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A regular semigroup is called ¿-unitary if its set of idempotents is a unitary 
subset. One can easily show that ¿'-unitary regular semigroups are necessarily 
orthodox. 

In 1974 MCALISTER [5], [6] proved that every inverse semigroup is an idempotent 
separating homomorphic image of an ¿-unitary inverse semigroup and described 
¿-unitary inverse semigroups by means of groups, partially ordered sets and semi-
lattices. This structure theorem is referred to as the "P-theorem". By making use of 
McAlister's P-theorem O'CARROLL [8] proved that every ¿-unitary inverse semi-
group can be embedded into a semidirect product of a semilattice by a group. 

These results have opened up new perspectives not only in the theory of inverse 
semigroups but in the theory of regular semigroups. McAlister's first result was 
generalized for orthodox semigroups independently by TAKIZAWA [15] and the 
author [10]. TAKIZAWA [14] generalized the P-theorem, too, but only for ¿-unitary 
^-unipotent semigroups. This structure theorem was applied in [12] to prove the 
analogue of O'Carroll's embedding theorem for ¿-unitary á?-unipotent semigroups. 

The aim of this paper is to present a generalization of the P-theorem for ¿-uni-
tary regular semigroups.. It has to be pointed out in advance that our main result 
which is proved in Sections 2 and 3 cannot be considered as a structure theorem in 
the sense that ¿-unitary regular semigroups are constructed in it from "simpler" 
objects. Indeed, it is doubtful that strictly combinatorial semigroups which play' an 
important role in the construction are "simpler" than ¿-unitary regular semigroups. 
However, the strictly combinatorial partial semigroup introduced in Section.2'is 
applied in a forthcoming paper [13] to prove that every ¿-unitary regular.semigroup 
with regular band of idempotents can. be embedded into a semidirect product of 
a band by a group. ! . , 
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MARGOLIS and PIN [4] generalized McAlister's P-theorem in another direction, 
namely for £-unitary not necessarily regular semigroups with commuting idem-
potents. It turns out that in the special case of £-unitary regular semigroups with 
commuting idempotents, that is, in the case of £-unitary inverse semigroups the 
main theorem of [4] asserts almost the same result as a part of our main theorem. 
In Section 4 we deduce a characterization of £-unitary regular semigroups which 
is similar to that formulated in the main theorem of [4]. 

1. Preliminaries 

Let S be a semigroup. The set of idempotents in S is denoted by £ s and the set 
of inverses of an element s in S by K s(j). For the least group congruence on S we 
use the notation as and the factor semigroup S/as will be denoted by Gs. If it causes 
no confusion we omit S from Es, Fs(J) and os. 

A regular semigroup S1 is called E-unitary if £ is a unitary subset in S. It is easy 
to see that £-unitary regular semigroups are necessarily orthodox. 

Resu l t 1.1 (HOWIE and LALLEMENT [3] and SAITÔ [9]). For a regular semigroup 
S, the following conditions are equivalent: 

(i) S is E-unitary, 
(ii) £ is a left unitary subset in S, 

(iii) £ is a right unitary subset in S, 
(iv) £ constitutes a o-class. 
Let <p: S—T be a homomorphism where S and T are regular semigroups. 

We denote by ker <p the congruence on S induced by cp and by Ker <p the union of 
idempotent ker -classes. If x is a congruence, on S then instead of Ker x^ we 
simply write Ker x. 

Now let S be an orthodox semigroup with 0. Assumé that S is categorical at 
0. It is obvious that the least inverse semigroup congruence y on S is 0-restricted 
and S/y is also categorical at 0. Hence it follows by Theorem 7.66 [1] that there 
exists a least 0-restricted congruence /5 on S/y such that (S/y)//} is a primitive inverse 
semigroup. It is easily seen that ker y'̂  ffi js the. least 0-restricted primitive inverse 
semigroup congruence on S which will.be denoted by (?s or, simply, by Q. 

Proposition^1.2. Let S=S° be an orthodox semigroup which is categorical 
at 0. Then the following conditions are equivalent for s,t£S:.< 

(i) s, t^O and SQt; - • • 
(ii) set'Ç.É\0 for some e£E and t'£V(t); 

(iii) s'et£E\0 for some e££ and s'ÇK(i); 
(iv) se=ft^0 for some e,f£E\0; 
(v) EsEOEtE^ {0}. 
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Proof . One can prove the equivalence of conditions (ii)—(v) in the same 
fashion as the equivalence of conditions (2), (3), (6) and (8) in Lemma 1.3 [14]. 
One needs only to investigate whether products are 0 or not. Let us see, for example, 
the proof of the implication (v)=>(ii). Suppose that esf=gth?iQ for some e,f, g, h£E, 
and let s'tV(s), t'£V(t). Then (s'es)fiE and s((s'es)f)t'=(ss,)g(tht,)£E. If it 
were 0 then 

0 = e{ss')g(tht')th = e(ss')gt(t'thf = e(ss')gth = 

= e(ss')esf = (ess')2sf = (ess')sf = esf 

would follow, a contradiction. Thus s((s'es)f)t'£E\0. 
Similarly to the proof of Lemma 1.3 [14], one can check that the relation x con-

sisting of the pair (0, 0) and the pairs (s, /) satisfying (ii)—(v) is a 0-restricted con-
gruence on S. We intend to show that X=Q. First observe that Sjx is a primitive 
inverse semigroup. Indeed, if e,f£E with ef^O then ef— eef— eff^EeEHEfE 
and hence exf. Now let T be any 0-restricted primitive inverse semigroup congruence 
on S and let e,f£E with se=ft^0. Then sz • ez=fz • tz^O in the primitive in-
verse semigroup SIr. Hence we infer that (¿t) - 1 • j t = ei = / r = /t • (tz)~1 which 
implies sz=sz-ex—fx-ti — tx. Thus xQz, completing the proof of the fact that 
X—Q. 

A regular semigroup S with 0 is called E\0-unitary if E\0 is a unitary subset 
in S. Let S be an £\0-unitary regular semigroup with 0. If e£E\0 and e'€ V(e) 
then ee'£E\0. Since £ \ 0 is a left unitary subset in S w? deduce that e'dE\0. 
Thus S is orthodox. 

P r o p o s i t i o n 1.3. Every E\0-unitary regular semigroup with 0 is orthodox. 

Thus there exists a least 0-restricted primitive inverse semigroup congruence 
on every £\0-unitary regular semigroup being categorical at 0. The analogue of 
Result 1.1 holds: 

P r o p o s i t i o n 1.4: Let S=S° be an orthodox semigroup which is categorical 
at 0. Then the following conditions are equivalent: 

(i) S is E\0-unitary; 
(ii) E\0 is a left unitary subset in S; . 

(iii) E\0 is a right unitary subset in S; 
(iv) Ker Q = E. 

