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Homomorphism of distributive lattices as restriction of congruences
E. TAMAS SCHMIDT

Dedicated to the memory of Andrds Huhn

1. Introduction. Let 7 be an ideal of a lattice L. Then the map ¢: @ -6y,
restricting a congruence relation © to Iis a 0 and 1 preserving lattice-homomorphism
of the congruence lattice Con L into Con I. G. GrRATZER and H. LAKSER [1] have
proved the converse for finite lattices:

Theorem A. Let D and E be finite distributive lattices, and let ¢: D—~E
be a 0 and 1 preserving homomorphism of D into E. Then there exist a finite lattice
L, andanideal I of L, such that there are isomorphisms a: D—-Con L, f: E~Con I,
satisfying Po=pa, where @: ©—~@; is the restriction of @€ConL to I (See
Figure 1.)
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The purpose of this paper is twofold. Firstly, we generalize Theorem A for
distributive algebraic lattices satisfying the following condition

(#) for all compact x, xV A(x)] ie)= A(xV x| i€]),
which is a weaker form - of the infinite meet distributivity. Secondly, we win a
short proof of Theorem A, which uses a construction given in ScHMIDT [3] and [4].

2. Dual Heyting algebras. Let L be a lattice. The dual pseudocomplement of a
relative to b is an element axb of L satisfying aVx=b iff x=axb. A dual Heyting
algebra is a distributive lattice with 1 in which ab exists for all g, b€ L. The subset
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of all compact elements of an algebraic lattice 4 is denoted by K(4). This K(4) is
a join-subsemilattice with smallest element 0. A lattice A is called arithmetic iff it is
algebraic and K(A) is a sublattice of L.

Lemma 1. Let L be a distributive arithmetic lattice, whose unit element is
compact. L satisfies the condition (#) if and only if K(L) is a dual Heyting algebra.

Proof. First, let K(L) be a dual Heyting algebra. Then L is isomorphic to
the lattice of all ideals of K(L), and the compact elements of the ideal lattice are
precisely the principal ideals. Therefore we have to show that

(xIVAUHIED = A((xIV Jili€T)

where the J;-s are ideals of K(L). It is enough to verify that the right side is contained
in the left side. Let a€ A((x]V/J,| i€I), then a€(x]vJ; for all i€], ie., a=xVy,
for suitable y,£J;. K(L) is a dual Heyting algebra, therefore x%a exists and
xxa=y; implies x*acJt;, i€l. Thus xxa€ A(J;i€I). By the definition of xxa
we have a=xV(x=a), 1.e. ac(x]V Al i€l).

By assumption L is a distributive arithmetic lattice with compact unit element,
thus K(L) is a bounded distributive lattice. Consider all u;s such that aVu;=b.
Then be A((a]V(x]). Applying (%) we obtain b€(a]V A(w], i.e. there exists a
z€ A(1;] such that aVzz=b. Obviously z=a=b.

By Lemma 1, we can work with dual Heyting algebras, namely L is determined
by K(L).

Let L be a {0, 1}-sublattice of the Boolean lattice B. Then L is said to R-gen-
erate B if L generates Basa ring. The following lemma is due to H. M. MacNeille
(see G. GRATZER [2]).

Lemma 2. Let B be R-generated by L. Then every acB can be expressed
in the form

aytay+...ta,_y, qGg=a,=..=d,_;, ag,...,a,-15L.

A sublattice L’ of a dual Heyting algebra L is called a subalgebra if for every
x€L there exists a smallest X€L’ that x=X.

Lemma 3. A4 subalgebra of a dual Heyting algebra is a dual Heyting algebra.

Proof. Let L’ be a subalgebra of L and let @, b€L’, a=b. Then axb exists
in L, and it is easy to verify that axb is the dual pseudocomplement of a relative
to b in L. It is clear that if the dual pseudocomplement exists for comparable pairs
then there exists for arbitrary pairs.

For a bounded distributive lattice L we shall denote by B(L) the Boolean lat-
tice R-generated by L. . : , .
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Lemma 4. Lét L be a dual Heyting algebra. Then L is a subalgebra of B(L).

Proof. Let L be.a dual Heyting algebra. Then by Lemma 2 every x can be
expressed in the form x=ay+... +a,_;. We prove the existence of X by induction
on n. If n=1, ie. x=a, then x¢L hence X=x. For n=2, ic. x=ay+a;, xis
the relative complement of 4, in the interval [0, a]. Then aVy=a, and ycL
imply y=a,+a,, thus ay+a, exists and an+b;=ay*a,. Let us assume that
n>2. a,_,+a,_, is the relative complement of a,_, in the interval [0, a,_,], hence
Gy 3Nty +ay—1) =0y 3N @y +ay_1)=0. Obviously ay+...+a,_;=a,_,, thus
(ao+... +a,_3)N(@,_o+a,_,)=0. This implies that ay+...+a,_;=(ap+... +a,_3)+
(854 8,-1) =@y + ... 48, )V @y 5+, _1).

