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Triply transitive algebras
LASZLO SZABO

To the merhory of Andrds Huhn

In [7] P. ScHoFIELD proved that if G is a triply transitive permutation group
on an at least four element finite set M and f is a surjective operation on M depending
on at least two variables then the clone F generated by GU{f} either equals the
set of all operations on M or FC L where L is a maximal clone of quasilinear oper-
ations on M. The aim of this paper is to improve this result by proving that the
inclusion FESL is actually an equality (Theorem 8).

In [6] R. P6scHEL described all finite relationally incomplete homogeneous
relation algebras. As an application of our theorem we also improve this result by
giving all at least four element finite relationally incomplete relation algebras having
triply transitive automorphism groups (Theorem 9).

2. Preliminaries

Let M be a nonempty set. The set of all #-ary operations on M will be denoted
by O® (n=1), and we set Oy= |J OF). An operation fcO,, is idempotent

nzl

if for every a€EM we have fQa, ...,a)=a; f is nontrivial if it is not a projection.
If £ depends on at least two variables and takes on all values from M then it is
called essential.

For h=1 the set of h-ary relations on M (i.e. subsets of M*) will be denoted
by R®; furthermore we-set Ry = U R®. An operation fcO® is said to preserve

arelation ocRY ifpisa subalgebra of the h-th direct power of the algebra (M f).
For RS R, the symbol Pol R denotes the set of all operations from O, preserving

Received June 24, 1986, and in revised form October 27, 1986.

Research partially supported by Hunganan National Foundation for Scnentxﬁc Research grant
no. 1813,



222 C ) L. Szabo

each relation in R, and for F& O,, the symbol Inv F denotes the set of all relations
from R,, preserved by each operation in F. The correspondences R—Pol R and
F—Inv F establish a Galois connection between the subsets of R,, and the subsets
of Oy. For FEO0,, and RSR, we set (F)=Pollnv F and [R]=Inv Pol R.

By a clone of operations on M we mean a subset FC O,, which contains the
projections and is closed with respect to superposition. It is known (cf. e.g. [5])
that, for finite M, a subset F& O, is a clone if and only if F=(F). By a clone of
relations we mean a subset RER,, satisfying the equality R=[R]. We remark
that for finite M there exists also an internal definition for [R], namely [R] is the set
of all relations which are definable by a first order formula in which only 3, A, =,
and relations (i.e. predicates) of R occur. For more details cf. [3].

By a relation algebra on the set M we mean a pair {M; R) where RS R,,. We
say that (M; R) is nontrivial if Pol R=0,,. A permutation = on M is an auto-
morphism of (M;R) if ognSo and gn~ 1&g for every g€R. The symbol
Aut (M; R) denotes the group of all automorphisms of (M; R).

If f is an n-ary operation on M then f° denotes the (n+1)-ary relation
{(@, ... a,, flar, ..., &) | ay, ..., a,6M}. Two relation algebras (M;R,) and
(M R,) are equivalent if [R;]=[R,].

If n=1 and q is a prime power then V (i, g) denotes the n-dimensional vector
space over the field GF(q). In this note by a linear operation over V(n, g) we mean

an operation of the form S’xiAi—H; ‘where €V (n,q) and the 4, (1=i=m)
i=1

are linear transformations of ¥ (n, q). Clearly, such an operation depends on its i-th
variable if and only if A4;520, and is surjective if and only if ¥V (n, ) is spanned by
its subspaces Im 4;, i=1, ..., m. The set of all linear operations over V(n, g) will
be denoted by ACL(n, q); and as usual AGL(n, q) resp. GL(n, q) denote the set of
all linear permutations resp. the set of all linear permutations fixing the zero vector
0cV(n, q). .

Let us denote by &, (n=1) the alternating group of degree n. It is well known
(see e.g. [3]) that GL(4, 2)== &/, and thus GL(4, 2) contains subgroups isomorphic
to ;.

We need the following results.

Proposition 1 ([3], [4]). If G is a subgroup of GL(4,2) and G, then
G is doubly transitive on V(4,2)\ {0}, moreover, for any two triples uy, u,, uy and
vy, Us, T3 Of linearly independent vectors in V(4,2) there is exactly one permutation
A€G such that w;A=v,, i=1,2,3. Consequently, if T is the group of ail iranslations
on V(4,2) then Gb<T is a triply transitive proper subgroup of AGL(4,2).