Proof . The equivalence of conditions (ii) and (iv) is easily verified by making 
use of the equivalence of (i) and (iii), (iv) in Proposition 1.2. The equivalence 
(iii)<»(iv) follows by symmetry, and (i) is equivalent to (iii) and (ii) by definition. 
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For an £\0-unitary regular semigroup S which is categorical at 0, the con-
gruence g can be described as follows: 

P ropos i t i on 1.5. Let S = S° be an E\0-unitary regular semigroup which 
is categorical at 0. Then 

6 = {(s, t): st'eE\0 for some /'€K(f)}U{(0, 0)}. 
Proof . Denote the relation on the right hand side of the equality by x. It is 

clear by Proposition 1.2 that xQg. Suppose now that s,t^0 and sgt in S. Then 
there exist e,f£E with es=tf^0. This implies est'= tft'£E\0. Since S is E\0-
unitary we obtain that st'£E\0, that is, sxt. Thus the reverse inclusion gQx 
also holds. 

In Sections 2, 3 and 4 we will need the following facts: 

Lemma 1.6. Let S=S° be an orthodox semigroup which is categorical at 0. 
If there exists a 0-restricted homomorphism cp of S onto a primitive inverse semi-
group such that Ker cpQE then S is E\0-unitary and ker (p = g. 

Proof. Since ker tp is a 0-restricted primitive inverse semigroup congruence we 
have Q *= ker cp. Therefore Ker oQKer tp^E. However, EQ Ker Q trivially holds 
whence we infer Ker {? = Ker cp=E. Then, by Proposition 1.4, it follows that S 
is JS\0-unitary. Let s,t£S\0 be such that .up = tcp and let t'eV(t). Then (st')q> = 
=S(p-(t(p)~1=t(p-(t<p)~1£Es<j> which implies st'£Es=E. Thus, by Proposition 1.5, 
we have sgt, completing the proof of the inclusion ker (p<=g. 

In order to simplify the notations later on, we will denote by B(I) the ^-trivial 
Brandt semigroup (IXI) U0 with multiplication 

M M - V - l t Z L 
and 
.... 0[i,j] = [i,j}0 = 0 -0 = 0 . . . 

It is well known that every ^-trivial Brandt semigroup is isomorphic to B(I) for 
some set I. 

' -i •• • 

Lemma 1.7. Let S=S° be an E\0-unitary regular semigroup which is cate-
gorical at 0 and for which S/g is an JP-trivial Brandt semigroup. Then the only 
0-restricted primitive inverse semigroup congruence on S is g. 

Proof . A 0-restricted primitive inverse semigroup congruence properly con-
taining g cannot exist as Jf-trivial Brandt semigroups are congruence-free. 

If S is a semigroup with 0 then the partial groupoid obtained from S by elimi-
nating 0 and letting products be undefined if they are equal to 0 in S1 will be denoted 
by £ 
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Given a partial groupoid (X ; •), let us adjoin a new symbol O(^A') to X and 
extend the multiplication to A'UO in such a way that .r - 0 = 0 • x=() - 0 = 0 for 
every x£X and provided x,y£X and x-y is not defined in X. The 
groupoid obtained in this fashion is denoted by X. If X is a semigroup then we 
term X a partial semigroup. 

The basic concepts of semigroup theory such as left, right ideals, Green's rela-
tions, inverse of an element, regularity, automorphisms can be defined in a partial 
semigroup A'in the same way as in X. For example, a non-empty subset RQX is 
said to be a right ideal in X if {/• • JC: r£R, x£X and r • x is defined}^R. Clearly, 
R is a right ideal in X if and only if R U0 is a non-trivial right ideal in X. One can 
easily see that, for example, the set of all idempotent elements in X is E%\0, Green's 
relation ^ on X is just the restriction of the ^-relation of X to X, the set of inverses 
of an element x in X is equal to Vx(x) and a: X^X is an automorphism of X if and 
only if X defined by 0 a = 0 and XOL—XOL (x£X) is an automorphism. 
Therefore it is not ambiguous to write 0t or V(x) without indicating whether they 
are considered on X or on X. If we want to emphasize that the set of inverses is 
considered in X then we write Vx(x). Moreover, we will use the notation Ey for 
the set of all idempotent elements in a subset Y of X and VX(Y) or, simply, V(Y) 
for U {Vx(a): aiY}. 

Let G be a group and S a full or partial semigroup. We say that G acts on S if 
a homomorphism <p\ G —(Aut S)d is given where (Aut S)d is the dual of the auto-
morphism group of S. For every s£S and g€G, we denote s(gcp) by gs. 

Let G be a group and S a semigroup with 0 on which G acts. Define a multipli-
cation on the set ( (S \0 )XG)U0 by 

for every s, t£S\0 and g, li£G. It is not difficult to check that this multiplication 
is associative. The semigroup obtained in this way is called the 0-semidirect product 
of S by G and is denoted by S*0G. 

If G is a group acting on a semigroup S without 0 then (5°* o G)\0 is a semi-
group termed the semidirect product of S by G and is denoted by S*G. 

Let A' be a partial semigroup and G a group acting on X. Let <p: G—(Aut X)d 

be the homomorphism defining this action. Then tp: G—(AutJf)d, g<p=g<p is 
a homomorphism. Since x(gq>)=x(g<p) for every x£X and g£G, it is not con-
fusing to denote x(g<p) also by gx. By the semidirect product X*G we mean the 

(5 o)( t h ) = \ ( S - 8 t ' 8 h ) ^ S ' 
' ' o)K ' ' lo other 

if s-gt 0 
otherwise 

and 
0 . ( s ,g ) = ( s , g ) . 0 = 0 . 0 = 0 

partial semigroup X*0G. 
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2. On ¿-unitary regular semigroups 

By MeAlister's P-theorem [6], every ¿-unitary inverse semigroup S is iso-
morphic to a P-semigroup P(G, SC, <&) where G is a group, 9C is a partially ordered 
set on which G acts by order automorphisms, <& is an order ideal in 9C such that 
is a lower semilattice and P(G, ST, <&) is, actually, a well-determined subsemigroup 
in the semidirect product of the "partial semilattice" 3C by G. TAKIZAWA ([14] ; cf. 
also [11]) generalized this result by proving that every ¿-unitary ^-unipotent semi-
group S is isomorphic to a so-called PL-semigroup constructed in a similar way as 
a P-semigroup by means of a group, an ^-trivial "partial idempotent semigroup" 
ST on which G acts and by means of a subband ^ of SC forming an order ideal in 3C 
with respect to the natural partial order . In both cases the triple (G, SJC, <W) can 
be chosen in such a way that G is isomorphic to Gs and <3/ to Es. 

The proofs of MeAlister's and Takizawa's results are based on the observation 
that S$f)(j = i (i is the identity relation) holds in an ¿-unitary inverse [^2-unipotent] 
semigroup (cf. [6] and [14]). Hence the elements of an ¿"-unitary inverse [Omnipotent] 
semigroup S can be coordinatized with pairs from ESXGS. 

