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A regular semigroup is called E-unitary if its set of idempotents is a unitary
subset. One can easily show that E-unitary regular semigroups are necessarily
orthodox. '

In 1974 McALISTER [3], [6] proved that every inverse semigroup is an idempotent
separating homomorphic image of an E-unitary inverse semigroup and described
E-unitary inverse semigroups by means of groups, partially ordered sets and semi-
lattices. This structure theorem is referred to as the ““P-theorem”. By making use of
McAlister’s P-theorem O’CARROLL [8] proved that every E-unitary inverse semi-
group can be embedded into a semidirect product of a semilattice by a group.

These results have opened up new perspectives not only in the theory of inverse
semigroups but in the theory of regular semigroups. McAlister’s first result was
generalized for orthodox semigroups independently by TAkizawa [15] and the
author [10]. TAKIZAWA [14] generalized the P-theorem, too, but only for E-unitary
Z-unipotent semigroups. This structure theorem was applied in [12] to prove the
analogue of O’Carroll’s embedding theorem for E-unitary £-unipotent semigroups.

The aim of this paper is to.present a generalization of the P-theorem for E-uni-
tary regular semigroups.. It has to be pointed out in advance that our main result
which is proved in Sections 2 and 3 cannot be considered as a structure theorem in
the sense that E-unitary regular semigroups are constructed in it from “simpler”
objects. Indeed, it is doubtful that strictly combinatorial semigroups which ‘play* an
important role in the construction are “simpler’” than E-unitary regular semigroups.
However, the strictly combinatorial partial semigroup introduced in Section 2 :is
applied in a forthcoming paper [13] to prove that every E-unitary regular semigroup
with regular band of idempotents can. be embedded into a semidirect. product of
a band by a group. ' o
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MARGoL1s and PIN [4] generalized McAlister’s P-theorem in another direction,
namely for E-unitary not necessarily regular semigroups with commuting idem-
potents. It turns out that in the special case of E-unitary regular semigroups with
commuting idempotents, that is, in the case of E-unitary inverse semigroups the
main theorem of [4] asserts almost the same result as a part of our main theorem.
In Section 4 we deduce a characterization of E-unitary regular semigroups which
is similar to that formulated in the main theorem of [4]. ’

1. Preliminaries

Let S be a semigroup. The set of idempotents in S is denoted by E and the set
of inverses of an element s in S by Vs(s). For the least group congruence on S we
use the notation og and the factor semigroup S/os will be denoted by Gg. If it causes
no confusion we omit S from Es, V(s) and a5.

A regular semigroup S is called E-unitary if E is a umtary subset in S. It is easy
to see that E-unitary regular semigroups are necessarily orthodox.

Result 1.1 (Howit and LALLEMENT [3] and SAITd [9]) For a regular semigroup

S, the following conditions are equivalent:” ' :
() S is E-unitary, '

(ii) E is a left unitary subset in S,

(iil) E is a right unitary subset in S,

(iv) E constitutes a o-class.

Let ¢: S—T be a homomorphism where' S and" T are regular semigroups.
We denote by ker ¢ the congruence on S induced by ¢ and by Ker ¢ the union of
1dempotent ker p-classes. If » is a congruence on S then 1nstead of Ker x we
simply write Kerx.

" Now let S be an orthodox senugroup w1th 0 Assume that S is categoncal at
0. It is obvious that the least inverse sermgroup congruence 'y on S is O-restricted
and S|y is also categorical at 0. Hence it follows by Theorem 7.66 [1] that there
exists a least O-restricted congruence B on S/y such that. (S/y)/ﬁ isa pnmltlve inverse

semigroup..It is easily seen that ker % ﬁh rs the least O-restncted pnmltlve inverse
semigroup congruence on. S Wthh will be denoted by gs.0r, simply, by ¢.

Proposition 1.2. Let- S=S° be- an orthodox semigroup. which is categorrcal
‘at 0. Then the following conditions are equwalent for Sy teS i
@G)s, t#0 and sot; ¢ 5o et
(ii) set’ € EN\O for some ecE and IEV(t),
(iii) s’et€ ENO for some ecE and s'cV(s);
(iv) se=f1+=0 for some e, f€E\Q;
(v) EsENEtE={0}.
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Proof. One can prove the equivalence of conditions (ii)—(v) in the same
fashion as the equivalence of conditions (2), (3), (6) and (8) in Lemma 1.3 [14].
One needs only to investigate whether products are O or not. Let us see, for example,
the proof of the implication (v)=(ii). Suppose that esf=gth=0 for some ¢, f, g, h€E,
and let s'€V(s), t’€V(t). Then (s'es)f€¢E and s((ses)f)t’=(ss")g(tht’)€E. 1f it
were 0 then

0 =e(ss)g(tht)th = e(ss) gt(t'th): = e(ss') gth =
= e(ss)esf = (ess")*sf = (ess") sf = esf

would follow, a contradiction. Thus s((s'es)f)1’€ ENQ.

Similarly to the proof of Lemma 1.3 [14], one can check that the relation x con-
sisting of the pair (0, 0) and the pairs (s, ¢) satisfying (i1)—(v) is a O-restricted con-
gruence on S. We intend to show that »=g. First observe that S/x is a primitive
inverse semigroup. Indeed, if e, f€E with ef0 then ef=eef=eff¢ EeENEfE
and hence exf. Now let 7 be any O-restricted primitive inverse semigroup congruence
on S and let e, f€E with se=ft>0. Then st-er=fr-tr0 in the primitive in-
verse semigroup S/t. Hence we infer that (st)~!-st=er=fr=tr-(tr)~1 which
implies st=st-et=fr-tt=tr. Thus %S, completing the proof of the fact that
x=g.

A regular semigroup S with 0 is called E\Q-unitary if E\Q0 is a unitary subset
in S. Let S be an E\O-unitary regular semigroup with 0. If e ENO and €€V (e)
then ee’€ ENQO. Since ENO is a left unitary subset in § wz deduce that e EE\O
Thus S is orthodox.

Proposition 1.3. Every E\O-unitarj} regular semigroup with 0 is orthodox.

Thus there exists a least O-restricted primitive inverse semigroup congruence
on every E\O-unitary regular semigroup being categorical at 0. The analogue of
Result 1.1 holds:

Proposition 1.4: Let S=S8° be an orthodox semigroup which is categorical
at Q. Then the following conditions are equivalent:
@) .S is ENOQ-unitary; :
(ii) ENO is a left unitary subset in S
(iii) EN\O is a right unitary subset in S;
@iv) Ker e =E. '

Proof. The equwalence of conditions (ii) and (iv) is easily verified by makmg
use of the equivalence of (i) and (m) (iv) in Proposition 1.2, The equivalence
(iii)<=(iv) follows by symmetry, and (i) is equivalent to (iii) and (ii) by definition.
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For an E\Q-unitary regular semigroup S which is categorical at 0, the con-
gruence g can be described as follows:

Proposition 1.5. Let S=S8° be an b\O unitary regular semigroup which

is categortcal at Q. Then
g = {(s, N): s’€ ENO for some t'¢V()}U{(O, 0)}.

