
v*(vVb) is the least element of the 0(w, w)-class containing b. Now, let a<b and 
let c denote the least element of the ©(«, v)-class containing b. Let [x] denote the 
0(M, «)-class containing x. Then obviously [a] * [b] = [a*c\. 

Corol la ry . Every ©-class of a compact congruence relation © of a dual Heyting 
algebra contains a smallest element. 

3. The main theorem. In this section we formulate our main theorem and then 
we give two special representations of dual Heyting algebras. 

Theorem B. Let D and E be dual Heyting algebras, and let <p: D-+E be 
a 0 and 1 preserving homomorphism of D into E such that the congruence kernel 
Ker q> is a compact congruence relation and F = I m cp is a subalgebra of E. Then 
there exist a lattice L, and a principal ideal I of L, such that there are isomorphisms 
a: D-^K(Con L), fi: E-+J (Con I) satisfying fi(p = go., where g: ©-*©, is the 
restriction of 0CCon L to L 
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If Ly and La are lattices with zero elements 0X resp. 02 then in the direct product 
LyXLz the elements (x, 02> (x£Ly) form an ideal L[ isomorphic to Z1. Therefore 
we can identify Ly with L[ and similarly L* with the ideal L'2= {(0l5 x)}. 

Let 0 be the congruence kernel of the homomorphism <p: D-*E. By our 
assumption © is a compact congruence relation of D. On the other hand D is a 
bounded distributive lattice, therefore the unit of Con D is compact. The compact 
elements of Con D form a Boolean lattice (see [2], p. 86, Exercise 41), consequently 
0 has a complement 0' in Con D. Then D is a subdirect product of D /0 and D/0 ' , 
therefore D g D / 0 X D / 0 ' . 

F = I m (p is a {0, l}-sublattice of E and F is isomorphic to D/0; we identify 
D / 0 and F. Hence we may consider D as a {0, l}-sublattice of EXD/0'. Let e be 
the unit of £ and ny(x)=xAe denotes the projection map of EXD/0' onto E. 
Observe, that the restriction of 7il to D ( Q E X D / 0 0 gives the homomorphism <p 
(see Figure 2). 

1 

0 

Figure 2 

Lemma 6. EXD/0' is a dual Heyting algebra and D is a subalgebra of 
EXD/0'. 

Proof . By our assumptions D and E are dual Heyting algebras and 0' is a 
compact congruence relation. Hence by Lemma 5 D/@' and thus EXD/0' are dual 
Heyting algebras. F = I m cp is a subalgebra of E,^hence by Lemma 3 F.and FXD/0' 
are dual Heyting algebras. 

We have seen that D is a subdirect product of F and D / 0 ' . First we show that 
D is a subalgebra of the dual Heyting algebra FxD/0'. An arbitrary element of 
FXD/0' can be written in the form jt=<[a]0, [b]0') where a, b£D. By Corol-
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lary of Lemma 5 the congruence classes of 0 and 0 ' have smallest elements. Let 
now űo andr bo be the smallest elements of [a]0 resp. [b]0 ' . Then ([aoAb„]0, 
[floA&o]®')€D. Obviously this element is in D, the smallest one which is 
greater or equal than x, i.e. 3c exist. This proves that D is a subalgebra of FXD/0'. 
On the other hand F i s a subalgebra of E, consequently FXD/0' is a subalgebra 
of ExD/0', which proves finally that D is a subalgebra of EXD/0' (namely a 
subalgebra of a subalgebra is again a subalgebra). 

In [3] (or see [4]) there was given a special lattice construction to prove that 
the lattice of all ideals of a dual Heyting algebra is isomorphic to the congruence 
lattice of some lattice. The most important properties of this construction are sum-
marized in the following lemma. 

Lemma 7. Let K be a {0,1 }-subalgebra of a Boolean lattice A, and let e: K-^A 
be the identy map. There exists a bounded lattice M with the following properties: 

(i) M contains three elements u,v,w such that {0, u, v, w, 1} form a sublattice 
isomorphic to the diamond M3. There are isomorphisms P: (u]-+K and T: (V]—A. 
If for x£K n(x) means (xMw)Av then xn=£fi. 

(ii) The map x-*x\ju (x=v) is an isomorphism of (v] onto the filter [«). 
(iii) A congruence relation <9(0, x) of (v] can be extended to M i f f r(x)€e(K), 

and every compact congruence relation of M is the extension of a congruence relation 
0(0, x)€Con («]. 

Remark. A is a Boolean lattice, therefore every compact congruence relation 
of A ( = («]) can be written in the form 0(0, JC). Condition (iii) implies that Con M s 
is/(A), i.e. K{ConM)^K. 