- Consider the elements of GL(4, 2) as 4 X4 matrices over GF(2) in a fixed basis
of V(4,2). Let G be a subgroup of GL(4, 2) with G=«,. Consider the subgroup
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G* of GL(4,2), given by G*={A*| A€G} where A* is the transpose of 4. Then
clearly G*=./,. Combining this fact with Proposition 1 we immediately get the
following statement.

Proposition 2. Let G be a subgroup of GL(4;2) with G=sf,, and consider
the elements of GL(4, 2) as 4 X 4 matrices over GF(2) in a fixed basis of V (4, 2). Then
Jor any numbers 1=i,<i,<i;=4 and for any lirearly independent 4-dimensional
row (column) vectors u,u;,,u;, over GF(2) there is exactly one element ACG
such that the i-th row (column) of A coincides with u; for i=iy, i,, is.

Theorem A (CameronN and Kantor [1]). If H is a triply transitive proper
subgroup of AGL(n,2) then n=4 and H is o ><T in AGL(4,2). Moreover, if G
is a doubly transitive proper subgroup of GL(n,2) (on V(n, 2)\ {0}) then n=4 and
G is o/, in GL(4,?2).

Theorem B (SzaB0 and Szenorel [9]). If [V(n, 9)|=3  then (AGL(n, g)U
U{f H=ACL(n, q) for every essential operation f€ ACL(n, q).

Theorem C (SCHOFIELD [7]). If M is a finite set, |M|=4, G is a triply
transitive permutation group on M and f€O,, is an essential operation, then cither
(GU{f =0, or |M|=2" for some n=2 and {GU{f})SACL(n,2).

3. Leminas

In this section we give some preparatory lemmas.

Lemma 3 (ScHoreLp [7)). If H is a triply transitive permutation group and
S is an essential operation on an at least four element finite set M then (HU{f})
contains all constant operctions and an operation taking on m wvalues for some m
with 2=m<|M]|. :

From now on in this section let G' denote a subgroup of GL(4, 2) isomorphic
to &/, and let 4, 4,, A, be unary linear operations on ¥ (4, 2) fixing the zero vector
0. For any unary linear operation X fixing 0, the symbol G(X) denotes the set of
all unary linear operations generated by GU{X}.

Lemma 4. If Im A%V (4,2), thenthereisa B in G such that Im BA=Im 4
and (BA)*=BA.

Proof. Let dim (Im A)=n(=3) and let u, ..., u, be a basis of Im 4. Choose
clements 2y, ...,9,€V(4,2) such that v, A=uw, i=I,...,n It is easy to see that
vy, ..., ¥, are linearly independent, and therefore, by Proposition 1, there is 2 BEG
such that u;B=v; (i=1, ..., n). Then uy;BA=u; (i=1, ..., n) showing that Im BA=
=Im A and (BA)*=BA.
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Lemma 5. Suppose A*=A, Im-A#V(4,2), and let U be a proper subspace
of Im A with {U|=2. Then there isa BE€G(A) such that Im BA=U and (BA):=
=BA.

Proof. First consider the case when dim(Im A)=3 and dim U=2. Let
Uy, Us, Us, Uy be a basis of V'(4, 2) such that u,, u, and u,, u,, ug are bases of U and
Im A, respectively, and u,€Ker A. By Proposition 1, there is a- C¢G such that
1, C=u, u,C=u, and u3C=u,. Then wehave u, ACA=u,, u, ACA=u,, uACA=
=0 and u,ACA=0. Therefore if AC=B then Im BA=U and (BA)?=BA.

Now suppose that dim (Im 4)=2 and dim U=1. Choose a basis u,, us, 1y, u,
of V(4,2) such that u; and u,, u, are bases of U and Im 4, respectively, and
ug, us€Ker 4. Again by Proposition 1, there is a C€G such that #,C=wu, and
u;C=uz;. Now if B=AC then we have Im BA=U and (BA)?*=BA.

Finally the statement in the case dim (Im 4)=3 and dim U=1 follows from
the previous two cases.

Lemma 6. If ImA#V(4,2), and U isa subspace of V(4,2) such that
dim U=dim (Ker A) then thereisa BE€G such that Im BA=Im A and Ker BA=U.