When we intend to generalize these results for ¿-unitary regular semigroups 
the difficulty lies in the fact that, in an arbitrary ¿-unitary regular semigroup S, we 
have no such natural coordinatization of elements as in the case of ¿-unitary inverse 
[O-unipotent] semigroups. The analogue of that coordinatization would be the 
injection S-+Es/i%XGsXEs/Jif defined by so, where s'£V(s). 
However, it seems very complicated to determine in an abstract way which triples 
are coordinates of an element, how the coordinates are multiplied and what conditions 
they have to satisfy in order that the groupoid defined in this way be an ¿-unitary 
regular semigroup. Therefore we looked for another way of characterizing ¿-uni-
tary regular semigroups. We cannot expect to obtain a construction analogous to 
P-semigroups which produced all ¿-unitary regular semigroups up to isomorphisms 
and in which were isomorphic to Es. In finding a generalization of the P-theorem 
for ¿-unitary regular semigroups, we tried to preserve the other main feature of 
MeAlister's and Takizawa's results, namely, we wanted to obtain an ¿-unitary 
regular semigroup as a well-determined subsemigroup of a semidirect product of a 
certain partial groupoid by a group. We imitate the proof of the P-theorem due to 
MUNN [7] and that of Theorem 3 .1 in [14]. The new idea in our case is that the partial 
groupoid SE is defined oh SxGs instead of ESXGS-

Let S be an ¿-unitary regular semigroup. Define a partial groupoid 9C = 
=(SXGs; o) as follows: 

(s,g)o(t,h) is defined if and only if so = g_1/i, 
^ and in this case (s,g)o(/, h) = (st, g). 
Put <W={(s, 1): s£S). 
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In the sequel we prove several properties of the triple (Gs, SC, <¥). 

(I) & is an orthodox semigroup which is categorical at 0. Moreover, ESC=ESXGS 

and, for every (s,g)£3£, we have V!r((s,g))={(s',g-so): s'eVs(s)}. 

Proo f . Let (s,g),(t,h),(u,k)£2£. It is clear by (1) that we have (s, g)o(t, h)=0 
in 3C if and only if so^g^'h. Suppose first that (s, g)o(t, h)^0 and (t, h)o(u, k)^0. 
Then sa=g~1h and to = h~1k which imply that (st)o=g~1k. Hence it follows 
by (1) that ((s,g)o(t,h))o(u,k) = (st,g)o(u,k) = (stu,g) = (s,g)o(tu,h) = (s,g)o 
o((t, h)o{u, k))?i0. If (s,g)o(t,h)=0 and (t,h)o{u,k)^0, then so^g~lh which 
implies by (1) that (s, g)o((t, h)o(u, k))=(s, g)o(tu, h)=0. If (s, g)o(t, h)^0 and 
(t, h)o(u, k) — 0, then so—g~1h and ta^h~1k whence we infer that (st)o?ig~Lk. 
Therefore ((J, g)o(t, h))o(u, k) = (st, g)o(u, k)=0. Thus we have shown that St, is 
a semigroup which is categorical at 0. 

Let (i, g)^SC. Now we determine Vx((s, g)). Making use of the fact that 
J'<7=(S0-) - 1 for each s'£Vs(s), one can easily check that (J', g-so)€Vx((s, g)) 
for every j'£Fs(.y). If (t, h)€Vx((s, gj) then (1) implies /£Fs(.y) and, since (s,g)o 
o(t,h)?±0, we have so—g'^h. So it is verified that g)) consists of those 
elements indicated in the assertion. In particular, we obtain that i t is regular. 

It remains to determine Ex. It is obvious that (e, g)(zEs for any e£Es and 
g£Gs. Assume that (e,g)£Ex. Then (e,g)o(e,g) = (e,g), that is, ea=g~1g=\ 
and e2 = e. Clearly, is a band because, for every {e,g),{f,h)£Ex, we have 

n\ i \ //• ¡(efs) if g =h 

(2) (e' g ) ° ( / ' h ) = io otherwise. 

This implies that 3C is orthodox. The proof is complete. 

(II) The mapping (p: 3t—B(Gs) defined by (s, g)<p = [g, g • sc] and 0cp;=0 is 
a surjective 0-restricted homomorphism with Ker (pQE^. Consequently, SC is 
E\0-unitary, ker (p = Q, the least ^-restricted primitive inverse semigroup congruence 
on and SI'IQ is an JF-trivial Brandt semigroup. 

Proof . Let (s, g), {t, h)£2£. If so=g~1h, thatis, g-sa=h then 

((s, g ) o ( / , h))q> = (st, g)<p = [g, g • (st)o] = 

~[g,h • to] = [g, g • scr] • [ M • to] = (s, g)(p • (t, h)(p. 

If so9ig~yh, thatis, g-so^h then 

, ((s, g)o(t, h))<p = (ty = 0 = [g, g • so][h, h • to] = (5, g)<p • (t, h)q>. ... 

Thus <p is a 0-restricted homomorphism. It is surjective because Gs=S/o. Since 
S is ¿-unitary, i<r=1 implies s£Es. Therefore, by (I), Ker cpQE^. By Lemma 



236 M. B. Szendrei 

1.6, this ensures that SC is £"\0-unitary and ker cp is the least O-restricted primitive 
inverse semigroup congruence g. 

(III) <W is a maximal right ideal in ?£ with the property that E9 is a subband in <&. 

Proof . It is straightforward by (1) and (2) that ^ is a right ideal in SC and 
Ey is a subband in <&. Suppose now that is a right ideal in SC such that E 9 is a 
subband in <Sfx and Then (2) implies E9=E9 . Let (J, g K ^ . Since 

is a right ideal in SC we infer by (I) that (ss',g) = (s ,£)°( J '>g • so)^cS/ir\Ea: = 
= E y = E , y for every i ' € F s ( j ) . Thus g=\ and (s,g)£<& proving that 
The proof is complete. 

Let us define an action of Gs on SC as follows: for every (¿, g) and hf.Gs let 
h(s,g) = (s, hg). 

(IV) Gs acts on -X such that GS<W = 9C and, for every g£G s , there exists 
a£<& with ga£Vx(!&). 

Proo f . By (1), one can immediately check that, for every h£Gs, the mapping 
h : SC-*SC defined by (s, g)fi=(s, hg) is an automorphism and kh = hk for every 
h,k£Gs. The equality GS<3/=2C is a trivial consequence of the definition of the 
action. In order to verify the last assertion, observe that, by (I), we have V s (&) = 
= { (S ' ,SCT): s'£Vs(s)}={(t,h)eSC: FA^/r 1}. Since Gs=.S/<7, for any g£Gs, 
there exists s£S with so=g~1. For such an s we have g(s, l)=(s, g)£ Vx(f&). 

As an easy consequence of the equality obtained here for V3 {9J) we deduce 

(V) For every (.?, \)c<& and g£Gs, we have g~1(s, l)£Vx(<3t) if and only 
if so=g. 

(VI) The mapping s: S-~2C*Gs defined by s£=((s, 1), so) is an embedding of 
S into SC *GS. In particular, S is isomorphic to the subsemigroup {(a, g)(L(&XGs: 
g-*aeVx(!3/)}. 

Proof . The mapping e is clearly injective and, by (V), its range is {(a, g)€ 
£<3/XGs: g~1a^.Vx{<Sl)}. All we have to check is that e is a homomorphism. Let 
s, t£S. Then, by (1), we have 

se-te = ((s, 1), so)((t, 1), to) - ((s, l)os<r(r, 1), so • to) = 

= ((s, l)o(r, Sff), (st)o) = ((si, 1), (st)o) = (st)e 

which completes the proof. 