Proof. Denote the relation on the right hand side of the equality by . It is
clear by Proposition 1.2 that » < . Suppose now that s, 10 and sgfin S. Then
there exist e, f€E with es=1f>0. This implies est’=tft’¢ E\Q. Since S is E\0-
unitary we obtain that st’€ ENO, that is, sxtz. Thus the reverse inclusion o9& x
also holds.

In Sections 2, 3 and 4 we will need the following facts:

Lemma 1.6. Let §=S° be an orthodox semigroup which is categorical at 0.
If there exists a O-restricted homomorphism ¢ of S onto a primitive inverse semi-

group such that Ker 9 CE then S is ENQ-unitary and ker ¢p=g.

Proof. Since ker ¢ is a O-restricted primitive inverse semigroup congruence we
have ¢Zker ¢. Therefore Ker oSKer 9 S E. However, ESKer g trivially holds
whencé we infer Ker o=Ker ¢=E. Then, by Proposition 1.4, it follows that S
is EN(O-unitary. Let s, 1€ S\O be such that sp=1¢ andlet '€V (z). Then (st")p=
=s¢ - (to)"'=t@ - (t9) '€ Ej, which implies st’€ Eg=E. Thus, by Proposmon 1.5,
we have sof, completing the proof of the inclusion ker ¢ € g.

. In order to simplify the notations later on, we will denote by B(/) the s#-trivial
Brandt semigroup (/X7)U0O with multiplication

if j=k
otherwise

il
itk n = {0
and
, 0li,j]=[i,jl0=0-0=0. .
It is well known that every J-trivial Brandt semigroup is isomorphic to B(I) for
some set A

Lemma 1.7. Let S=S° be an E\O-unitary regular semigroup which is cate-
gorical at O and for which S/o is an #-trivial Brandt semigroup. Then the only
O-restricted primitive inverse semigroup congruence on 'S is .

Proof. A O-restricted primitive inverse semigroup congruence prdper]y con-
taining @ cannot exist as J#-trivial Brandt semigroups are congruence-free.

CIf S'isa semlgroup with O then the partlal groupoid obtained from S by elimi-
nating 0 and lettmg products be undefined if they are equal to 0 in S will be denoted
by S. -
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Given a partial groupoid (X; -), let us adjoin a new symbol 0(¢X) to X and
extend the multiplication to XUO in such a way that x-0=0-x=0-0=0 for
every x€X and x-y=0 provided x,ycX and x-.y is not defined in X. The
groupoid obtained in this fashion is denoted by X. If X is a semigroup then we
term X a partial semigroup.

The basic concepts of semigroup theory such as left, right ideals, Green’s rela-
tions, inverse of an element, regularity, ailtomorphisms can be defined in a partial
semigroup X in the same way as in X. For example, a non-empty subset RS X is
said to be a right ideal in X if {r-x: r€R, x€X and r-x is defined}SR. Clearly,
Ris a right ideal in X if and only if RUO is a non-trivial right ideal in X. One can
easily see that, for example, the set of all idempotent elements in X is Ey\0, Green’s
relation # on X is just the restriction of the Z2-relation of X to X, the set of inverses
of an element x in X isequal to ¥ 3(x) and o: X—X is an automorphism of X if and
only if a: X—~X defined by 0x=0 and xa=xo (x€X) is an automorphism.
Therefore it is not ambiguous to write # or ¥ (x) without indicating whether they
are considered on X or on X. If we want to emphasize that the set of inverses is
considered in X then we write Vy(x). Moreover, we will use the notation Ey for
the set of all idempotent elements in a subset ¥ of X and V4 (Y) or, simply, V(Y)
for U {Vx(a): acY}.

Let G be a group and S a full or partial semigroup. We say that G acts on S if
a homomorphism ¢: G—(Aut S)? is given where (Aut S)? is the dual of the auto-
‘morphism group of §. For every s€S and g€G, we denote s(gp) by gs.

Let G be a group and S a semigroup with 0 on which G acts. Define a multipli-
cation on the set ((S\0)XG)UO by

_[G-gt,gh) if s-gr=0
(s, (1, h) = {0 otherwise
and |

0'(S:g) = (S, g)o =0-0=0

for every s, t€ S\O and g, h¢G. Tt is not difficult to check that this multiplication
is associative. The semigroup obtained in this way is called the 0-semidirect product
of S by G and is denoted by Sx,G. ,

If G is a group acting on a semigroup S without 0 then (8%%,G)\0 is a semi-
group termed the semidirect product of S by- G and is denoted by SxG.

Let X be a partial semigroup and G a group acting on X. Let ¢: G—(Aut X)?
be the homomorphism defining this action. Then ¢: G—(Aut X), g(})=§(; is
a homomorphism. Since x(g@)=x(gp) for every xéX and g€G, itis not con-

fusing to denote x(g@) also by gx. By the semidirect product X*G we mean the
SN
partial semigroup X %,G.
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2. On E-unitary regular semigroups

By McAlister’s P-theorem [6], every E-unitary inverse semigroup S is iso-
morphic to a P-semigroup P(G, ¥, %) where G is a group, & is a partially ordered
set on which G acts by order automorphisms, % is an order ideal in Z such that %
is a lower semilattice and P(G, Z, %) is, actually, a well-determined subsemigroup
in the semidirect product of the “partial semilattice” Z by G. Takizawa ([14]; cf.
also [11]) generalized this result by proving that every E-unitary %-unipotent semi-
group S is isomorphic to a so-called PL-semigroup constructed in a similar way as
a P-semigroup by means of a group, an %-trivial “partial idempotent semigroup”
Z on which G acts and by means of a subband % of 2" forming an order ideal in &
with respect to the natural partial order =,. In both cases the triple (G, %, %) can
be chosen in such a way that G is isomorphic to Gg and % to E.

The proofs of McAlister’s and Takizawa’s results are based on the observation
that 2N e =1 (zis the identity relation) holds in an E-unitary inverse [#-unipotent]
semigroup (cf. [6] and [14]). Hence the elements of an E-unitary inverse [9?~umpotent]
semigroup S can be coordinatized with pairs from EgXGy.