4. The proof of Theorem B. We apply Lemma 7 twice to get two lattices Mx and 
M2. Then we use the so called Hall—Dilworth gluing construction which yields 
a lattice L having the properties required in the theorem. 

By Lemma 6 D is a subalgebra of the dual Heyting algebra EXD/0' and by 
Lemma 4 ExD/0' is a subalgebra of B(ExD/0r). Consequently D is a subal-
gebra of B(ExD/0'). Then we can choose in Lemma7 K=D and A=B{ExD/0r). 
We obtain the lattice Afx with a diamond {0l5 ux, vy, wr, l j } given in condition (i) 
of Lemma 7:; In the second case we consider K=EXB(D/0') and A=B(EXD/0'). 
By Lemma 4 £ is a subalgebra of B(E) hence ExB(D/0') is a subalgebra oiB(E)X 
XB(D/0')=B(ExD/0'). The resulting lattice is M2 with the diamond {02, M2, V2, 
w2, 12}. 

By condition (i) of Lemma 7 the ideal of Mx is isomorphic to B(EXD/0'). 
On the other hand by condition (ii) the filter [M2) of M2 is isomorphic to B(EXD/0r). 
Consequently we have an isomorphism <5: [ ^ ^ O á ] - We apply the Hall—Dilworth 
gluing construction which gives a lattice L having Mx as a filter and M2 as an ideal. 
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(L is the set of all x£M1(JM2, we identify x with <5(x) for all x£[«2); x=y has 
unchanged meaning if x,y£Mx or x,y£M2 and x<y, x, J'C[M2)=(«1] iff x£M9, 
y£Mx and there exists a z€[w2) such that x^z in M2 and ,z<y in Mx) The 

The function 7i(x)=(xVw„)Av2 yields the element e'=7t(e) —(eV w2)Av2^v2. 
Let / be the principal ideal generated by e\Je'. We have to prove that the pair L, I 
satisfies the properties given in Theorem B. 

(1) First we prove that Con /(D) i.e. D is isomorphic to the semilattice 
of all compact congruences of L. Every congruence relation 0 of L is determined 
by its restrictions 0M and 0 i W j to Mx resp. M2. By condition (iii) of Lemma 7 
0 M j is determined by its restriction to (t/x] and similarly 0 i s determined by its 
restriction to («2]. But the interval [0l5 vx] is a transpose of [Og, ^ ] , hence we get 
that 0 is determined by its restriction to the ideal (v2]. This ideal is a Boolean lattice, 
thus every compact congruence relation of (v2] has the form 0(O8 ,x) , xÇ(v2]. 
Lét now, 0(O2, x) be a congruence relation of (v2]. Under what conditions for x 
has this congruence relation an extension to LI Condition (iii) of Lemma 7 gives 
the following isomorphisms : 

in Mx, nx:(ux]-»D, Tl: (vx]-~B(EXD/0% 
.in M2,. iii-. («J - EXBipie'), ïï. 

If ex: D-*B(ExD/er) and £2: EXB{DI0r) denote,the identity maps, then xxnx = 
=b1h1 and To Tin — 62 • where w?)AVi (1=1, 2), IJy condition (iii) of 



Homomorphism of distributive lattices 215 

Lemma 7, the congruence relation @(0a, x) can be extended to M2 iff z2(x)6 
C£2(£XB(D/0')). Similarly, in Mx we get that the congruence relation ©(Ox, 01Vx) 
of (%] can be extended to Mx iff T1(01VX)€£1(D). Obviously the minimal extensions 
of 0(0 2 , x) and 0(O1; OjVx) to L are the same and EX(D) is a sublattice of 
E2(EXB(D/0')), SO we obtain that 0(O2, x) has an extension to ¿ i f f RX(0xVx)£eX(D). 
This proves Con L^I(D). 

(2) Secondly we show Con I==I(E). E is a direct factor of (u2] and (e'\ is 
isomorphic to B(E). Obviously B(EXB(D/0'))=B(E)XB(D/0') hence the prin-
cipal ideal I=(e\/e'] is a direct factor of M2. This means that / is again a lattice 
given by Lemma 7, namely if K=E and A~B(E). Thus by condition (iii) we have 
K(Con I)=E, i.e. Con I^ 1(E). 

(3) Finally, let 0 be a compact congruence relation of L. We have seen that 0 
is the extension of some 0(O2, x)€Con (w2] where T2(X)£E1(D), i.e. the restriction 
0 — 0 j is determined by the projection D-^EXD/0'. As we have seen this is 
exactly the given homomorphism (p. 
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