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Triply transitive algebras 

LÁSZLÓ SZABÓ 

To the memory of András Huhn 

In [7] P- SCHOFIELD proved that if G is a triply transitive permutation group 
on an at least four element finite set M and / is a surjective operation on M depending 
on at least two variables then the clone F generated by G U { / } either equals the 
set of all operations on M or FQ L where L is a maximal clone of quasilinear oper-
ations on M. The aim of this paper is to improve this result by proving that the 
inclusion FQ L is actually an equality (Theorem 8). 

In [6] R . PÖSCHEL described all finite relationally incomplete homogeneous 
relation algebras. As an application of our theorem we also improve this result by 
giving all at least four element finite relationally incomplete relation algebras having 
triply transitive automorphism groups (Theorem 9). 

2. Preliminaries 

Let M be a nonempty set. The set of all n-ary operations on M will be denoted 
by (n^ l ) , and we set 0M= U An operation f£0M is idempotent 

nsl 
if for every a£M we have f(a,...,a)=a; f is nontrivial if it is not a projection. 
If / depends on at least two variables and takes on all values from M then it is 
called essential. 

For / i s l the set of /i-ary relations on M (i.e. subsets of Mh) will be denoted 
by R<$; furthermore we set RM— [J An operation / € 0 $ is said to preserve 

hSl 
a relation if Q is a subalgebra of the /i-th direct power of the algebra {M; f ) . 
For R^RM the symbol Pol R denotes the set of all operations from OM preserving 
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each relation in R, and for FQ 0M the symbol Inv F denotes the set of all relations 
from RM preserved by each operation in F. The correspondences J?—Pol R and 
F—Inv F establish a Galois connection between the subsets of RM and the subsets 
of OM. For F g O M and RQRM we set <F>=PolInvF and [J?] = Inv Pol R. 

By a clone of operations on M we mean a subset F g 0M which contains the 
projections and is closed with respect to superposition. It is known (cf. e.g. [5]) 
that, for finite M, a subset FQOM is a clone if and only if F=(F) . By a clone of 
relations we mean a subset RQR M satisfying the equality R=[/?]. We remark 
that for finite M there exists also an internal definition for [/?], namely [i?] is the set 
of all relations which are definable by a first order formula in which only 3, A, = , 
and relations (i.e. predicates) of R occur. For more details cf. [5]. 

By a relation algebra on the set M we mean a pair (M; R) where R £ RJV. We 
say that (M; R) is nontrivial if Pol R ^ OM . A permutation it on M is an auto-
morphism of ( M ; R ) if and QTI~1^Q for every Q£R. The symbol 
Aut (M; R) denotes the group of all automorphisms of (M; R). 

If / is an n-ary operation on M then /* denotes the (n-fl)-ary relation 
{{ax, ..., an, f(ax, ..., a„)) \ ay, ..., a,£M}- Two relation algebras (M: RX) and 
(M; R2) are equivalent if [J?1]=[i?2]-

If and q is a prime power then V(n, q) denotes the /i-dimensional vector 
space over the field GF(q). In this note by a linear operation over V(n, q) we mean 

m 
an operation of the form ^ w h e r e v£V(n,q) and the At (1 si^m) 

i=l 
are linear transformations of V(n, q). Clearly, such an operation depends on its z'-th 
variable if and only if A^0, and is surjective if and only if V(n, q) is spanned by 
its subspaces Im Ah ¿=1, ..., m. The set of all linear operations over V(n, q) will 
be denoted by ACL(n, q); and as usual AGL(n, q) resp. GL(n, q) denote the set of 
all linear permutations resp. the set of all linear permutations fixing the zero vector 
0€V(n,q). 

Let us denote by sf„ (n^l) the alternating group of degree n. It is well known 
(see e.g. [3]) that GL(4, 2)^sfs, and thus GL(4, 2) contains subgroups isomorphic 
to s/7 . 

We need the following results. 

P ropos i t i on 1 ([3], [4]). If G is a subgroup of GL(4,2) and then 
G is doubly transitive on V(4, 2) \{0}, moreover, for any two triples t/,, w2, u3 and 
vx, Vo, v3 of linearly independent vectors in V(4, 2) there is exactly one permutation 
A£G such that uiA=vi, i= 1,2,3. Consequently, if T is the group of all translations 
on V(4, 2) then GxT is a triply transitive proper subgroup of AGL(4,2). 