When we intend to generalize these results for E-unitary regular semigroups
the difficulty lies in the fact that, in an arbitrary E-unitary regular semigroup S, we
have no such natural coordinatization of elements as in the case of E-unitary inverse
[Z-unipotent] semigroups. The analogue of that coordinatization would be the
injection S—Eg/RXGsXEg/¥ defined by s—(R,,so,L,). where s€V(s).
However, it seems very complicated to determine in an abstract way which triples
are coordinates of an element, how the coordinates are multiplied and what conditions
they have to satisfy in order that the groupoid defined in this way be an E-unitary
regular semigroup. Therefore we looked for another way of characterizing E-uni-
tary regular semigroups. We cannot expect to obtain a construction analogous to
P-semigroups which produced all E-unitary regular semigroups up to isomorphisms
and in which & were isomorphic to E. In finding a generalization of the P-theorem
for E-unitary regular semigroups, we tried to preserve the other main feature of
McAlister’s and Takizawa’s results, namely, we wanted to obtain an E-unitary
‘regular semigroup as a well-determined subsemigroup of a semidirect product of a
certain partial groupoid by a group. We imitate the proof of the P-theorem due to
"MUNN [7] and that of Theorem 3.1 in [14]. The new idea in our case is that the partial
groupoid & is defined on - S X Gy instead of EgXGs.

Let S be an - E-unitary regular senugroup Define a ‘partial group01d Z=
=(8XGs; o) as follows:

.(l) (s,g)o(t,h) isdefined if and only if so = g~1h,

and in thiscase (s,g)o(t,h) = (st, g).
Put #={(s, 1): s€S}
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In the sequel we prove several properties of the triple (G, &, ¥).

(1) & is an orthodox semigroup which is categorical at 0. Moreover, E;=EsXGg
and, for every (s, g)€X, we have Vo ((s, 8)={(s", &-50): €V (5}

Proof. Let (s, g), (t, h), (u, k)€Z. Itis clear by (1) that we have (s, g)o(t, h)=0
in & if and only if sog~'h. Suppose first that (s, g)o(r, k)=0 and (¢, h)o(u, k) =0.
Then so=g~'h and tc=h"k which imply that (st)c=g . Hence it follows
by (1) that ((s, g)o(t, B))o(u, k)=(st, g)o(u, k)=(stu, g)=(s, g)o(tu, H)=(s, g)o
o((t, hyo(u, k))#O. If (s, g)o(t, )=0 and (¢, h)o(u, k)0, then so#g~'h which
implies by (1) that (s, g)o((t, h)o(u, k))=(s, g)o(tu, h)=0. If (s, g)o(t, K)>0 and
(t, ho(u, k)=0, then so=g 'h and to=h~'k whence we infer that (st)o#g~ k.
Therefore ((s, g)o(t, ))o(u, k)=(st, g)o(u, k)=0. Thus we have shown that & is
a semigroup which is categorical at 0.

Let (s,2)€Z. Now we determine V,((s,g)). Making use of the fact that
s'e=(s0)"' for each s'¢V(s), one can easily check that (s’,g-s0)€V,((s, g))
for every s’€Vg(s). If (1, h)€ Vo((s, &) then (1) implies €V s(s) and, since (s, g)o
o(t, h)#0, we have so=g 1h. So it is verified that V4((s, g)) consists of those
elements indicated in the assertion. In particular, we obtain that 4 is regular.

It remains to determine E,. It is obvious that (e, g)€E, for any ecEs and
8€Gs. Assume that (e,g)€E,. Then (e, g)o(e,g)=(e,g), thatis, ec=g 1g=1
and e?=e. Clearly, E; is a band because, for every (e, g), (f, h)€E,, we have

P
Q@) (e, g)o(f, b) = {ng, 9 lothegrwise.

This implies that % is orthodox. The proof is complete.

(11) The mapping ¢: %—B(Gs) defined by (s,g8)e=Ig, g s0] and 0p=0 is
a surjective O-restricted homomorphism with Ker o SEz. Consequently, % is
ENO-unitary, ker o=g, the least O-restricted primitive inverse semigroup congruence
on & and Z/eo is an H-trivial Brandt semigroup.

Proof. Let. (s, 8), (t, DeZ. If sa=g~'h, thatis, g-se=h then

(s, @00t W)@ = (51, )9 = g, g-(s1)0] =
= [g, h-to]l =g, g-s0]-[h, h-tc] = (5, )0 - (1, h)o.

If so#g 'h, thatis, g-soe=h then

. ((5,8)0(1, W)@ = 0p = 0 = [g, g 50][h, h - to] = (s 9o -A(t, Me. »

Thus ¢ is-4 O-restricted homomorphism. It is surjective because ' G5=S/o. Since
S is F-unitary, so=1 implies s¢Eg. Therefore, by (I), Ker9 SE;. By Lemma
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1.6, this ensures that £ is E\O-unitary and ker ¢ is the least O-restricted primitive
Inverse semigroup congruence g.

(I11) % is amaximal right ideal in Z with the property that Ey is a subband in%.

Proof. It is straightforward by (1) and (2) that & is a right ideal in Z and
E, is a subband in #. Suppose now that %, is a right ideal in  such that Ey isa
subband in %, and # S %,. Then (2) implies Eg,=Egl. Let (s,2)€%,. Since
%, is a right ideal in Z we infer by (I) that (ss, 8)=(s, g)o(s", 8- 50)EH N E,=
=Eg =Eq for every s'¢Vs(s). Thus g=1 and (s,g)€% proving that %, C%.
The proof is complete.

Let us define an action of G4 on & as follows: for every (s, g) and he€Gy let
h(s, g)=(s, hg).

(IV) Gs acts on & such that Gs% =% and, for every gE€Gg, there exists
ac¥ with gacV . (%).

Proof. By (1), one can immediately check that, for every h€Gg, the mapping
h: &~ defined by (s,g)h=(s, hg) is an automorphism and kh=~Fhk for every
h,keGs. The equality Gg% =% is a trivial consequence of the definition of the
action. In order to verify the last assertion, observe that, by (I), we have V(%)=
={(&, sa): s€S, SV ()}={(t, DEX: te=h"1}. Since Gs=S/o, for any gcGs,
there exists s€S with se=g~!. For such an s we have g(s, 1)=(s, )€V, (@).

As an easy consequence of the equality obtained here for V(%) we deduce

(V) For every (s, )% and g€Ggs, we have g~ (s, NEV(¥) if and only
if se=g.

(V1) The mapping &2 S—~Z *Gs defined by se=((s, 1), s6) is an embedding of

S into X xGs. Inparticular, S is isomorphic to the subsemigroup {(a, g)E?Z/XGs
g7 acV ()}

Proof. The mapping ¢ is clearly injective and, by (V), its range is {(a, g)€
€W XGs: g lacV,(#)}. All we have to check is that ¢ is a homomorphism. Let
s, 1€S. Then, by (1), we have

se- 16 = ((s, 1), s0)((1, 1), t6) = ((s, Dosa (s, 1), so - 16) =
= ((s, Do(t, s6), (s)a) = ((st, 1), (st) o) = (sf)e
which completes the proof.
Statement (V1) shows that we succeeded in finding a partial semigroup Z on

which Gy acts such that S is isomorphic to a well-determined -subsemigroup of
¥ “*_’Gs. . ’
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3. PO-semigroups and 0-semidirect products of strictly
combinatorial semigroups by groups

In this section we introduce the concept of a PO-triple and a PO-semigroup so
as it is inspired by the results of the preceding section and give a description of E-
unitary regular semigroups by means of PO-semigroups and by means of 0O-semi-
direct products of strictly combinatorial semigroups by groups.

