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On some generalizations of Boolean algebras 

J. PLONKA 

0. We shall consider only lattices and algebras of the type T0=(2, 2, 1) with 
fundamental operations + , • , w h e r e -I- and • are binary a n d ' is unary. Algebras, 
of type T0 are often studied mainly as generalizations of Boolean algebras, e.g. 
pseudocomplemented lattices, Stone algebras (see [1], [3]—[6]). 

In [4] we introduced the notion of a locally Boolean algebra as follows. An 
algebra (A; + , • , ' ) is called a locally Boolean algebra if (A; +, •) is a distribu-
tive lattice and there exists a congruence R of (A; + , • , ' ) such that any con-
gruence class of R is a Boolean algebra with respect to the operations + , •, and ' 
restricted to this class. 

We use a similar idea in this paper. In Section 1 we introduce a special con-
gruence ~ in a lattice + , •) and by means of it we construct a new algebra. 
SL of type (2, 2, 1). We show that all algebras 21^ form a variety (Theorem 1).. 
In Section 2 we prove that if 9i is distributive then it is isomorphic to a subdirect 
product of a Stone algebra and a distributive lattice with an additional constant 
operation ' whose value is the greatest element to this lattice. 

1. Let '21=(A; + , •) be a lattice. A congruence ~ of 91 will be called a b.u.-
congruence of 91 if it satisfies the following conditions (a)—(c): 

(a) 91/~ is a Boolean lattice; 
(b) in any congruence class [x] of ~ there exists a greatest element m ([*]);: 
(c) for any x, y£ A we have: 

"(M+M) = u([x})+u{{y}), u([x] • [y]) = «([*]) • u([y]). 
E x a m p l e 1. If 91 is a finite chain then any congruence of it having two con-

gruence classes is a b.u.-congruence. In fact a congruence class of a lattice must be 
convex. . 

If a lattice 91 has a b.u.-congruence ~ then we can define a new algebra of 
type T0 by putting 91 ̂ ,=(A; + , - , ' ) where the operations + and • coincide in 91 
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and 21^ and the operation ' is defined by the formula x/=w([x]°) where [x]° is the 
complement of the congruence class [x] in the lattice 21/ 

We have 
(i) any b.u.-congruence ~ of a lattice 21 is a congruence of 21^ such that 2 1 J ~ 

is a Boolean algebra. 

Lemma 1. Any algebra 2 l ^ = ( A ; • , ' ) satisfies the following system of 
identities: 
•(1) x+x = x, x-x = x, 

(2) x+y = y+x, x-y = y-x, 

<3) (x+y)+z = x+(y+z), (x-y)-z = x-(y-z), 

(4) x • ( x + y ) = x = x + ( x • y), 

(5) ((xy)' = x\ 

(6) ix+y)' = x' • y', (x • y)' = x'+y', 

(7) *+(* ') ' = (*')', 

(8) x'+(x'Y = / + ( / ) ' , 
(9) x'+(y'-z') = (x'+y')-(x'+z'). 

Proof . The proof follows easily from (a)—(c). We prove for example (8). 
¡Let us denote x"=(xj. Let x£A. Then 

x ' + x " = W([x]°)+«([x']°) = w([x]°+[x']°) = u([x]°+|>([x]0)]0) = 

= « ( M ° + ( M 0 ) » ) - K ( [ X ] 0 + [ X ] ) . 

But the element w([x]°+[x]) is the greatest element of the greatest class of 21 so 
it is fixed and consequently (8) holds. 

Lemma 2. Let 2 l=(A; - f , •,') be an algebra satisfying (1)—(9). Then there 
exists a b.u.-congruence relation ~ in the lattice (A) +, •) such that 21 is identical 
with the algebra (A; +, •)-• 

Proof . Let us put for x, y£A 

x~y «=> x' — y'. 

Obviously ~ is an equivalence. If ai~a2 and b^~b2 then by (6) we have (ax+btf— 
=dl-b'1=a^-b2—(a2-\-b.^', so ~ satisfies the substitution law for + . Analogously 
~ satisfies the substitution law for • and so ~ is a congruence in 21 and con-
sequently in (A;+, •). 

To prove (a) it is enough to show that 21/~ is a Boolean algebra. However 
by (5) we have x " ~ x for any x£A, so the identity x " = x holds in 2I /~ . By 
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(6), (5) and (8) we have 

(x+xj = (x'+x'J = (y'+y'J = (y+yj 

for any x,y£A. So the identity x+x'=y+y' holds in 9I/~. By (6) and (9) the 
distributive law 
(10) x-(y+z) = x-y+x-z 

holds in 9 1 / s o 91/~ is a Boolean algebra. 
To prove (b) we shall show that the element x" is the greatest element in the 

class [*]. We have already shown above that x"~x for any x£A, so x"£[x]. If 
x~y then x'=y' and x"=y". Now by (7) x"=«([x]). 

The condition (c) follows at once from (5) and (6). 
Finally u ( [ x ] 0 ) = w ( [ x ' ] ) = ( x ' ) " = s o the operations ' in (A~, + , • ) - and 

91 coincide. 