Statement (VI) shows that we succeeded in finding a partial semigroup SC on 
which Gs acts such that S is isomorphic to a well-determined subsemigroup of 
SC*GS. . 
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3. PO-semigroups and O-semidirect products of strictly 
combinatorial semigroups by groups 

In this section we introduce the concept of a PO-triple and a PO-semigroup so 
as it is inspired by the results of the preceding section and give a description of E-
unitary regular semigroups by means of PC>-semigroups and by means of O-semi-
direct products of strictly combinatorial semigroups by groups. 

A regular semigroup S with 0 is called strictly combinatorial if (i) S is categorical 
at 0, (ii) S is ¿ \0-uni ta ry and (iii) S/Q is an Ж-trivial Brandt semigroup. 

A partial semigroup X is termed strictly combinatorial if X is a strictly combina-
torial semigroup. 

An Ж-trivial semigroup is sometimes called combinatorial. In order to justify 
the terminology just introduced we show that a strictly combinatorial semigroup is 
necessarily Ж-trivial. Let S be a strictly combinatorial semigroup and 5 an element 
in a non-zero subgroup of S. Then there exists an inverse s' of s in this subgroup 
and thus ss'=s's^0. Hence we have in the factor 
semigroup S/G which is an ¿¿"-trivial Brandt semigroup. This implies that SQ is 
idempotent and thus s£Ker g \ 0 . Since S is £\0-unitary, we infer by Proposition 
1.4 that s is idempotent. Thus we verified that each subgroup in S is trivial which 
implies that S is ^-trivial. 

Now we define the notions which will play the role of the McAlister triple and 
the P-semigroup. 

Let G be a group, (Ж; o) a strictly combinatorial partial semigroup and <У a 
subset in Ж. Suppose that 

(POl) У is a right ideal in {9C\ o) and ETY is a subband in 
(P02) G acts on (9C\ o); 
(РОЗ) &3/ = 
(P04) for every g£G, there exists a ^ with ga£f(f). 

The triple (G, 3E, <&) satisfying the above conditions is called a PO-triple. If 
(M) <& is a maximal right ideal in (3C\ o) with the property that E<y is a subband 

in <У, then (G, SC, <&) is termed a POM-triple. 
Given a PO-triple (G, 3£, we define a multiplication on the set 

PO(G, X, 9) = {(a, g ) ^ X 6 : g~1aeV(90} 
by 
(3) (a,g)(b,h) = (aogb,gh). 

Property (P04) ensures that the image of PO(G, S£, <&) under the second pro-
jection is just G. The following lemma shows that the image of PO(G, HE, <&) under 
the first projection is <&. 
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Lemma 3.1 Let (G, ЭС,<У) be a PO-triple. Then, for every there exists 
g£G with ga£V(%<)• 

Proof . If and a'£V(a), then, by (РОЗ), we have a'=hb for some 
/i€C and ЪЧ<У. Thus, by (P02), / i -1a€F(/ i"V) = F(fe)gF(^) . 

P ropos i t i on 3.2. Let (G, SC, <&) be a PO-triple. 
(i) PO(G,9Cis an E-unitary regular semigroup and EP0(C x 9)={{е, 1): 

e£E9} is isomorphic to Ey. 
Moreover, for any {a, g), (b, h)£PO(G, SC, <30, we have 

(iii) (a,g)3t{b, h) if and only if a@b; 
(i v) (a, g)Se (b, h) if and only if g~ га:Vh~ 
(v) (a,g)y(b,h) if and only if g=h and V(g-1a№V(h-1b)ri&* • ; 
(vi) (a, g)a(b, h) if and only if g=h. 

(vii) PO(G, SC, <&)la is isomorphic to G. 

The ¿-unitary regular semigroup PO(G, SC, °Ж) is called the PO-semigroup 
determined by the PO-triple (G, SC, <&) or, simply, a PO-semigroup. 

Proof . For brevity, denote PO(G, SC, <&) by S. 
(i) First of all, we have to show that S is closed under the multiplication defined 

by (3). Let (a ,g), (b, h)£S. Then g-1a£V(a+) and h~'b£V(b+) for some a+, b+d®. 
Since <& is a right ideal in SC this implies by (P02) that a+ og~ la and bo hb+ belong 
to Eg. As E9 is a subband in by (POl), the product (a+og~1a)o(bohb+) is 
defined and thus g~1ao(a+og~1a)o(bohb+)ob=g~1aob is also defined. From this 
it follows by (P02) that aogb is defined and, since ^ is a right ideal in SC, it belongs 
to °У. Moreover, we obtain that (gh)~1 (aogb)—h~1 (g~ 'a)oh~ :b is also defined in 
ST, that is, it is not equal to 0 in SC. Since the strictly combinatorial semigroup 9C is 
orthodox by Proposition 1.3, we infer that h~1(g-1a)oh~1b£V(b+ oh'1^). Hence 
b+o/i_1a+T^O, that is, the product b+oh~1a.+ is defined in SC. Since W is a right 
ideal in ЭС and b+£<&, we have b+ oh~la+ Thus (gh)~\aogb)^V(<&), com-
pleting the proof of the fact that S is closed under multiplication (3). 

A straightforward calculation shows that the multiplication defined by (3) is 
associative. Now we turn to proving the regularity of S. Observe that it suffices to 
verify (ii). For, if (a,g)£S then Therefore there exists b^&DVig-^) 
and hence gb£V(a)QV(<&0- Thus (b, g~l)^S is an inverse of (a, g). The element 
(b, h) is an inverse of (a, g) if and only if (a, g)=(a, g)(b, h)(a, g)={aogbogha, ghg) 
and (b,h)—(b,h)(a,g)(b,h)=(bohaohgb,hgh), that is, if and only if h=g~1 and 
aogboa=a,bog~1aob=b. The latter equalities are equivalent by (P02) to the 
condition that b£V(g~1a). 
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It is easy to see that Es = {(<?, 1): e^Ey) which is a band with respect to the 
multiplication defined in (3) and Es is isomorphic to E9. 

Now we prove that the homomorphism <p: S-»G, (a,g)cp=g is onto and 
Кет cpQEs- This implies that ker (p = cr and thus, by Result 1.1, 51 is ¿-unitary 
and (vi), (vii) hold. Property (P04) of the PO-triple (G, X, Щ ensures that cp is 
onto. Assume that (a, g)£Ker (¡o. Then g— 1 and (a, 1)2£iS whence аоа^'З/. 
Since &!q is and Ж-trivial Brandt semigroup and in such a Brandt semigroup a 
square of an element л: is non-zero if and only if x is idempotent we infer that ад is 
a non-zero idempotent in X/q. However, Ker g=E% by Proposition 1.4. This 
implies a£Ex. Thus (a,g)£Es which proves that Ker q>QEs. This completes 
the proof of (i), (ii), (vi) and (vii). 

(iii) We have (a, g)3t,{b, h) if and only if there exist inverses (a, g)' and (b, h)' 
of (a, g) and (b, h), respectively, such that (a, g)(a, g)'3$(b, /2) (b, h)' in Es. By applying 
(ii) we deduce that this holds if and only if there exist a+^V(g~1a) and b+^V(h~1b) 
such that aoga+ 0ibohb+ in Ev. Since a0taoga+ and bMohb+ in 3C, this is 
equivalent to requiring that аШЪ. 

(iv) is proved dually to (iii). 
(v) is an immediate consequence of (ii). The proof is complete. 