A regular semigroup S with 0 is called strictly combinatorial if (i) S is categorical
at 0, (i) S is' E\O-unitary and (iii) S/e is an s#-trivial Brandt semigroup.

A partial semigroup X is termed strictly combinatorial if X is a strictly combina-
torial semigroup.

An g -trivial semigroup is sometimes called combinatorial. In order to justify
the terminology just introduced we show that a strictly combinatorial semigroup is
necessarily #-trivial. Let S be a strictly combinatorial semigroup and s an element
in a non-zero subgroup of S. Then there exists an inverse s” of s in this subgroup
and thus ss'=ss0. Hence we have (s@)(sg)~'=(s0)"(s@)=0 in the factor
semigroup S/g@ which is an s#-trivial Brandt semigroup. This implies that sg is
idempotent and thus s€Ker ¢\O0. Since S is EN\O-unitary, we infer by Proposition
1.4 that s is idempotent. Thus we verified that each subgroup in S is trivial which
implies that S is s#-trivial.

Now we define the notions which will play the role of the McAlister tnple and
the P-semigroup.

Let G be a group, (Z; o) a strictly combmatonal partial semigroup and & a
subset in Z. Suppose that

(PO1) % is a right ideal in (Z'; o) and E@, is a subband in %

(PO2) G acts on (%'; 0);

(PO3) G¥ = &;

(PO4) for every g€G, there exists ac% with gacV(®¥).

The triple (G, Z, %) satisfying the above conditions is called a PO-triple. If
(M) @ is a maximal right ideal in (Z; o) with the property that E, is a subband
in ¥, then (G, &, %) is termed a POM-triple.

Given a PO-triple (G, , %), we define a multiplication on the set

PO (G, Z,%) = {(a, )€U XG: g lacV(¥)}
by '
3 (a, 8)(b, h) = (aogb, gh).

Property (PO4) ensures that the image of PO(G, &', %) under the second pro-

jection is just G. The following lemma shows that the image of PO G, %, @) under
the first projection is #.
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Lemma 3.1 Let (G, Z,%) be a PO- Irzple Then, for every ac¥, there exists
g€G with gacV(%).

Proof. If ac% and a’'€V(a), then, by (PO3), we have a’=hb for some
h€G and be®. Thus, by (PO2), h~tacV (h~'a)=V(B)SV(¥).

Proposition 3.2. Let (G, 2, %) be a PO-rriple.

(i) POG, Z,%) is an E-unnary regular semigroup and Epy .4y={(e, 1):
e€Ey} is isomorphic to E, .
Moreover, for any (a, g), (b, NEPO(G, Z,%), we have

0)) Vpo((;,z,g)((as )={(c,g™"): cE¥NV (g 'a)};

(ii1) (a, g)Z(b, h) if and only if aRb;

(iv) (a,8)Z (b, h) if and only if. g~ aLh~1b; :

) (a,8)y(b, h) ifand only if g=h and V(g”la)ﬂV(h YN¥=0;

(i) (a,8)a(b, h) if and only if g=h.

- (vil) PO(G, Z,¥)/o is isomorphic to G.

The E-unitary regular semigroﬁp PO(G, Z,%) is called the PO-semigroup
determined by the PO-triple (G, &, %) or, simply, a PO-semigroup.

Proof. For brevity, denote PO(G, %, %) by S.

(i) First of all, we have to show that S is closed under the multiplication defined
by (3). Let (a, g), (b, h)€S. Then g~ 'acV (a*) and h~'beV (b*) for some at, bt €%.
Since % is a right ideal in & this implies by (PO2) that a*og~'a and bohb* belong
to Ey. As E,4 is a subband in # by (POI), the product (a*og~'a)o(bohb*) is
defined and thus g~'ao(a*og~la)o(bohb*)ob=g 'acbh is also defined. From this
it follows by (PO2) that aogb is defined and, since ¥ is a right ideal in Z, it belongs
to %. Moreover, we obtain that (gh)~'(aogb)=h"1(g"'a)oh~1b is also defined in
&, that is, it is not equal to 0 in Z. Since the strictly combinatorial semigroup % is
orthodox by Proposition 1.3, we infer that h~ (g a)oh~ eV (b* oh~'a*). Hence
b*oh™a* #0, that is, the product b*oh~la* is defined in . Since % is a right
ideal in 2 and b*€%, we have b*oh~'at€%. Thus (gh)~Yaogh)eV(®), com-
pleting the proof of the fact that S is closed under multiplication (3).

A straightforward calculation shows that the multiplication defined by (3) is
associative. Now we turn to proving the regularity of S. Observe that it suffices to
verify (ii). For, if (a, g)€S then g~lacV(#%). Therefore there exists be¥ NV (g~ 1a)
and hence gbeV(a) SV (#¥). Thus (b, g 1)€S is an inverse of (a, g). The element
(b, h) is an inverse of (a, g) if and only if (a, g)=(a, g)(b, h)(a, g)=(acgbogha, ghg)
and (b, H=(b, h)(a, g)(b, h)=(bohao hgb, hgh), that is, if and only if h=g~! and
aogboa=a,bog~'aocb=>b. The latter equalities are equivalent by (PO2) to the
condition that b€V (g™ 'a). ‘
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It is easy to see that Eg={(e, 1): e€Ey4} which is a band with respect to the
multiplication defined in (3) and Ej is isomorphic to E, .

Now we prove that the homomorphism ¢: S—G, (a,g)p=g is onto and
Ker ¢ CEg. This implies that ker ¢=¢ and thus, by Result 1.1, § is E-unitary.
and (vi), (vii) hold. Property (PO4) of the PO-triple (G, ¥, %) ensures that ¢ is
onto. Assume that (aq,g)¢Kerp. Then g=1 and (a, 1)2¢S whence acac¥.
Since 4/o is and #-trivial Brandt semigroup and in such a Brandt semigroup a
square of an element x is non-zero if and only if x is idempotent we infer that ap is
a non-zero idempotent in %/o. However, Ker g=FEz by Proposition 1.4. This
implies a€E,. Thus (a,g)€Es which proves that Ker 9 SEs. This completes
the proof of (i), (ii), (vi) and (vii).

(iii) We have (a, g) 2 (b, h) if and only if there exist inverses (a, g)* and (b, h)’
of (a, g) and (b, h), respectively, such that (a, g){(a, g)’ Z (b, h)(, h)’ in Eg. By applying
(i1) we deduce that this holds if and only if there exist at €V (g~ !a) and b+ ¢V (h~1b)
such that aoga* Zbohb* in E,. Since aZ%aoga® and bRbohb* in &, this is
equivalent to requiring that a#b. :

(iv) is proved dually to (iii).