Let x, y be arbitrary elements of B(L) such that X and j exist. We prove that
XVy existsand xVy=XVy. LetxVy=z=XVy, z€L. Then we get from x, y=xVy
that x=XAz€L, y=yAz€L, and we conclude that X=2z, j=z, 1e. z=xVjJ,
which proves xVy=xVj. Applying this equality for x=a,+...4+a,-.; and y=
=a,_,+a,_, we obtain that XVy=Xx+p exists.

Lemma 5. Let © be a compact congruence relation of a dual Heyting algebra
L. Then L[© is adual Heyting algebra.

Proof. The compact congruence relations are exactly the finite joins of prin-
cipal congruence relations. To prove the lemma, by the Second Isomorphism Theorem
we may assume that @ is a principal congruence relation, i.e. @=0(u,v), u=wv.

Let L be a dual Heyting algebra. We prove that each congruence class of @ (i, v)
contains a smallest element. In distributive lattices O (u, v) has the following de-
scription (see [2], p. 74): a=b (O(u,v)) iff vVa=vVb and uAa=uAb. Let b
be a fixed element of L. Then »Va=vVb implies that a=vx(wVb). Therefore
v (vVb) is the least element of the @ (u, v)-class containing b. Now, let a<b and
let ¢ denote the least element of the @ (u, v)-class containing b. Let [x] denote the
O(u, v)-class containing x. Then obviously [a]x[b]=[axc].

Corollary. Every @-class of a compact congruence relation © of a dual Heyting
algebra contains a smallest element. :

3. The main theorem. In this section we formulate our main theorem and then
we give two special representations of dual Heyting algebras.

Theorem B. Let D and E be dual Heyting algebras, and let ¢: D—~E be
a 0 and 1 preserving homomorphism of D into E such that the congruence kernel
Ker ¢ is a compact congruence relation and F=Im ¢ is a subalgebra of E. Then
there exist a lattice L, and a principal ideal I of L, such that there are isomorphisms
oa: D+K(Con L), B: E+~J(Conl) satisfying Bo=opn, where 9: ®—~0, is the
restriction of @€ConL to I o : . )
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If L, and L, are lattices with zero elements 0, resp. O, then in the direct product
L, XL, the elements {x, 0,) (x€L,) form an ideal L{ isomorphic to L,. Therefore
we can identify L, with L] and similarly L, with the ideal L;={(0,, x)}-

Let © be the congruence kernel of the homomorphism ¢: D—~E. By our
assumption @ is a compact congruence relation of D. On the other hand D is a
bounded distributive lattice, therefore the unit of Con D' is compact. The compact
elements of Con D form a Boolean lattice (see [2], p. 86, Exercise 41), consequently
© has a complement @’ in Con D. Then Dis a subdlrect product of D/@ and D/€’,
therefore DS D/@XD/O’.

F=Im ¢ is a {0, 1}-sublattice of F and F is isomorphic to D/®; we identify
D/O and F. Hence we may consider D as a {0, 1}-sublattice of EXD/@". Let e be
the unit of E and m(x)=xAe denotes the projection map of EXD[®" onto E.
Observe, that the restrxctxon of n, to D (CEXD/@’) gives the homomorphlsm 7]
(see Figure 2).

Lemma 6. EXD/|® is a dual Heyting algebra and D is a subalgebra of
EXD|®’. :

Proof. By our assilmpti;)'ns D and E are dual Heyting algebras and @’ is a
compact congruence relation. Hence by Lemma 5 D/@’ and thus EXD/@’ are dual
Heyting algebras. F=Im ¢ ‘is a subalgebra of E, hence by Lemma 3 Fand FX D/@’
are dual Heyting algebras. -

‘We have seen that D is a subdirect product of F and D/ o' FlI‘St we show that
D.is a subalgebra of the dual Heyting algebra FXD/@’.  An arbitrary element of
FXDJ@®" can be written in the form x=([a] O, [b]@’) where a,b€¢D. By Corol-
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lary of Lemma 5 the congruence classes of @ and @’ have smallest elements. Let
now g, and. b, be the smallest elements of [a}@ resp. [b]@’. Then ([a,Aby}O,
[aoAby]©"YED. Obviously this - element’ is in D, the smallest one which is
greater or equal than x, i.e. X exist. This proves that D is a subalgebra of FXD/®’.
On the other hand F is a subalgebra of E, consequently FXD/®’ is a subalgebra
of EXD/®’, which proves finally that D is a subalgebra of E XD/@’ (namely a
subalgebra of a subalgebra is again a subalgebra).

In [3] (or see [4]) there was given a special lattice construction to prove that
the lattice of all ideals of a dual Heyting algebra is isomorphic to the congruence
lattice of some lattice. The most important properties of this construction are sum-
marized in the following lemma.

Lemma 7. Let K bea {o, 1}-subalgebra of a Boolean lattice A, andlete: K—~A
be the identy map. There exists a bounded lattice M with the following properties:

() M contains thrée elements u,v, w such that {0, u,v, w, 1} form a sublattice
isomorphic to the diamond M3 There are isomorphisms u: (u]—+-K and t: (v]—A.
If for x€K m(x) means (xNw)Av then tn=¢pu.