In the terminology introduced here the results of Section 2 can be formulated 
in such a way that the triple (G s , 9C, <?J) defined there is a POM-triple and 5 is 
isomorphic to PO(Gs, SC, 9). Thus we deduce the following 

P r o p o s i t i o n 3.3. Every E-unitary regular semigroup is isomorphic to a PO-
semigroup defined by a POM-triple. 

It is clear that, for a given PC-triple (G, 3C, <&), the PO-semigroup PO(G, 9E, <&) 
is a regular subsemigroup without 0 in the O-semidirect product Ж *0G. 

In the sequel we investigate the connection between PO-semigroups and regular 
subsemigroups without 0 in O-semidirect products of a strictly combinatorial semi-
group by a group. 

Lemma 3.4. Let G be a group acting on a semigroup T with 0. Then 
(i) the O-semidirect product T*0G is a semigroup in which ETJr G = {(e, 1): 

e€£r\0}U0 and VT^G((t, g))= g~l): t'eVT(t)} for every (t,°g)£T*0G; 
(ii) T*0G is regular if and only if T is regular-, 

(iii) T*0G is orthodox if and only if T is orthodox, and in this case, Etm G 

is isomorphic to ET ; 
(iv) T*0G is categorical at 0 if and only if T is categorical at 0; 
(v) if T is regular and categorical at 0 then T*0G is E\0-unitary if and only 

if T is E\0runitary. 
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Proof . Statements (i)—(iv) can be easily proved therefore they are left to the 
reader. In order to prove (v) it suffices to check by Proposition 1.4 that E T * a G \0 
is a left unitary subset in T*0G if and only if ET\0 is a left unitary subset in T. 
Suppose first that ET^G\0 is a left unitary subset in T*0G, and let e£ET, t£T 
be such that et£ET\0. Then we have (e, l)(i, 1 )=(et, l ) € £ r + o C \ 0 and 
(e, l)£ETtoC\0 by (i), which imply that (/, ])^ET^G\0. Thus, again applying (i), 
we infer that t£ET\0. Conversely, suppose that ET\0 is a left unitary subset in 
T and (e, 1 KET^G, ( t ,g )£T* 0 G with (e, 1)(/ ,g)dET*o G \0. Then, by (i), we 
obtain that g= 1 and e, etdET\0. Hence it follows that t£ET\0, that is, 
(/, g)££V*oC\0. The proof is complete. 

Lemma 3.4 implies that if T is strictly combinatorial then T*0G is an E\0-
unitary regular semigroup which is categorical at 0. Consequently, every regular 
subsemigroup without 0 in T*0G is ¿-unitary. Hence we obtain 

P r o p o s i t i o n 3.5. Every regular subsemigroup without 0 in a 0-semidirect 
product of a strictly combinatorial semigroup by a group is E-unitary. 

Now we turn to investigating the connection between PO-semigroups defined 
by POAf-triples and maximal subsemigroups without 0 in 0-semidirect products of 
strictly combinatorial semigroups by groups. First of all, we determine the maximal 
subsemigroups without 0 in a 0-semidirect product of a strictly combinatorial semi-
group by a group. 

Lemma 3.6. Let G be a group acting on a strictly combinatorial semigroup 
T. Then, in T*0G, the maximal subsemigroups without 0 are 

(4) M, = {(f, g)£T *0G: tem<?(g-it)Q} 

where i£ET/e\0, and every subsemigroup without 0 in T*0G is contained in M( for 
a unique i^.ET/e\0. 

Proof . Since, in an ^-trivial Brandt semigroup, the only subsemigroups 
without 0 are the singletons containing idempotents, it suffices to find a 0-restricted 
homomorphism ^ of T*„G onto an Ji?-trivial Brandt semigroup such that the 
inverse images of the idempotents are just the Mls. We shall use for this purpose 
an -trivial Brandt semigroup B(I) which is the image of T under some 0-restricted 
homomorphism (p: T—5(7) with ker (p = Q. Since cp is 0-restricted, t£T\0 
implies tq>7±0. Denote by cpn ( n = l , 2) the mapping of 7 \ 0 into / assigning the 
nth component of tip to t for each t£ T\0. Define the mapping \j/: T*0G^B(I) 
by 0ij/=0 and (t,g)\l/=[tcp1, (g - 1 / ) <p2]- We prove that is a 0-restricted homo-
morphism. By definition, >p is 0-restricted. Now let (t, g), (u, li)£T*0G. Observe 
that (t, g)(u, h)=0 if and only if t • gu—0, that is, if and only if g~1t-u=0. Since 
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<p is O-restricted, the latter equality is equivalent to (g - 1 / • u)<p=0. This holds if 
and only if (g~1t)(pi7iucp1. Thus we see that if (/, g)(u, /i)=0 then (/, g)>j/ • 
•(u, h)\p=0. Moreover, if (t, g)(u, K)^0 then (g~1t)(p2—ucp1 and hence 

((t, g)(w, h))xl, = (t • gu, ghW = [(/• gu)<plt ((gh)"!(/• gu))(p^\ = 

= [t<Pi, = [t<Pi, (g_ 1 OVsi • l«<Pi, (h'1 u)<P2\ = 0, gW • («, h)ip. 

Here we have utilized that (/ • gu)cp = tq> -{gu)cp implies (t-gu)<pl = t<p1 and, simi-
larly, {(gh)~1(t-gu))(p=((gh)-1t- Irh^y^gh)-^)? • (h~lu)<p imply 

((£*)"1 ('•*«)) % = 1 «)<?,. 

The proof is complete. 

P ropos i t ion 3.7. (i) Let G be a group acting on a strictly combinatorial 
semigroup T. Let i£ET/e\0. Define G={g£G: to@i£e(g~1t)Q for some t£T\0}, 
<%={t£T\0: tQmse(g~lt)Q for some g£G) and S£={ga\ g£G, a£<&}. Define 
a partial operation on 9C by restricting the operation of T to X and define an action 
of G on % by restricting the action of G on T to G and SC. Then (G, S£, ®J) 
is a POM-triple and PO(G, Sl\ <¥) =M, (cf. (A)). ' 

(ii) Conversely, for every POM-triple (G, SC, <%), the PO-semigroup PO{G, SC, ®J) 
is a maximal subsemigroup without 0 in St'*0G. 

Proof , (i) First we show that G is a subgroup in G. If g£G, t£T\0 with 
tQm£e(g-H)Q and t'evr(t), then we have g~1t,£VT(g~1t) and t'ggiMig-^g. 
The latter relation can be written in the form (g~1t')g3$i£?(g(g~1tr))g. Since T 
is regular, this shows that g£G implies g~1£G. Assume that g, h£G. Then, by 
definition, there exist t,u£T\0 with tgMiSe(g~ >t)g and ug^i^Qi'h^g. Thus, 
by (4), we have (t, g), (u, /1)6 Making use of the fact that, by Lemma 3.6, M ; is 
a subsemigroup in T*0G, we obtain that ( t ,g)(u ,h)£M i . Hence we infer that 
(t • gu) Q0li£f((gh)~1 (t • gu)) Q which implies that gh£G. Thus G is, indeed, a sub-
group in G. 