(v) is an immediate consequence of (ii). The proof is complete.

In the terminology introduced here the results of Section 2 can be formulated
in such a way that the triple (Gg, Z, %) defined there is a POM-triple and S is
isomorphic to PO(Gs, &, #). Thus we deduce the following

Proposition 3.3. Every E-unitary regular semigroup is isomorphic to a PO-
semigroup defined by a POM-triple.

It is clear that, for a given PO-triple (G, %, %), the PO-semigroup PO(G, X, %)
is a regular subsemigroup without 0 in the O-semidirect product & #,G.

In the sequel we investigate the connection between PO-semigroups and regular.
subsemigroups without 0 in O-semidirect products of a strictly combinatorial semi-
group by a group. '

Lemma 3.4. Let G be a group acting on a semigroup T with 0. Then
(i) the O-semidirect product Tx,G is a semigroup in which Erp, ;={(e, 1):
e€ELNOYUO and Vi, o((t,8)={(g7t', &7 D: 1’'€V(1)} for every (1,8)€T *,G;
(ii) Tx,G is regular if and only if T is regular; .
(ili) Tx,G is orthodox if and only if T is orthodox, and in this case, Erg
is isomorphic to Er; ‘
(iv) T*,G is categorical at O if and only if T is categorical at 0;
(W if T isregular and categorical at O then T%,G is ENQ-unitary if and only
if T is EN\O-unitary.
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Proof. Statements (i)—(iv) can be easily proved therefore they are left to the
reader. In order to prove (v) it suffices to check by Proposition 1.4 that Er, o\
is a left unitary subset in T#,G if and only if E;\O is a left unitary subset in T.
Suppose first that Er, o\O is a left unitary subset in T%,G, and let ecE;, 1€T
be such that e/€ENO. Then we have (e, 1)(1, 1)=(er, 1)€E4, ¢\O and
(e, DEET, ¢\O by (i), which imply that (¢, 1)€ Er, c\O. Thus, again applying (1),
we infer that t€ E\0. Conversely, suppose that Ef\0 is a left unitary subset in
T and (e, 1)€Er, g, (4 8)ET*,G with (e, 1)(1,8)€Er, c\O. Then, by (i), we
obtain that g=1 and e, et€ E.\O. Hence it follows that t€E\0, that is,
(#, 8)€Er, ¢\0. The proof is complete.

Lemma 3.4 implies that if 7 is strictly combinatorial then T#,G is an E\O0-
unitary regular semigroup which is categorical at 0. Consequently, every regular
subsemigroup without 0 in 7 #,G is E-unitary. Hence we obtain

Proposition 3.5. Every regular subsemigroup without 0 in a O-semidirect
product of a strictly combinatorial semigroup by a group is E-unitary.

Now we turn to investigating the connection between PO-semigroups defined
by POM:-triples and maximal subsemigroups without 0 in O-semidirect products of
strictly combinatorial semigroups by groups. First of all, we determine the maximal
subsemigroups without O in a O-semidirect product of a strictly combinatorial semi-
group by a group.

Lemma 3.6. Let G be a group acting on a strictly combinatorial semigroup
T. Then, in T%,G, the maximal subsemigroups without 0 are

@ M, = {(t, 9)€T *oG: 1oRiL(g~)g}

where i€Ey,\0, and every subsemigroup without 0 in Tx,G is contained in M; for
a unique i€ E1/,\0. ’

Proof. Since, in an s#-trivial Brandt semigroup, the only subsemigroups
without O are the singletons containing idempotents, it suffices to find a O-restricted
homomorphism ¥ of Tx,G onto an -trivial Brandt semigroup such that the
inverse images of the idempotents are just the M;’s. We shall use for this purpose
an s¢-trivial Brandt semigroup B(/) which is the image of T under some O-restricted
homomorphism ¢: T-B(J) with ker p=p. Since ¢ is O-restricted, €T\0
implies 7@ 0. Denote by ¢, (n=1,2) the mapping of T\0 into I assigning the
nth component of f¢ to ¢ for each z¢ T\0. Define the mapping ¢: T ,G—B(I)
by O =0 and.(t, &)Y =[te:, (g7%)¢p,]. We prove that ¢ is a O-restricted homo-
morphism. By definition, ¥ is O-restricted. Now let (¢, g), (u, )} Tx,G. Observe
that (¢, g)(¥, h)=0 if and only if ¢-gu=0, thatis, if and only if g=1¢-u=0. Since
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@ is O-restricted, the latter equality is equivalent to (g~ .u)p=0. This holds if
and only if (g '%)¢@,=up,. Thus we see that if (¢, g)(w; h)=0 then (¢, QY-
-(u, )Y =0. Moreover, if (¢, g)(u, )0 then (g~t)p,=up, and hence

((t, ), W)Y = (1- gu, ghyy = [(1- gu) 1, ((gh) (¢ - gw)) =] =
= [t(pb (h_l u)¢2] = [1§01, (g_lt)¢2] ’ [u(p19 (h—1 u)qD‘J] = (t9 g)!l’ * (u: h)l/f

Here we have utilized that (¢-gu)o=t¢ -(gu)@ implies (¢-gu)p,=tp, and, simi-
larly, ((gh)='(t-gw))o=((gh)~*t-h~u)o=((gh)"t)¢-(h"'u)e imply

((gh)™*(t-gu)) s = (™ u) @s.
The proof is complete.

Proposition 3.7. (i) Let G be a group acting on a strictly combinatorial
semigroup T. Let i€ E;,)\0. Define G={gcG: toRiL (g~'t)g for some tc T\0},
H={tcT\O: 19RiL(g 1) o for some gcG} and % ={ga: g€G, ac¥}. Define
a partial operation on & by restricting the operation of T to % and define an action
of G on & by restricting the action of G on T to G and Z. Then (G, %, %)
is a POM-triple and PO(G,Z,%)=M; (¢f. (4)).

(il) Conversely, for every POM-triple (G, %, %), the PO-semigroup PO(G, ¥, %)
is a maximal subsemigroup without 0 in % % ,G.

Proof. (i) First we show that G is a subgroup in G. If g€G, t€T\0 with
toRiFL (g~ t)o and '€V (), thenwehave g~ '€V (g~ ') and t’9 LiR(g~1t")o.
The latter relation can be written in the form (g=%t")o%i%(g(g~t"))o. Since T
is regular, this shows that g¢G implies g~1€G. Assume that g, h€G. Then, by
definition, there exist 7, u€¢ T\O with 1o ZiL (g7 t)¢ and ueRiL (h~'u)g. Thus,
by (4), we have (1, 8), (u, )€ M;. Making use of the fact that, by Lemma 3.6, M, is
a subsemigroup in T#,G, we obtain that (¢, g)(u, k)€ M,. Hence we infer that
(¢-8u)oRiZ ((gh)~*(1- gu)) ¢ which implies that gh€G. Thus G is, indeed, a sub-
group in G.