Proof. Let u,,...,u, and v, ...,v, be bases of U and Ker 4, respectively.
Since 1=n=3, by Proposition 1 there is a B¢G such that u,B=v;, i=1, ..., n.
Then Im BA=Im A and Ker BA=U.

Lemma 7. Suppose that ImA,;,Im 4,V (4,2), and 1Im A, S Im 4,,
Im A, EIm A,. Then there are B,€G(A,) and B,€ G(A,) such that Im(B; A, + B, A,)=
=Im Al +Im A2 . A

Proof. Let U, SIm 4, and U,EIm A4, be subspaces such that U, NU,= {0} .
and U,+U,=Im 4;+Im A;,. Then applying Lemmas 4 and 5 we get C,€G(4,)
and C,6G(4,) such that ImC;4;=U; and (C;4)*=C;4;, i=1,2. Since
U,NU,={0}, we have dim U,+dim U,=4. Therefore dim (Ker C, 4;)=dim U,.
Now, by Lemma 6, thereisa D€G suchthat Im D,C;4,=U, and Ker D,C, 4,2
2U,. If we choose B,=D,C; and B,=C,, then we have Im (B, A4;+B,4,)=
=Uy+U;=Im 4, +Im 4,. Indeed, it follows that B,A4,B;4,=0 and (B,A4,)’=
=B, A,. Therefore, if E is the identity permutation, then we have '

(E—B;4:)(ByA,+ByA;) = By Ay and By A5(By4,+By4;) = By A,.
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4. Main theorem

Here we formulate and prove our main theorem.

Theorem 8. If M is a finite set with |M|=4, H is a triply transitive per-
mutation group on M and f€O,, is an essential operation, then either (HU{f})=
=0y, or |M|=2" for some n=2 and (HU{f})=ACL(n,2).

Proof. Let M, Hand f satisfy the assumptions of the theorem. If (HU {f})
#0,, then, by Theorem C, we have that |M|=2" for some n=2 and (HU{f})<
CACL(n,2). We have to show that the latter inclusion is actually an equality.
Let H denote the group of all permutations belonging to (HU{f}).

- If H=AGL(n,2), then by Theorem B we have (HU{f})=ACL(n,2). Sup-
pose that H is a proper subgroup of AGL(n, 2) . Then applying Theorem A we get
that n=4, and if G denotes the subgroup of H containing all permutations of H
fixing the zero vector then Gz==.f,.

Let s be the minimum of the arities of essential operations belonging to (HU {f'})
and let g be an s-ary essential operation in (HU{f}). Since H is transitive, we can

suppose that g(0, ...,0)=0 and thus g has the form 2 x;A;,  We show that
s=2. Suppose s=3. If for some j€{l, ...,s} there is a k¢ {1 - SN\{j} such
that Im 4;SIm 4, then g(xy, ..., X3-1,0, X441, ..., X9 is an (s— 1)-ary essential

operation and it belongs to (HU{f}) by Lemma 3. This contradicts the assumption
on s. Hence we have that Im 4;, Im 4,V (4,2), and Im 4, £Im 4, and Im 4, &
%Im 4,. Then Lemma 7 yields a procedure for constructing an (s—1)-ary essential
operation, a contradiction. Hence s=2, and g(x, x,)=x,4;+x54,.

First consider the case when Im A4,=V(4,2) (the case Im 4,=V(4,2) can
be handled similarly). Then x;+x,dy=x,A; 4, +x, 4,6 (HU{f}). Applying
Lemmas 4, 5 and Lemma 3, one can easily show that there is a unary operation
Be(HU{f}) fixing O such that dim (Im B)=1, B2?=B and x,+x,BE(HU{f}).
Choose a basis u, ..., 1, of V(4,2) such that u, and u,, u,, u, are bases of Im B
and Ker B respectively. Let C€G be such that u; +u,C, u,, 43, 4, is again a basis
of V'(4,2), and let E denote the identity permutation. Then w,(E+BC)=u,+u,C
and uw(E+BC)=u;, i=2,3,4, implying that E+BC is a permutation, and thus
E+BCeG. Hence for E, E+BC¢G we have y;E=u(E+BC), i=2,3,4. There-
fore by Proposition 1 it follows that E=E+BC implying BC=0, a contradiction.