Now we verify that <W is a right ideal in SC. Let a^Ql and x£9C such that 
ax?±0 in T. Then we have (ax)gl%ag!%i. On the other hand, by the definitions of 
SC and there exist g£G and b£<& with x=gb, and i£C(h~xb)g for some h£G. 
Clearly, h£G and ((git)-1 (ax))g=((gh)~'a-h~tyg^ih-lb)g^Ci. Thus, indeed, 
ax belongs to provided a^®/, x£SC and ax^O in T. This implies that $ is a 
subsemigroup in T. For, let x, ydSC such that xy^O in T. Suppose that x=gb 
where g£G and b£<W. Since <& is a right ideal in 3C, we have b-g~xy£c& whence 
xy=g(b-g~1y)t&. 

Now we show that 9C is regular. Let ga£SC where g£G and a£<&. Then 
ag!%i&(h~1a)Q for some h£G. If a'eVT(a) then we have (h-la')gm&a'g 

16 
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which implies that h~Ve<3T)FT(/i_1a). Hence we deduce that ga' = (gh)(h~V) 
is an inverse of ga in ЭС for every a'£ VT(a). Consequently, 

(5) VT(x) = Vx(x) for any 

In particular, we obtain that $ is regular. Finally, we verify that $ l g x is an .^-trivial 
Brandt semigroup. It is easy to see by definition that 2C={t£_T: (ge)g(%tg£?(lie)g 
for some g, h£G} where e£ET with eg = i. Hence ЙГ is a union of g-classes in T 

v 
and St'g, which is isomorphic to St'/g^, is an Ж-trivial Brandt semigroup since 
T/Q is an Ж-tnvial Brandt semigroup. Thus we have shown that Ж is a strictly 
combinatorial semigroup. 

Returning to the properties of <& observe that E& = { e £ £ r \ 0 : eg = i}. This 
clearly implies that E9 is a subband in <W. Property (РОЗ) follows by the definition 
of 3£ and that of the action of G on SC while (P04) is a consequence of the definitions 
of G and <У and of the fact (easily deduced from (5)) that 

(6) KjrO^O = Vr(<&) = {t£T\0: iQ^m(g-4)Q for some g£G}. 

Thus (G, SC, <&) is a PO-triple. 
Now we show that (M) is satisfied. Suppose that (G, SC\ <&x) is a PO-triple and 

Since is a right ideal and ?£ is regular. implies yy'CE^ for any 
y'£ Vx(y). Therefore we obtain that yg^(yy') g=i as E9 is a subband in S£ g T\0 
containing E&. Assume that y=ga for some g€G and Then there exists 
h£G with (h~1a)gS^i whence we obtain that ((gh)~ 1y)д = (h~~ 1a)gSfi. Thus 

is proved. Hence <У=<УХ and therefore (G, SC, Щ is a POM-triple. 
By the definitions of (G, 3C, and the PO-semigroup PO(G, X, <&), Proposi-

tion 3.2 (i) implies that PO(G, X, Щ is a subsemigroup without 0 in T*0G. Then 
it follows from Lemma 3.6 that PO(G, .f, The reverse inclusion follows 
if we observe that tgl%i£?(g~1t)g implies that ttW, g£G and, by (6), we have 

V T h e proof of the direct part is complete. 
Now we turn to the proof of the converse part. 
(ii) By Proposition 3.2 (i), S=PO(G, Ж, <¥) is clearly a subsemigroup in 

S£*0G and 0 T h e n , by Lemma 3.6, we have SQMt for a unique i^Ex/e\0 
and thus, by Lemma 3.1, we infer ®J Q {x£&: xgMi}. The latter subset which we 
will denote by <%b is easily seen to be a right ideal in 2£ where Eaj is a subband. 
Since (G, Ж, Щ is assumed to be a POM-triple we infer that °D=14 Hence, if 
(fl,g)iMj then a^HJ and (g~1a)gSCi in $ /д . The latter relation implies ЪдШ 
for any b^V(g~1a), that is, we have V(g~]a)Q'Wi={W. Hence it follows that 
g~1a^V('S0 and we have (a,g)£S. Thus the equality S = M { is proved. 

We can summarize the results of Sections 2 and 3 as follows: 
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Theorem 3.8. For a regular semigroup S the following conditions are equivalent 
to each other: 

(i) S is E-unitary; 
(ii) 5 is isomorphic to a PO-semigroup; 

(iii) S1 is isomorphic to a PO-semigroup defined by a POM-triple; 
(iv) S is a regular subsemigroup without 0 in a O-semidirect product of a strictly 

combinatorial semigroup by a group; 
(v) S is a maximal subsemigroup without 0 in a O-semidirect product of a strictly 

combinatorial semigroup by a group. 

Proof . The implications (i)=>(iii) and (ii)^(i) are stated in Propositions 3.3 
and 3.2 (i), respectively. Since (iii)=>(ii) is trivial, the conditions (i), (ii) and (iii) are 
equivalent to each other. Moreover, the implications (iii)=>(v) and (iv)=>(i) follow 
from Propositions 3.7 (ii) and 3.5, respectively. The proof is complete as (v)=*(iv) 
is easily deduced from Propositions 3.7 (i) and 3.2 (i). 

4. ¿-unitary regular semigroups and connected idempotent 
and regular categories 

A theory generalizing McAlister's P-theorem for not necessarily regular semi-
groups with commuting idempotents was developed by MARGOLIS and PIN in [4]. 
Although their terminology and methods are entirely different from ours, for in-
verse semigroups their main theorem says almost the same as our Theorem 3.8 (i), 
(v). After making a dictionary between the two terminologies we deduce the gener-
alization of Theorem 4.1 [4] for ¿-unitary regular semigroups. 

In this section the reader is assumed to be familiar with the paper [4]. The 
notions and notations of [4] are used without any reference. 

• Let C be a category. Then Mor (C) is a partial groupoid. Denote by Mor (C) 
the groupoid obtained from Mor (C) by adjoining a new symbol 0 and extending 
the operation as in Section 1. Clearly, Môr (C) is a semigroup which is categorical 
atO. 

The following proposition states that categories can be considered as certain 
semigroups with 0 together with a O-restricted homomorphism into an ^-trivial 
Brandt semigroup. 

P r o p o s i t i o n 4.1. (i) For every category C, the groupoid Mor (C) is a semi-
group and the mapping <pc' Mor (C)—I?(Ob (C)) defined by 0(pc=0 and pcpc— 
= [«, v] provided />€Mor(w, v) is a O-restricted homomorphism onto a full subsemi-
group of 5 (Ob (C)) such that, for every e,f(zEg(ob(C))> e(PcX a Monoid with 
identity \e and \ep=p\f=p for any /)ÇMor (C) with efflpq>c£/?f. 

16» 
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(ii) Let S be a semigroup with 0 and (p: S—B(I) a O-restricted homomorphism 
onto a full subsemigroup of B(I) such that, for every e,f£EB(I), e<p~x is a monoid 
with identity \e and \es=s\f=s for any s£S with e8is(p££f Then we can define a 
category C(SyQ>) as follows: Ob(C(s> ,,>) = / and Mor (i,j)={s£S: «/> = [/',./']} for 
any i j a . 