Now we verify that @ is a right ideal in Z. Let a¢% and x€% such that
ax70 in T. Then we have (ax)eZagZi. On the other hand, by the definitions of
% and ¥, there exist g€G and be¥ with x=gb, and i¥(h~b)g for some hcG.
Clearly, h€éG and ((gh)~*(ax))o=((gh)"'a-h~b)o L (h"'b)Li. Thus, indeed,
ax belongs to ¥ provided ac®%, xcZ and axz0 in T. This implies that & is a
subsemigroup in T. For, let x, y€¢& such that xy>0 in T. Suppose that x=gb
where g€G and be%. Since % is a right ideal in &, we have b-g~lyc% whence
xy=g(b-g~y)EZ. 5

Now we show that & is regular. Let gac% where gcG and ac%. Then
apRi¥(h~1a)g for some heG. If d’cVi (a) then we have (h~a)oRiLd o

16
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which implies that h='a’€¢ % NV (h~'a). Hence we deduce that ga’=(gh)(h~'a’)
is an inverse of ga in & for every a’¢ ¥V ;(a). Consequently,

&) Vi(x) = Vg(x) for any x€&.

In particular, we obtain that & is regular. Finally, we verify that %/ggis an s -trivial
Brandt semigroup. It is easy to see by definition that Z={rcT: (ge) 0Rt0 ¥ (he) o
for some g, h¢ G} where e€E; with ep=i. Hence % is a union of g-classes in T

and %, which is isomorphic to %/gz, is an #-trivial Brandt semigroup since
T/o is an #-trivial Brandt semigroup. Thus we have shown that & is a strictly
combinatorial semigroup.

Returning to the properties of % observe that Eg,={e€c E;\O0: eo=i}. This
clearly implies that Eg is a subband in #. Property (PO3) follows by the definition
of & and that of the action of G on & while (PO4) is a consequence of the definitions
of G and % and of the fact (easily deduced from (5)) that

©) Va(@) =V (%) = {1¢T\O: 19LiR(g 1o for some g€ G}.

Thus (G, &, %) is a PO-triple.

Now we show-that (M) is satisfied. Suppose that (G, Z, %,) is a PO-triple and
% <%,. Since %, is a right ideal and % is regular, y€%, implies yy'€F, for any
V'€V 4(»). Therefore we obtain that yoZ#(yy)o=i as Ey, is a subband in & cT\0
containing E,. Assume that y=ga for some g€G and a€%. Then there exists
heG with (h~'a)o&Li whence we obtain that ((gh)~y)e=(h"'a)eZi. Thus
y€% is proved. Hence % =%, and therefore (G, 4, %) is a POM-triple.

By the definitions of (G, &, %) and the PO-semigroup PO(G, &, %), Proposi-
tion 3.2 (i) implies that PO(G, Z, #¥) is a subsemigroup without 0 in T ,G. Then
it follows from Lemma 3.6 that PO(G, Z, %)< M,. The reverse inclusion follows
if we observe that ro#i % (g~ 1) ¢ implies that €%, gcG and, by (6), we have
g€V (%). The proof of the direct part is complete.

Now we turn to the proof of the converse part.

(ii) By Proposition 3.2 (i), S=PO(G,Z,%) is clearly a subsemigroup in
F%,G and 0¢S. Then, by Lemma 3.6, we have SSM,; fora unique i€ Ez,\O
and thus, by Lemma 3.1, we infer & C {x€Z: xo%i}. The latter subset which we
will denote by %;, is easily seen to be a right ideal in & where Eg, 1s a subband.
Since (G, Z, %) is assumed to be a POM-triple we infer that =%, Hence, if
(a,8)€M; then ac® and (g 'a)oZi in %/o. The latter relation implies boZi
for any beV(g~'a), that is, we have V(g 'a)S%,=%. Hence it follows that
g 'acV (%) and we have (a, g)€S. Thus the equality S=M; is proved.

.We can summarize the results of Sections 2 and 3 as follows:
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Theorem 3.8. For aregular semigroup S the following conditions are equivalent
to each other: -
(D) S is E-unitary;
(1) S is isomorphic to a PO-semigroup;
(iii) S is isomorphic to a PO-semigroup defined by a POM-triple;
(iv) S is a regular subsemigroup without O in a O-semidirect product of a strictly
combinatorial semigroup by a group;
(v) S is a maximal subsemigroup without 0 in a O-semidirect product of a strictly
combinatorial semigroup by a group.

Proof. The implications (i)=(iii) and (ii)=(i) are stated in Propositions 3.3
and 3.2 (i), respectively. Since (iii)=(ii) is trivial, the conditions (i), (i) and (iii) are
equivalent to each other. Moreover, the implications (iii))=(v) and (iv)=(i) follow
from Propositions 3.7 (if) and 3.5, respectively. The proof is complete as (v)=>(iv)
is easily deduced from Propositions 3.7 (i) and 3.2 (i).

4. E-unitary regular semigroups and connected idempotent
and regular categories

A theory generalizing McAlister’s P-theorem for not necessarily regular semi-
groups with commuting idempotents was developed by MARGOLIS and Pin in [4].
Although their terminology and methods are entirely different from ours, for in-
verse semigroups their main theorem says almost the same as our Theorem 3.8 (i),
(v). After making a dictionary between the two terminologies we deduce the gener-
alization of Theorem 4.1 [4] for E-unitary regular semigroups.

In this section the reader is assumed to be familiar with the paper [4]. The
notions and notations of [4] are used without any reference.

“ Let C be a category. Then Mor (C) is a partial groupoid. Denote by Mor (C)
the groupoid obtained from Mor (C) by adjoining a new symbol 0 and extending
the operation as in Section 1. Clearly, Mor (C) is a semigroup which is categorical
at 0. '

The following proposition states that categories can be considered as certain
semigroups with O together with a O-restricted homomorphism into an #-trivial
Brandt semigroup. '

Proposition 4.1. (i) For every category C, the groupoid Mor (C) is a semi-
group and the mapping ¢c: Mor (C)~B(Ob (C)) defined by Opc=0 and ppc=
=[u, v] provided pcMor (u,v) is a O-restricted homomorphism onto a full subsemi-
group of B(Ob(C)) such that, for cvery e, S€Egob(cy)> e9c" is a monoid with
identity 1, and 1,p=pl;=p for any pcMor (C) with eZpp:<Lf.

16*
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(ii) Let S be a semigroup with 0 and ¢: S—~B(I) a O-restricted homomorphism
onto a full subsemigroup of B(I) such that, for every e, f€Egy,, ep~' is a monoid
with identity 1, and 1,s=51,=s for any scS with eRspZLf. Then we can define a
category Cs ., as follows: Ob(Cs,,)=I and Mor (i, j)={s€S: sp=l[i,jl} for
any i,jcl

(iii) For every category C, we have C=C(Mor(C), %)‘.