Finally consider the case when Im 4,, Im 4,V (4,2). Then Lemma 7 yields
a procedure for constructing a binary operation x; B, +x, B,€ (HU {f}) such that
Im(B,+B,)=V(4,2). Then B;+B,¢G and the operation h(x;, x,)=
=(x; B, +x,B,)(B,+B,)~! is idempotent. Consider the operations hy(x;, xp)=
=h(xy, xp) and h,(x;, x5)=h,_1(h(x;, x3), xz) if n=1. It is easy to check that
there is a t=0 such that for h,(x, x;)=x,C;+x,C, we have either C}=C, or-
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C2=0, C,#0. Since h, is idempotent, we have that h(x;, x;)=x,Ci+x,(E—C}).
If C?=0, then (E—C,)?=E, which shows that Im(E—C;)=V(4,2), and this
case has been settled.

Now suppose that C3=C, and consider the operation x;C;+x,(E—Cy). Let
dim (Im C;)=k and dim (Ker C,)=/. Then clearly 1=k,/ and k+/=4. Choose
a basis u,,...,u, of V(4,2) such that u,...,u, and uy,,...,u, are bases of
Im C, and Ker C,. From now on consider the unary linear operations fixing 0 as
4% 4 matrix over GF(2) in the basis u,, ..., u,. Let D be a permutation belonging
to GL(4, 2)\G. Then, by Proposition 2, there are D,, D,€G such that the first
k columns of D and D, are equal, and the last / columns of D and D, are equal.
Then it is easy to check that D=D,C,+D,(E—C,) and thus D€G, a contradic-
tion. This completes the proof.

5. Application

An algebra (M; F) is said to be homogeneous if every permutation on M is an
automorphism of (M; F). In [2] B. CsAKANY proved that almost all at least two
element nontrivial finite algebras are functionally complete. The exceptional algebras
are equivalent to one of the following six algebras:

6)) o, 1};s)  where s(x) =x+1 (mod?2),

) ({0, 1};m) where m(x,,z) = x+y+z (mod2),
3) - o, 1} 6 where t(x, y,z) = x+y+z+1 (mod 2),
@) " ({0, 1};d)  where d(x,y,z)= xy+xz+yz (mod2),
Q) ‘{0, 1,2}; 1y where. I(x,y,2) = x—y+z (mod3),

©) (0, 1325 m).

-The result above was improved in [8] as follows: An at least four element non-
trivial finite algebra with triply transitive automorphism group is either functionally
complete or equivalent to the algebra ({0, 1}"; m) for some n=2. :

A relation algebra (M; R) s said to be relationally complete if [RU{{a}lac M}]=
=R, As an analogue of Csdkany’s result R. POscHEL [6] proved the following:
Almost all at least two element finite nontrivial homogeneous relation algebras are
relationally complete. The exceptional relation algebras are equivalent to one of the
following five relation algebras:

a - - {0, 1},
@) {o, 1} m),
3y {0, 115 1,
@ - o, 1,251,

(%) ' {0, 13 m*).
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Now we apply Theorem 9 to get the analogue of the result in [8] formulated
above for relation algebras, which is an improvement of Pdschel’s result.

Theorem 9. An at least four element nontrivial finite relation algebra with
triply transitive automorphism group is either relationally complete or equivalent to
the relation algebra {{0, 1}"; m") for some n=2.

Proof. Let {M; R) be a relation algebra satisfying the assumptions of the
theorem. If (M; R) is not relationally complete, then

Ry #= [RU{{a}|a€M}] = Inv Pol (RU{{a} | ac M }) =
= Inv (Pol RNPol ({{a} | ac M})) = Inv (/N Pol R)

where clearly I=Pol ({{a} | a€MY}) is the set of all idempotent operations in O,,.
It follows that IMNPol R contains a nontrivial operation f which is evidently
essential.

Now Aut (M; R)U{f}SPol R and Pol R+=0,,. Therefore, by Theorem 9,
we have that there is an n=2 such that |4|=2" and Pol R=AGL(n,2). It is
well-known (cf. e.g. [5]) that Inv(AGL(n,2))=[m']. Hence InvPol R=[m],
which was to be proved.
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