(i) The map x-xyu (x=v) is an isomorphism of (v] onto the filter [u).

(iii) A congruence relation ©(0, x) of () can be extended to M iff 1(x)€e(X),
and every compact congruence relation of M is the extension of a congruence relation
©(0, x)eCon (v].

"~ Remark. A is a Boolean lattice, therefore every compact congruence relation
of A4 (=(v]) can be written in the form @ (0, x). Condition (iii) implies that Con M=
=I(K), i.e. K(Con M)=K.

4. The proof of Theorem B. We apply Lemma 7 twice to get two lattices M, and
M,. Then we use the so called Hall—Dilworth gluing construction which yields
a lattice L having the properties required in the theorem.

- By Lemma 6 D is a subalgebra of the dual Heyting algebra EXD/@’ and by
Lemma 4 EXD/O’ is a subalgebra of B(EXD/©"). Consequently D is a subal-
gebra of B(EX D/@’). Then we can choosein Lemma.? K=D and A=B(EXD/@’).
We obtain the lattice M, with a diamond {0,, ,, ¥, wy, 1, } given in condition (i)
of Lemma 7:1n the second case we consider X=EXB(D/@') and A=B(EXD/@’)
By Lemma 4 E is a subalgebra of B(E) hence EX B(D/@’) is a subalgebra of B(E) X
XB(D/@®")Y=B(EXD/®’). The resulting lattice is M, with the diamond {0, u,, s,
w, 1p}.

By condition (i) of Lemma 7 the ideal (1)1] of M, is ISOmOI'phJC to B(EXD/@’).
On the other hand by condition (ii) the filter [u,) of M, is isomorphic to B(EXD/©’).
Consequently we have an 1somorph1sm o: [u2) (v,]. We apply the Hall—Dilworth
gluing construction which gives a lattice L having M, as a filter and M, as an ideal.
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(L is the set of all xée M,UM,, we identify x with 6(x) for all x€[u,); x=y has
unchanged meaning if x, y€M, or x,y€M, and x<y, x, y§[u.)=(,] iff xcM,,
y€M; and there exists a z€[u,) such that x=z in M, and z<y in M,.) The
lattice L is given by Figure 3 where B=B(EXD/O"): :

Iy

U

EX B(D/O’)_

B(D/O")
Figure 3

The functlon n(x)=(xVw)Av, ylelds ‘the element e n(e) (ve2)/\7/2_1)2
Let 7 be the principal ideal generated by eVe'. We have to prove that the pair L, 1
satisfies the properties given in Theorem B.

(1) First we prove that Con L=~I(D) i.e. D is-isomorphic ‘te-the semilattice
of all compact congruences of L. Every congruence relation @ of L is determined
by its restrictions @ u, and @, to M, tesp. M,. By condition (i) of Lemma 7
@M is determined by its restriction to (.} and” smnlarly Oy, is determined by its
restriction to (v;]. But the interval [0,, #;] is a transpose of- [02, v,}, hence we get
that @ is determined by its restriction to the ideal (»,]. This.ideal is-a Boolean lattice,
thus every compact congruence relation -of (v;]- has the form.: @(0y;,x), x€(2.].
Lét now, ©(0., x) be a congruence relation of (v.]). Under what conditions for x
has this congruence relation an extenswn to L" Condition (m) of Lemma 7 gives
the following isomorphisms: : :

in M, ﬂl (w]—-D, 1,: (v1]"B(EXD/@)
‘ in My, pe: (4] - EXB(D]O), 1y (ve] - B(EXD/@’)
If- sl D—~B(EXD|®). and “E9° EXB(D/@’) denote the 1dent1ty maps then rlnl—'
=g and Tymp=gHp - Where' m(x)=(xVw)Av; (i=1,2). By, condltxon (iii) . of
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Lemma 7, the congruence relation ©(0,, x) can be extended to M, iff 7,(x)¢
€&,(EXB(D[©)). Similarly, in M, we get that the congruence relation @(0,, 0,V x)
of (v;] can be extended to M, iff 7,(0,V x)€¢ (D). Obviously the minimal extensions
of ©(0,,x) and O©(0,0,Vx) to L are the same and ¢ (D) is a sublattice of
&(EXB(D/@’)), so we obtain that © (0., x) has an extension to Liff 7,(0,V x)€e, (D).
This proves Con L==I(D).

(2) Secondly we show Con I=I(E). E is a direct factor of (¥;] and (e’] is
isomorphic to B(E). Obviously B(EXB(D/©’))=B(E)XB(D/©") hence the prin-
cipal ideal I=(eVe’] is a direct factor of M,. This means that I is again a lattice
given by Lemima 7, namely if K=E and A=B(F). Thus by condition (iii) we have
K(Con I)==E, i.e. ConI=I(E).

(3) Finally, let © be a compact congruence relation of L. We have seen that @
is the extension of some ©(0., x)€Con (u;] where 7,(x)€¢,(D), i.e. the restriction
©—0, is determined by the projection D-—-EXD/@’. As we have seen this is
exactly the given homomorphism ¢.
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