(iv) For every pair (S, @) with properties required in (ii),we have S=Mor Cs
and P=0c, .-

The proof is easy therefore it is left to the reader.
For brevity, a pair (S, ¢) satisfying the properties required in (ii) is termed a
category pair.

By the preceding proposition we immediately obtain

Proposition 4.2. (i) The category C is connected if and only if @c is onto.
(ii) The category C is regular if and only if Mor (C) is regular.
(iif) The category C is idempotent if and only if Ker ¢S EMs:(C) -

Assume that C is a connected, idempotent and regular category. Then the
preceding proposition implies that Mor (C) is a regular semigroup and ¢ is a
O-restricted homomorphism of Mor (C) onto an #-trivial Brandt semigroup with
Ker oc S EMsr(c)- Then Lemma 1.6 ensures that Mor (C) is EN\OQ-unitary and
ker oc=p¢. Thus Mor (C) is a strictly combinatorial semigroup in which every
non-zero idempotent g-class e is a monoid with identity 1, and, for arbitrary non-
zero idempotent g-classes e,f and for any pcMor (C) with e%#poLf, we have
l.p=pl;=p. Now let S be a strictly combinatorial semigroup in which every
non-zero idempotent g-class e is a monoid with identity 1, and, for any non-zero
idempotent o-classes e, f and for any s€S with eZsoZf, we have 1,5=51,=s.
Such an S will be termed a strictly combinatorial semigroup with local identities.

Let S be a strictly combinatorial semigroup with local identities. By definition,
there exists an #-trivial Brandt semigroup B(I) and a sugjective O-restricted homo-
morphism ¢: S—~B(I) with ker p=g. Clearly, (S, ¢) is a category pair and, by
Propositions 4.1 and 4.2, Cs ,, is a connected, idempotent and regular category.
Since Lemma 1.7 implies g to be the only O-restricted primitive inverse semigroup
congruence on S, for each category pair (S, ¢"), we have ker ¢’=g. Consequently,
for any category pairs (S, ¢: S—~B(I)) and (S, ¢": S—B(l")), there exists an
isomorphism : B(I)-~B(I") with ¢yy=¢”. Hence we can easily deduce

Proposition 4.3. If C is a connected, idempotent and regular category then
Mor (C) is a strictly combinatorial semigroup with local identities. Conversely, for
every strictly combinatorial semigroup S with local identities, there exists an, up to
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isomorphisms, unique category Cs such that Mor (Cg) is isomorphic to S. The
category Cg is connected, idempotent and regular.

Recall that an isomorphism of the category C onto the category D 1is a functor
F: C~D which induces a bijection of Ob (C) onto Ob (D) and a bijection of
Mor (u, v) onto Mor (Fu, Fv) for every u, v€Ob (C).

The connection between automorphisms of categories and automorphisms of
the corresponding semigroups is easily described. Given a category C or a category
pair (S, ¢), denote by Aut C and Aut, S, respectively, the group of automorphisms
of C and the group of those automorphisms of S which possess the property that,
for every s, t€S, we have skerg ¢ if and only if s« kerg fa.

Proposition 4.4. (1) Let F: C—~C be an automorphism of the category C. Then
the mapping F,, induced by F on Mor (C) is an automorphism of the partial semi-
group Mor (C) which can be extended to an automorphism of Mor (C) by setting
0F, =0.

(i) Let (S, ¢: S=B(I)) be a category pair and acAut,S. Then o induces
an automorphism of B(I) and, consequently, a permutation n, of I in such a way
that, if se=l[i,j] for some s€S\QO and i,jcl, then (s)o=l[in,,jr,). Define a
SJunctor F.: Cs 0~Cis, gy as follows: Fii=in, for every icI=0b(Cs, ) and
F,s=su for every s¢ S=Mor (Cs,,y). Then F,€AutCi, .

(iii) The mappings (AutC)*~Aut,_ Mor (C), F—~F,, and Aut, Mor (C)~
—~(Aut CY, a—F, defined in (i) and (ii) are group-isomorphisms inverse to each other.

(iv) The mappings Aut,S—(AutCs )%, a—~F, and (AutCg )" —~Aut, S,
F—F,, are group-isomorphisms inverse to each other.

By applying this description for connected, idempotent and regular categories
the case becomes simpler. For, if S is a strictly combinatorial semigroup and (S, ¢)
is a category pair, then we have seen that ker ¢=g. By Proposition 1.5, it is easy
to check that, for any s, 1€S\0, we have sot if and only if sxgtx. Hence Aut,S=
=Aut S, the group:of all automorphisms of S.

Proposition 4.5. (i) If C is a connected, idempotent and regular category,
then the mapping (Aut C)*-~Aut Mor (C), F—F,, (cf. Proposition 4.4) is a group-
isomorphism.

Gi) If S is a strictly combinatorial semigroup with local identities and Cs is a
connected, idémpotent and regular category with Mor (Cs)=S, then, for every
acAut S, there exists a unique functor F, which coincides with « on Mor (Cg).
Moreover, the mapping Aut S'—(Aut Cg)°, a—F, (cf. Proposition 4.4) is a group-
isomorphism.

Remark. Proposition 4.5 implies that if a group G acts on a connected, idem-
potent and regular eategory C then this action determines in a natyral way an action
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of G on Mor (C). Conversely, if a group G acts on a strictly combinatorial semi-
group S with local identities and Cs is a category with Mor (C5)=S, then this
action can be extended to an action of G on Cys.

It remains to find connection between the monoids C, (defined in [4]) and PO-
semigroups.

Proposition 4.6. (i) Let G be a group and C a connected, idempotent and
regular category on which G acts transitively, and let u€Ob (C). Then (G, Mor (C),
@,) with ¥,=Mor (u, C) is a POM-triple and C,=PO(G, Mor (C), ¥.,).

(ii) Let (G, ¥, %) be a POM-triple where & is a strictly combinatorial semi-
group with local identities. Let C4 be a category such that Mor (Cy)=%. Then
Cy is a connected, idempotent and regular category on which G acts transitively,
and PO(G, %, ¥)=(Cg), for some ucOb (Cy,).

Proof. (i) By Proposition 4.3 and Remark, Mor (C) is a strictly combinatorial
partial semigroup on which G acts. Let us define G, % and & by means of G, T=
=Mor (C) and [u, ul€ E(Mbr (C))pe 3S in Proposition 3.7°(i). We claim that G=G,
%Y =%, and & =Mor (C).

First of all, observe that, for any g€G and p€Mor (C), we have

@) p€Mor (u, gu) if and only if. pe R[u, ul. L (g™ ) ¢c.