Let us denote by L* the class of all algebras of the form for some lattice 91 
and a b.u.-congruence ~ of 91. By Lemmas 1 and 2 we have 

Theo rem 1. The class L* is a variety defined by the identities (1)—(9). 

Let us denote by D* the class of all algebras 91^ where 91 is a distributive lattice. 

Co ro l l a ry 1. The class D* is a variety defined by the identities (1)—(8) and (10). 

This follows from Lemmas 1 and 2. 

2. Let us denote by L± the variety of algebras of type T0 satisfying (1)—(4) 
and the following two identities: 
(11) x+y' = xT, 
(12) x' = 

We denote by Dx the variety of algebras of type r0 defined by (1)—(4), (11), (12) 
and (10). Thus the algebras from Lx and £>x are lattices with unit defined by an 
additional operation '. 

The construction of algebras 9t^ can suggest that any algebra from L* is iso-
morphic to a subdirect product of a Boolean algebra and an algebra from Lj_. This 
however is not true even for the variety D* as it is shown by the following example. 

Example 2. Let us consider an algebra S=({a , b, c}; + , • , ' ) where 
({a, b, c}; + , •) is a lattice in which a < b < c and a'=c, b'=c'=a. Then the 
equivalence relation ~ with two classes {a} and {b, c} is a b.u.-congruence in the 
lattice ({a, b,c};+, •) such that S=({a , b, c}; + , • (see the definition of ~ in 
Lemma 2). However S neither is a Boolean algebra nor belongs to Dx, and it is 
subdirectly irreducible since ® is a subdirectly irreducible Stone algebra (see [3]). 
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This example is not accidental. In fact, the next theorem shows that for algebras 
from D* we always have a subdirect decomposition. 

Let Bx denote the variety of Stone algebras of type T0 (see [1]). We have that 
(ii) the identities (1)—(8), (10) and 

form an equational base for the variety of Stone algebras. 
In fact the identity (13) together with the identities x-(x-x')'=x, (x-xr)"= 

—x-xf, x-(x-y)'=x-y', x,+x"—(x-x')' form an equational base for Bt. Using 
subdirectly irreducible algebras from Bx (see [3]) it is easy to check that these two 
systems of identities are equivalent. 

For a variety V of algebras of type T0 we denote by Id (V) the set of all identities 
of type r0 satisfied in V. For two varieties Vx and V2 we denote by V^JV2 the join 
of V1 and V2, and by V1®V2 the class of all algebras isomorphic to a subdirect 
product of two algebras 2Ij and 9l2 where 9IX€ Vx and 9I2£ V2 • 

Let 91=(A; + , • , ' ) be an algebra of type T0. 

Theo rem 2. The following four conditions are equivalent: 
(1°) 9I£D*, 
(2°) M Z B ^ D l , 
(3°) 91 e ^ V f l i , 
(4°) 91 satisfies the identities (1)—(10). 

To prove Theorem 2 we need some lemmas. In the next six lemmas we assume 
that the algebra 91=0,4; + , ' ) belongs to £>*, so it satisfies (1)—(10) by Corol-
lary 1. 

Lemma 3. 91 satisfies the following identities: 

Proof . By (6), (5), (3) and (8) we have x'x"=(x"+x')'={y"+y')'=y'y". 
By (7) and (2) we have xx'=xx"x'=xx' x". By (14) we can denote by e the con-
stant element of A with e=x'x" for any x f A . By (15) and (10) we have 

(x+yXx+j;)' = (x+j)(x+7)'(x+^)" = (x+y)-e = x-e + y-e = 

= xx'x"+yy'y" = xx'+yy'. 

(13) x • x' = y • y' 

(14) 

(15) 

(16) 
(17) 

x'.x» = y'.y'\ 

JC * i JC JC * * ̂ C } 

(x+y)(x+y)' = xx'+yy', 

(x-y)(x-y)' = xx'-yy'. 
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Finally 

(x • y)(x • y)' = (x • • y)'(x • y)" = xye = xyee = xe - ye = xx' • yy'. 

We define in 21 two relations Rx and R2 by putting for a, be A 

aRib <=> a+a'a" = b + b'b", aR2b o aa' = bb'. 

Lemma 4. The relation Rr is a congruence in 21. 

Proof . Obviously R1 is an equivalence. If aR^ax and bRxthen (a+b)+ 
+(a+by(a-hby' = (a+b)+e = a+e+b+e = a1+e+b1+e = (a1+b1)+e=(a1+b1)+ 
+(a1+b1)' - ( a x S o i?! satisfies the substitution law for + . To show the sub-
stitution law for • we use the distributivity of + with respect of •. If aRtb then 
by (6) and (4) we have (a+a'a")'=(b+b'b")', hence ¿(a'+a")=b'(b'+b"), so 
a'=b', and consequently d R1b'. 

Lemma 5. R2 is a congruence of 21. 

Proof . Obviously R2 is an equivalence. The substitution law for + , for • and 
for ' follows at once from (16), (17) and (14), respectively. 

Lemma 6. R1C\R2=:co where a> is the diagonal. 