(iii) For every category C, we have C—C(Mdr(C), pc) • 
(iv) For every pair (S, (p) with properties required in (ii),we have Mor C(Si9>) 

and <P = VciStVi-

The proof is easy therefore it is left to the reader. 
For brevity, a pair (S, <p) satisfying the properties required in (ii) is termed a 

category pair. 

By the preceding proposition we immediately obtain 

P r o p o s i t i o n 4.2. (i) The category C is connected if and only if <pc is onto. 
(ii) The category C is regular if and only if Mor (C) is regular. 

(iii) The category C is idempotent if and only if Ker <pc = £Mor(C) • 

Assume that C is a connected, idempotent and regular category. Then the 
preceding proposition implies that Mor(C) is a regular semigroup and <pc is a 
O-restricted homomorphism of Mor (C) onto an ^"-trivial Brandt semigroup with 
Ker < P c = i i M 6 r ( C ) - Then Lemma 1.6 ensures that Mor(C) is £ \0-uni tary and 
kcT(pc=Q. Thus Mor(C) is a strictly combinatorial semigroup in which every 
non-zero idempotent g-class e is a monoid with identity le and, for arbitrary non-
zero idempotent ¿»-classes e,f and for any /?£Mor(C) with eStpgSPf, we have 
\ep=p\f=p. Now let S be a strictly combinatorial semigroup in which every 
non-zero idempotent o-class e is a monoid with identity l e and, for any non-zero 
idempotent ^-classes e, f and for any s£S with eMsq££f, we have le i=.yl f=s. 
Such an S will be termed a strictly combinatorial semigroup with local identities. 

Let S be a strictly combinatorial semigroup with local identities. By definition, 
there exists an -trivial Brandt semigroup B(I) and a surjective O-restricted homo-
morphism (p: S-*B(I) with ker (p = Q. Clearly, (S , <p) is a category pair and, by 
Propositions 4.1 and 4.2, C (S is a connected, idempotent and regular category. 
Since Lemma 1.7 implies Q to be the only O-restricted primitive inverse semigroup 
congruence on S, for each category pair (S, (p'), we have ker (p'=Q- Consequently, 
for any category pairs (S, q>: S-~B(I)) and (S, (p ' : S^-B(I')), there exists an 
isomorphism ifr: B(/)-»-B(//) with q>tp=(p'. Hence we can easily deduce 

P r o p o s i t i o n 4.3. If C is a connected, idempotent and regular category then 
Mor (C) is a strictly combinatorial semigroup with local identities. Conversely, for 
every strictly combinatorial semigroup S with local identities, there exists an, up to 
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isomorphisms, unique category Cs such that Mor(C s) is isomorphic to S. The 
category Cs is connected, idempotent and regular. 

Recall that an isomorphism of the category C onto the category D is a functor 
F: C—D which induces a bijection of Ob (C) onto Ob (D) and a bijection of 
Mor (u, v) onto Mor (Fu, Fv) for every u, v£ Ob (C). 

The connection between automorphisms of categories and automorphisms of 
the corresponding semigroups is easily described. Given a category C or a category 
pair (S, <p), denote by Aut C and Autv S, respectively, the group of automorphisms 
of C and the group of those automorphisms of S which possess the property that, 
for every s, t£S, we have .s kercp t if and only if sot kerrp ta. 

P r o p o s i t i o n 4.4. (i) Let F: C-+C be an automorphism of the category C. Then 
the mapping Fm induced by F on Mor (C) is an automorphism of the partial semi-
group Mor (C) which can be extended to an automorphism of Mor (C) by setting 
0Fm=0. 

(ii) Let (S, (p: S-+B(I)) be a category pair and o^Aut^ S. Then a. induces 
an automorphism of B(I) and, consequently, a permutation nx of I in such a way 
that, if scp = [i,j] for some s£S\0 and i,j(Ll, then (stx)(p = [inx,jKJ. Define a 

functor Fx: C(SiV) as follows: FJ=inx for every i£I=Ob(C(S>q>)) and 
Fxs=sa for every s£5=Mor (C(S>rt). Then Fa£Aut C(S_v). 

(iii) The mappings (Aut C ^ - A u t ^ Mor(C), F^Fm and A u t ^ M o r ( C ) -
— (Aut C)d, a>-*-Fa defined in (i) and (ii) are group-isomorphisms inverse to each other. 

(iv) The mappings Autv S-^iAut C (S^ )) i , a^Fa and (Aut C(S „,) ' ' -Aut9 5, 
F>~* Fm are group-isomorphisms inverse to each other. 

By applying this description for connected, idempotent and regular categories 
the case becomes simpler. For, if S is a strictly combinatorial semigroup and (5, <p) 
is a category pair, then we have seen that ker <p = e- By Proposition 1.5, it is easy 
to check that, for any s, t£S\0, we have sgt if and only if socgta. Hence Aut,, S= 
=Aut S, the group of all automorphisms of S. 

P r o p o s i t i o n 4.5. (i) If C is a connected, idempotent and regular category, 
then the mapping (Aut C) i—Aut Mor (C), F*-+Fm (cf. Proposition 4.4) is a group-
isomorphism. 

(ii) If S is a strictly combinatorial semigroup with local identities and Cs is a 
connected, idempotent and regular category with Mor (Cs)=§, then, for every 
a£ Aut S, there exists a unique functor Fx which coincides with a on Mor (Cs). 
Moreover, the mapping Aut S'—(Aut Cs)d, a>->Fa (cf. Proposition 4.4) is a group-
isomorphism. 

Remark . Proposition 4.5 implies that if a group G acts on a connected, idem-
potent and regular category C then this action determines in a natural way an action 
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of G on Mor (C). Conversely, if a group G acts on a strictly combinatorial semi-
group S with local identities and Cs is a category with Mor (Cs) = then this 
action can be extended to an action of G on Cs. 

It remains to find connection between the monoids Cu (defined in [4]) and PO-
semigroups. 

P r o p o s i t i o n 4.6. (i) Let G be a group and C a connected, idempotent and 
regular category on which G acts transitively, and let «£Ob(C). Then (G, Mor (C), 
<&u) with <&u=Moi (u, C) is a POM-triple and Cu=PO{G, Mor (C), <WU). 

(ii) Let (G, SI, <W) be a POM-triple where S£ is a strictly combinatorial semi-
group with local identities. Let Cx be a category such that Mor (C%)=S£. Then 
Cx is a connected, idempotent and regular category on which G acts transitively, 
and PO(G, S£, <¥)=(Ca-)„ for some w€Ob (Cx). 

Proof , (i) By Proposition 4.3 and Remark, Mor (C) is a strictly combinatorial 
partial semigroup on which G acts. Let us define G, <& and 9£ by means of G, T= 
=Mor (C) and [W, w ] € £ ' ( M O R ( C ) ) P C

 A S I N Proposition 3.7 (i). We claim that G=G, 
and , ^=Mor(C) . 