On the one hand, hence it follows that G=G as Cis connected and therefore
Mor (u, gu)>= 1 for every g€G. On the other hand, we obtain from (7) the equality
% =%, by making use of the assumption that G acts transitively, and therefore any
2€0b (C) is of the form gu for some gcG. Now let g¢Mor (v, C). As we have
just seen, there exists g€G with gu=w. Since g induces an automorphism on C,
we infer that there exists p€Mor (1, C) with gp=q. Hence & =G%,=Mor (C).
Thus Proposition 3.7 (i) ensures that (G; Mor (C), %,) is a POM-triple. The equality
C.,=PO(G, Mor (C), #,) immediately follows as ¥ (%,)=Mor (C, u).

(ii) Proposition 4.3 implies C, to be a connected, idempotent and regular
category. In the proof of Proposition 3.7 (ii) it is verified that & ={x€Z: xoRi}
for some i€Ez, Hence it follows that %=Mor (4, Cg) for some ucOb (Cg).
Now let », weOb (Cq). Since Cq is connected, there exist x€Mor (v, Cy) and
yEMor (w, Cy). Since G¥ =% we have g héG and a, be¥ with ga=x and
hb=y. Then the action of G on Cg has the property that gu=v and hu=w. Hence
we infer that hg~lv=w, that is, G acts transitively on Cg. Thus Cg satisfies the
CODdlthIlS réquired in (i) whence it follows that (Cg),=PO(G, Mor (Ca): %)
where Mor (Cx)=% and %,=%. This completes the proof.

Now we are ready to give a condition equivalent to each of (i)—(v) in Theorem
3 .8 which is analogous to that in the main theorem of {4].
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Theorem 4.7. The following condition is equivalent to each of the- conditions
(i)—(v) in Theorem 3.8.

(vi) S is isomorphic to a monoid C|G where G is a group acting transitively
without fixpoints on a connected, idempotent and regular category C.

Proof. Let S be an E-unitary regular semigroup. Then S! is also an E-unitary
regular semigroup. By the method described in Section 2 we can construct a POM-
triple (Gg1, %, %) (cf. Proposition 3.3). Consider the pair (%, ¢) where ¢ is the
homomorphism defined in (II) of Section 2. By (I) and (II), £'is a strictly combina-
torial semigroup and ¢ is a O-restricted homomorphism of & onto B(Gg). It is
easy to check by (1) that (1, g)o(s, g)=(s,g)o(l, g -s6)=(s,g) for every scS*
and g€Gs:. Since (1,g)p=[g, g], this implies that & is a strictly combinatorial
semigroup with local identities. Thus (%, ¢)is a category pair. Then, by Proposi-
tion 4.1 (ii), Cz,,, is a category with Mor(Cz ,))=%. Moreover, Proposition
4.6 (i) ensures that Cy ,, is connected, idempotent and regular, and Gs: acts on
it transitively. Observe that the automorphism of Cj3 ,, determined by an element
g€Gg induces the regular left translation on Gu=0b (Cy ,)) corresponding to
g€Gs. Thus Gg acts on Cz ,, without fixpoints. Property (VI) in Section 2
ensures S to be isomorphic to PO(Gg, Z, %), and Proposition 4.6 (ii) implies
that PO(Gg, &, ¥)=(C#,4))s for some u€Ob (C, ). Hence S* is isomorphic
to (C# 4)u for some ucOb(Cy ). To complete the proof of the implication
(i)=(vi) we refer to Proposition 3.11 [4] which states that if C is a category on which
a group G acts transitively without fixpoints, then, for all u€Ob (C), the monoid
C, is isomorphic to C/G.

Conversely, suppose G is a group acting transitively without fixpoints on a
connected, idempotent and regular category C. Then Proposition 3.11 [4] just cited
implies that C/G is isomorphic to C, for all #€Ob (C), while Proposition 4.6 (i)
ensures C, to be a PO-semigroup. Thus (vi) implies (i), completing the proof of
the theorem. ' ‘

Finally, we show how one can reobtain McAlister’s P-theorem from our results.
Let (G, %, %) be a PO-triple such that PO(G, &, %) is an inverse semigroup or,

N
equivalently, E, is a semilattice. It is not difficult to check that (G, &y, ¥y) is

N
also a PO-triple. We claim that the mapping #: PO(G, %, ¥)~PO(G, %7, ¥y);
(a, 9n=(ay, g 1is an isomorphism. It is immediate that # is-a homomorphism.
Let us verify that # is one-to-one. Assume that (g, g), (b; )€ PO(G, %, %) with
(a, g)n=(b, H)n. Then g=h and ayb in &. The latter relation implies that ¥(a)=
=V(b) and hence V(g~la)=V(g~1b). Since (a,g), (b, 2)cPO(G, X, ¥) we have
g 'a, g~ eV (%). Therefore there exists c€V (g~ la)=V(g~b) with cc®¥. Thus
(c, g7 ) PO(G, &, %) and (c, g~Y) is an inverse of both (a, g) and (b, g). Since, by
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assumption, PO(G, Z, %) is an inverse semigroup we obtain that (a, g)=(b, h).

Now we show that g is onto. Consider an arbitrary element (xy, g) in PO(G, %/;, y)
where x€%. Then xyc®y and g (xy)€V(@y). The first relation implies the
existence of an element a4 in % with ayx, and hence g~ xyg~'a. Thus, by the second
relation we see that g~ lacV (%) since V(@)=V({x€.%" : xyb for some bEFY)).
Therefore (xy, g)=(a, g)n which completes the proof of the fact that # is an iso-
morphism.

The strictly combinatorial semigroup %fy is an inverse semigroup. Thus, by
slightly modifying the proof of Theorem 4.2 [4], we can deduce the following asser-

- _ —_ . L
tion. The triple (G, &, %) where Z is the partially ordered set of #-classes of %y,
F={JcZ: JNEg,#=0O} and the action of G on Z is deflned by g(x#)=(gx) ¢

(g€G, x€ 9%/\)’) is a McAlister triple and PO(G, g’/\y, @) is isomorphic to P(G, &, #&).
By the preceding paragraph this implies that PO(G, %, %) is isomorphic to
PG, %, 9).

Consider the partially ordered set of #-classes of & and denote it by %. Put
d={Jed: TNEy# 0} and define an action of G on & by g(x#)=(gx)# for
every g€G and x€%. Since yS £ on &, itis easily seen that the mapping v:%—%
defined by (x#)v=(xy)# (x€Z) is an order isomorphism with the properties that
@v=@ and g(Fv)=(gx)v for every gcG and %c%. Thus the triple (G, Z, %)
is equivalent to the triple (G, Z, #). Therefore (G, &, %) is also a McAlister triple
and P(G,%Z,%) is isomorphic to P(G,Z,%). The following theorem sums up
what we have just proved.

Theorem 4.8. Let (G, %, %) be a PO-triple such that E, is a semilattice.
Let & be the partially ordered set of g-classes of ¥ and H={Jc%d: J NEg= 0O}
Define an action of G on & by g(x#)=(gx)f for every gcG and xc%. Then
(G, .‘f,@) is a McAlister triple and PO(G, %, %) is isomorphic io P(G,ﬁf . Oj).
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