Proof . If aR^b and aR2b then 

a = a+aa' = a+(a-a")-a' = a+(aa')-(a'a") = a+{bb')(b'b") = 

= a + bb'b" = a + be = (a + i>)(a+e) = (a + b)-{a + e)(a+e) = 

= (a + b)(a+e)-(b+e). 

Analogously, we can prove that b=(b+a) • (b+e) • (a+e). So by (2) a=b. 

Lemma 7. 21/2?! is a Stone algebra. 

Proof . We shall show that for any x, y£A we have (x-x/)R1(y-y/). In fact 
(xx')+(xx'y(xxT = xx'+(x'+x")x'x" = xx'+x'x" = 

= x'(x+x") = x'x" = e. 

Analogously (yy')+(yy')'(yy')"=e. So xx'R1yy'. Thus the algebra WRi satisfies 
(13) and by (ii) it is a Stone algebra. 

Lemma 8. 2l/R z belongs to D±. 

Proof . By (11) and (12) we have to prove that for any x£A we have (x+x')R2x' 
and for any x, y£A we have xf R2y'. In fact 

( x + * 0 ( * + * T = (*+*') • = xx'x"+x'x" = x'x" = x'(xj. 

Further x,(x,y=e=y'(y,y. 
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Proof of Theorem 2. By Corollary 1 condition (1°) is equivalent to (4°). 
Obviously B1®DxczB^jD1, so (2°)=>(3°). Further B1VD1aD* since each of the 
identities (1)—(10) belongs to Id (BJ by (ii), and each of the identities (1)—(10) 
belongs to Id (Z>i). So any of (1)—(10) belongs to Id ( ^ f l l d (DJ. Thus (3°)=>(4°). 
To complete the proof it is enough to show that (l°)=>-(20) i.e. any algebra 9l£Z)* 
is isomorphic to a subdirect product of a Stone algebra and an algebra from . 
However, this follows from Lemmas 4—8 and the decomposition theorem (see 
[2], Theorem 2, p. 123). 

R e m a r k 1. The distributive law (10) in Theorem 2 is an essential assumption, 
i.e. we cannot omit this identity in condition (4°) and substitute D* by L* and Dx 

by Li in conditions (1°)—(3°). 
In fact, we have the following: 
(iii) the variety L* is essentially larger than the variety . 
Indeed, by Theorem 2 we have B1czD*czL*. Further Id (L*)cId (Z^), as it 

is easy to check. So Z^cL*, and consequently 51VZ acL*. Let us take the lattice 
JV6=({a, b, c, 0, 1}; + , •) where 0 < a < Z x l , 0 < c < l , the elements a and c are 
incomparable and the elements b and c are incomparable. We consider in N5 an 
equivalence ~ with two equivalence classes {0, a, b) and {c, 1}. Obviously ~ is 
a b.u.-congruence in N5 where m({0, a, b})=b and u({c, 1})=1. Hence the algebra 

belongs to L*. However does not belong to B^/Li, as the identity 

(d) x+y .y' = (x+y) •(*+/) 

belongs to Id (BJ 0 Id ( L J = I d ( B ^ L ^ , while (2VS)_ does not satisfy (d) since 
a+c-c'=a+c-u({0,a, b})=a+c-b=a and (a+c) • ( a+c ' )=(a+c) • (a+b)=b. 

Let B0 denote the variety of Boolean algebras of type T„ . 

Coro l l a ry 2. B0\/Dl=B0iS)D1 and BQ\/Dl is defined by the identities (1)— 
(10) and 
(18) x+x' = y+y'. 

Proof . Let us denote by K the variety of algebras of type T0 defined by (1)— 
(10) and (18). Obviously B^D^B^JD-l and B^D^K, since Id (K)cz 
c ( l d (B0)HId (DJ). If then 91 £Z>*, since Id (Z)*)cld (K). So by Theo-
rem 2 91 is isomorphic to a subdirect product of two algebras 9lx and 9I2 with 9I1Cfi1 

and 91 a€Di- But 91 satisfies (18), so also does. Thus 9IX satisfies (1)—(10), (13) 
and (18), whence it is easy to show that 9IX is a Boolean algebra. This completes 
the proof. 

Example 3. Let A' be a set. Put Y={(A,B): A,B£2X, AczB}. We define 
an algebra S 0 of type T0 by putting 930=(y; + , - , 0 where + = U, • = fl and 
( (A,B) ) '= (X\A, X). 
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By Corollary 2 and Theorem 2 91 belongs to D* since it is a subdirect product 
of a Boolean algebra 9I1=(2X; 11 , (1 ,0 and an algebra 9I2=(2X; U, f l , 0 where 
Z'=X for any ZczX. If 1*1 = 1 then S 0 has only 3 elements: <0; 0>, <0, X) and 
(X, X). But ©o neither is a Stone algebra nor belongs to D1. So S 0 is not a direct 
product of a Stone algebra and an algebra from Dx. This shows that Theorem 2 
cannot be strengthed to direct product. 

R e m a r k 2. We can obtain results dual to those of this paper by assuming 
the existence of a least element o([x]) in (b), and by substituting u by o in (c). Then (7) 
must be substituted by x+x"=x, and so on. 
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