Consider the elements of GL(4,2) as 4 x 4 matrices over GF(2) in a fixed basis 
of V(4, 2). Let G be a subgroup of GL(4,2) with G = s/7. Consider the subgroup 
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G* of CI.(4,2), given by G* = {A* | A€G) where A* is the transpose of A. Then 
clearly G* = J#7. Combining this fact with Proposition 1 we immediately get the 
following statement. 

P r o p o s i t i o n 2. Let G be a subgroup of GL(4, 2) with G = and consider 
the elements of GL( 4, 2) as 4X4 matrices over GF{ 2) in a fixed basis of V(4, 2). Then 

for any numbers 1 and for any linearly independent 4-dimensional 
row (column) vectors uiv ¡/,„, uti over GF(2) there is exactly one element A£G 
such that the i-th row (column) of A coincides with Ui for i=, i2, i3. 

Theorem A (CAMERON and KANTOR [1]). If H is a triply transitive proper 
subgroup of AGL(n,2) then n=4 and H is jtf^xT in AGL{4,2). Moreover, if G 
is a doubly transitive proper subgroup of GL(n,2) (on V(n, 2)\{0}J then n=4 and 
G is in GL(4, 2). 

Theorem B (SZABO and SZENDREI [9]). If \V{n,q)\^3 then (AGL(n, q)U 
U{f}) — ACL{n, q) for every essential operation f£ACL(n, q). 

Theorem C (SCHOFIELD [7]). If M is a finite set, \M\^4, G is a triply 
transitive permutation group on M and fd 0M is an essential operation, then either 
(GU { f } ) — 0M or \M\=2n for some n^2 and (GU{f})^ACL(n,2). 

3. Lemmas 

In this section we give some preparatory lemmas. 

Lemma 3 (SCHOFIELD [7]). If H is a triply transitive permutation group and 
f is an essential operation on an at least four element finite set M then (HU {/}) 
contains all constant operations and an operation taking on m values for some m 
with 2-^ni<\M\. , 

From now on in this section let G denote a subgroup of GL(4,2) isomorphic 
to and let A, Ax, A2 be unary linear operations on V(4, 2) fixing the zero vector 
0. For any unary linear operation X fixing 0, the symbol G(X) denotes the set of 
all unary linear operations generated by G U {A"}. 

Lemma 4. If Im A^ V(4, 2), then there is a B in G such that Im BA=\m A 
and (BA)2=BA. 

Proof . Let dim (Im A) = n (^3) and let ut, ..., un be a basis of Im A. Choose 
elements vx,...,v„£V(4,2) such that viA = ui, /=1 , . . . , « . It is easy to see that 
vx,..., v„ are linearly independent, and therefore, by Proposition 1, there is a B£G 
such that UiB—Vi (/=1, ...,«). Then uiBA=ui (i— 1, ..., n) showing that Im BA = 
=Im A and (BA)2=BA. 



224 L. Szabó 

L e m m a 5. Suppose A2=A, Im A^V(4, 2), and let U be a proper subspace 
of Im A with | (7|S2. Then there is a B£G(A) such that Im BA = U and (BA)2= 
=BA. 

Proo f . First consider the case when dim (Im A)=3 and dim U=2. Let 
Wj, w2, u3, m4 be a basis of V(4, 2) such that ux, u2 and ux,u2, u3 are bases of U and 
Im A, respectively, and w4£Ker A. By Proposition 1, there is a CÇ.G such that 
uXC=ux, u2C=u2 and u3C=ut. Then we have uXACA=u1, u2ACA=u2, u3ACA = 
= 0 and U4ACA=0. Therefore if AC=B then Im BA = U and (BA)2=BA. 

Now suppose that dim (Im A)=2 and dim t / = l . Choose a basis ux,u2, u3, w4 

of V(4, 2) such that ux and ux,u2 are bases of U and Im A, respectively, and 
«3, w4ÇKer A. Again by Proposition 1, there is a CÇ.G such that uxC=ux and 
u2C=u3. Now if B=AC then we have Im BA = U and (BA)2=BA. 

Finally the statement in the case dim (Im A)=3 and dim U= 1 follows from 
the previous two cases. 

L e m m a 6. If Im A ^ V(4,2), and U is a subspace of V(4, 2) such that 
dim i /=d im (Ker A) then there is a BÇ.G such that Im BA=lm A and Ker BA = U. 