First of all, observe that, for any g£G and /?£Mor (C), we have 

(7) /?£Mor («, gu) if and only if pcpcS&[u, 

On the one hand, hence it follows that G—G as C is connected and therefore 
Mor (u, g u ) • for every g£G. On the other hand, we obtain from (7) the equality 
<&=<&u by making use of the assumption that G acts transitively, and therefore any 
v€Ob (C) is of the form gu for some g£G. Now let g£Mor (v, C). As we have 
just seen, there exists g£G with gu=v. Since g induces an automorphism on C, 
we infer that there exists />£Mor (u, C) with gp—q. Hence ^ = G ^ u = M o r (C). 
Thus Proposition 3.7 (i) ensures that (G, Mor (C), is a POM-triple. The equality 
Cu=PO(G, Mor (C), <8fu) immediately follows as V(<&U)=MOT (C, u). 

(ii) Proposition 4.3 implies C x to be a connected, idempotent and regular 
category. In the proof of Proposition 3.7 (ii) it is verified that x£S£: xg0li} 
for some Hence it follows that <^=Mor («, Cx) for some «6 Ob (Cx). 
Now let v, w£Ob (Ca). Since Cx is connected, there exist xd Mor (v, C&) and 
j>£Mor (w, Cx). Since G(&=S£ we have g,h£G and a,b£<& with ga=x and 
hb==y. Then the action of G on C®- has the property that gu=v and hu=w. Hence 
we infer that hg~1v=w, that is, G acts transitively on Cx. Thus satisfies the 
conditions required in (i) whence it follows that (Ca:)u=PO(G, Mor (Cx), 
where Mor (CX)=SC and <WU=(W. This completes the proof. 

Now we are ready to give a condition equivalent to each of (i)—(v) in Theorem 
3.8 which is analogous to that in the maiin theorem of [4]. 
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T h e o r e m 4.7. The following condition is equivalent to each of the conditions 
(i)—(v) in Theorem 3.8. 

(vi) S1 is isomorphic to a monoid C[G where G is a group acting transitively 
without fixpoints on a connected, idempotent and regular category C. 

Proof . Let S be an ¿-unitary regular semigroup. Then S 1 is also an ¿-unitary 
regular semigroup. By the method described in Section 2 we can construct a POM-
triple (GSi, SE, W) (cf. Proposition 3.3). Consider the pair (SE, <p) where q> is the 
homomorphism defined in (II) of Section 2. By (I) and (II), SEis a strictly combina-
torial semigroup and <p is a O-restricted homomorphism of M' onto B(GSI). It is 
easy to check by (1) that (l,g)o(.s, g)=(s, g)o(l, g • sa)=(s, g) for every s^S1 

and g£GSI. Since (1 ,g)<p=[g,g], this implies that $ is a strictly combinatorial 
semigroup with local identities. Thus (SE, q>) is a category pair. Then, by Proposi-
tion 4.1 (ii), is a category with Mor(C (£ t9))=SE. Moreover, Proposition 
4.6 (ii) ensures that is connected, idempotent and regular, and GSI acts on 
it transitively. Observe that the automorphism of ;<?) determined by an element 
g€Gsi induces the regular left translation on G s i=Ob (C ( j ,,)) corresponding to 
g£G si. Thus GSi acts on C ( j ^ without fixpoints. Property (VI) in Section 2 
ensures S1 to be isomorphic to PO(GSI, SC, <¥), and Proposition 4.6 (ii) implies 
that PO(GST_, SE,W)=(C$TT>))U for some "€Ob ( C ^ ^ ) . Hence S1 is isomorphic 
to (C(jj<?))u for some w£Ob ( C ^ ^ ) . To complete the proof of the implication 
(i)=>(vi) we refer to Proposition 3.11 [4] which states that if C is a category on which 
a group G acts transitively without fixpoints, then, for all w£Ob(C), the monoid 
CU is isomorphic to C/G. 

Conversely, suppose G is a group acting transitively without fixpoints on a 
connected, idempotent and regular category C. Then Proposition 3.11 [4] just cited 
implies that C\G is isomorphic to Cu for all agOb (C), while Proposition 4.6 (i) 
ensures Cu to be a PO-semigroup. Thus (vi) implies (iii), completing the proof of 
the theorem. 

Finally, we show how one can reobtain McAlister's P-theorem from our results. 
Let (G, SE, Of) be a PO-triple such that PO(G, 9E, <W) is an inverse semigroup or, 

equivalently, Ev is a semilattice. It is not difficult to check that (G, 2E/y, is 

also a PO-triple. We claim that the mapping ?/: PO(G, SE, <¥)-+PO(G,&h, ^i), 
(a, g)tj=(ay, g) is an isomorphism. It is immediate that rj is a homomorphism. 
Let us verify that rj is one-to-one. Assume that (a, g), (b, h)£PO(G, SE, W) with 
(a, g)t]=(b, h)t]. Then g=h and ayb in SC. The latter relation implies that V(a)= 
= V(b) and hence V(g-1a) = V(g~1b). Since (a,g),(b, g%PO(G, 9?, <¥) we have 
g~xa, g-^tVCW). Therefore there exists c^V(g-1a)=V(g~1b) with c£<W. Thus 
(c, g'^ZPOiG, SE, <&) and (c, g - 1 ) is an inverse of both (a, g) and (b, g). Since, by 
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assumption, PO(G, SC,<&) is an inverse semigroup we obtain that (a,g)=(b ,h) . 

Now we show that IJ is onto. Consider an arbitrary element (xy, g) in PO(G, SCjy, <&y) 
where xZ.SC. Then xy£<3/y and g~1(xy)£V(e&y). The first relation implies the 
existence of an element a in ^ with ayx, and hence g~1xyg~1a. Thus, by the second 
relation we see that £-1a€F(<30 since V(<&) = V({x£SC: xyb for some b£<W}). 
Therefore (xy, g)=(a, g)t] which completes the proof of the fact that tj is an iso-
morphism. 

The strictly combinatorial semigroup Stjy is an inverse semigroup. Thus, by 
slightly modifying the proof of Theorem 4.2 [4], we can deduce the following asser-
tion. The triple (G, SC, ®0 where SC is the partially ordered set of ^/-classes of St'jy, 
ty={J£St: JOE^D} and the action of C on f is defined by g(xf)=(gx)f 

(g€G, xiSC\y) is a McAlister triple and PO(G, $ly, <&y) is isomorphic to P(G, SC, %/). 
By the preceding paragraph this implies that PO(G, SC. ®f) is isomorphic to 
P(G, of). 

Consider the partially ordered set of ./-classes of SC and denote it by Si'. Put 
JOEy^ • } and define an action of G on SC by g(xj)=(gx)f for 

every g£G and x^SC. Since y ^ f on 3C, it is easily seen that the mapping SC 
defined by (xf)v=(x:y)f (x^SC) is an order isomorphism with the properties that 
<yv=y and g(xv)=(gx)v for every g£G and x T h u s the triple (G,SC,<§) 
is equivalent to the triple (G, St, Therefore (G, SC, ®j) is also a McAlister triple 
and P(G, SC, qj) is isomorphic to P(G, SC, ~oy). The following theorem sums up 
what we have just proved. 

Theorem 4.8. Let (G, SC, &) be a PO-triple such that Eaj is a semilattice. 
Let SC be the partially ordered set of f-classes of SIC and <y={JZSC'. /flisg,^ •}. 
Define an action of G on SC by g { x f ) = {gx)f for every gZG and xg.f. Then 
(G, SC, $) is a McAlister triple and PO{G,SC,<y) is isomorphic to P(G,S£ ,$). 
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