Proo f . Let ux,...,un and vx,...,v„ be bases of U and Ker A, respectively. 
Since by Proposition 1 there is a B£G such that ulB=vi, i=], ...,«. 
Then Im BA=lm A and Ker BA=U. 

L e m m a 7. Suppose that Im Ax, Im A2^V(4, 2), and Im Ax Çg Im 
Im Az^Im Ax. Then there are Bx£G(At) andB2£G(A2) such that Im (B X A X +B 2 A 2 ) = 
=lmAx+lmA2. 

P r o o f . Let UX g Im AX and (J2 g Im A2 be subspaces such that UXC\U2 = {0} 
and Ux + U2=lm ^ j + I m A2. Then applying Lemmas 4 and 5 we get CX£G(A}) 
and C2ÇG(A2) such that IMQA—Ui and ( C ^ , ) 2 ^ ^ , , i = l , 2 . Since 
UXC\U2={0}, we have dim C^+dim t/2=s4. Therefore dim (Ker C ^ j s d i m U2. 
Now, by Lemma 6, there is a DX£G such that LM DXCXAX = UX and Ker DXCXAX^ 
i? U2. If we choose BX=DXCX and B2=C2, then we have Im (BXAX+B2A2)= 
= UX + U2=\M AX+LMA2. Indeed, it follows that B2A2BXAX=0 and (B2A2)2 = 
=B2A2. Therefore, if E is the identity permutation, then we have 

(E—B2A2)(BXAX+B2A2) = BXAX and B2A2(B1A1+B2A2) = B2A2. 



Triply transitive algebras 225 

4. Main theorem 

Here we formulate and prove our main theorem. 

T h e o r e m 8. If M is a finite set with \M\ H is a triply transitive per-
mutation group on M and f£0M is an essential operation, then either (i/U {/}) = 
= Om, or \M\=2n for some b S 2 and (H{J{f}) = ACL(n,2). 

Proof . Let M, H and / satisfy the assumptions of the theorem. If (H U { / 
9±Om then, by Theorem C, we have that | M | = 2 " for some n^2 and ( i /U { /}>g 
QACL{n, 2). We have to show that the latter inclusion is actually an equality. 
Let H denote the group of all permutations belonging to (HU {/}). 

If H=AGL(n, 2), then by Theorem B we have (HU{f})=ACL(n,2). Sup-
pose that H is a proper subgroup of AGL{n, 2) . Then applying Theorem A we get 
that n=4, and if G denotes the subgroup of H containing all permutations of H 
fixing the zero vector then G = si,. 

Let s be the minimum of the arities of essential operations belonging to (HU { /} ) 
and let g be an s-ary essential operation in (HU {/}). Since H is transitive, we can 

s 
suppose that g(0, . . . ,0 )=0 and thus g has the form 21 We show that 

s=2. Suppose ,vs3. If for some ./€ {1, ..., there is a k£ {I, ..., s} \{y } such 
that lmAjQlmAk then g(xx, ..., xk-x, 0, xk+x, ..., xs) is an ( j - l ) - a r y essential 
operation and it belongs to (HU { /}) by Lemma 3. This contradicts the assumption 
on s. Hence we have that Im Ax, Im A2T6V(4, 2), and Im A^^zlm A2 and Im A2% 
^ I m Aj. Then Lemma 7 yields a procedure for constructing an (s— l)-ary essential 
operation, a contradiction. Hence s=2, and g(xx, x2)=xxAJ+x2As. 

First consider the case when lmAx—V(4,2) (the case Im A2=V(4, 2) can 
be handled similarly). Then xx+x2A2 =xxAx

1Ax+x2A2£(H(J {/}). Applying 
Lemmas 4, 5 and Lemma 3, one can easily show that there is a unary operation 
B£(HU{f}) fixing 0 such that dim (ImB) = l, B2=B and xx+x2B£(HU{f}). 
Choose a basis ux, ..., w4 of V(4,2) such that ux and u2, w3, M4 are bases of Im B 
and Ker B respectively. Let C£G be such that ux +uxC, u2, u3, u4 is again a basis 
of V(4,2), and let E denote the identity permutation. Then u1(E+BC)=u1+u1C 
and ui(E+BC) = ui, i—2, 3, 4, implying that E+BC is a permutation, and thus 
E+BCZG. Hence for E,E+BC£G we have uiE=ui(E+BC), i=2, 3,4. There-
fore by Proposition 1 it follows that E=E+BC implying BC=0, a contradiction. 

Finally consider the case when Im Ax, Im A27±V(4,2). Then Lemma 7 yields 
a procedure for constructing a binary operation xxBx+x2B2^{H\J { /} ) such that 
Im(Bj +B2) = V(4,2). Then BX+B2ZG and the operation h(xx,x2)= 
=(x1Bx+x2B2)(Bx+B2)~1 is idempotent. Consider the operations h0(xx,x2) = 
=h(xx,x2) and h„(x1, x2)^hn_1(h(xl, x2), x2) if It is easy to check that 
there is a t^O such that for ht(xx, x2)—xxCx+x2C2 we have either CX=CX or 

15 
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CL=0, QT^O. Since h, is idempotent, we have that h,(xx, X2)=zX1CX+X2(E—C,). 
If C\=0, then (E-CX)2=E, which shows that Im (E-CX) = V(4, 2), and this 
case has been settled. 

Now suppose that C 2 = Q and consider the operation A^Q +X2(E—CX). Let 
dim (Im Cx)=k and dim (Ker C j )= / . Then clearly 1 S k , l and k+l=4. Choose 
a basis M1,...,M4 of K(4, 2) such that ux, ...,uk and uk+i, ..., H4 are bases of 
Im Cx and Ker Cx. From now on consider the unary linear operations fixing 0 as 
4 x 4 matrix over G F (2) in the basis ux, ..., w4. Let D be a permutation belonging 
to GL(4, 2)\G. Then, by Proposition 2, there are Dx, D2€G such that the first 
k columns of D and Dx are equal, and the last / columns of D and D2 are equal. 
Then it is easy to check that D=DXCX+D2(E-CX) and thus D£G, a contradic-
tion. This completes the proof. 

An algebra ( M ; F) is said to be homogeneous if every permutation on M is an 
automorphism of ( M ; F ) . In [2] B. CSÁKÁNY proved that almost all at least two 
element nontrivial finite algebras are functionally complete. The exceptional algebras 
are equivalent to one of the following six algebras: 

The result above was improved in [8] as follows: An at least four element non-
trivial finite algebra with triply transitive automorphism group is either functionally 
complete or equivalent to the algebra ({0,1}"; m) for some wS2. 

A relation algebra (M; R) is said to be relationally complete if [J? U {{a}|a£M}] = 
= RM . As an analogue of Csakany's result R . POSCHEL [6] proved the following: 
Almost all at least two element finite nontrivial homogeneous relation algebras are 
relationally complete. The exceptional relation algebras are equivalent to one of the 
following five relation algebras: 

5. Application 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

<{0,1}; s) where 5(x) = x + l (mod2), 
({0, 1}; m) where m (x, y, z) = x + y + z (mod 2), 
({0, 1}; t> where t(x, z) = x+y+z+1 (mod 2), 
({0,1}; d) where d(x, y, z) = xy+xz+yz (mod 2), 
'({0, 1, 2}; /> where l.(x, y, z) = x-y + z (mod 3), 
({0, l}2; m). . 

(10 
(2') 

(3 ' ) 

( 4 0 

(5 ' ) 

<{0, 1}; s->, 
<{0,l}; m->, 

<{o, i}; f ) , 
<{0, l,2};/->, 
<{0, i}2;m->. 
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Now we apply Theorem 9 to get the analogue of the result in [8] formulated 
above for relation algebras, which is an improvement of Poschel's result. 

Theorem 9. An at least four element nontrivial finite relation algebra with 
triply transitive automorphism group is either relationally complete or equivalent to 
the relation algebra ({0, 1}"; m') for some n^2. 

Proof . Let (M;R) be a relation algebra satisfying the assumptions of the 
theorem. If <M; R) is not relationally complete, then 

Rm * [*U{{a}|a€M}] = Inv Pol (i*U{{a} | a€M}) = 

= Inv (Pol i?nPol ({{a} | a€M})) = Inv (/Pi Pol R) 
where clearly / = Pol ({{a} | a€M}) is the set of all idempotent operations in 0M. 
It follows that I f ) Pol R contains a nontrivial operation / which is evidently 
essential. 

Now Aut (M; J ? )U{/}^PoI R and Pol R^OM. Therefore, by Theorem 9, 
we have that there is an n i 2 such that \A\=2" and Pol R—AGL(n, 2). It is 
well-known (cf. e.g. [5]) that Inv (AGL(n, 2))=[m']. Hence Inv Pol 
which was to be proved. 
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