On some generalizations of Boolean algebras

J. PŁONKA

0. We shall consider only lattices and algebras of the type $\tau_{0}=(2,2,1)$ with fundamental operations,$+ \cdot$, , where + and \cdot are binary and ' is unary. Algebras. of type τ_{0} are often studied mainly as generalizations of Boolean algebras, e.g. pseudocomplemented lattices, Stone algebras (see [1], [3]-[6]).

In [4] we introduced the notion of a locally Boolean algebra as follows. An algebra $\left(A ;+, \cdot,^{\prime}\right)$ is called a locally Boolean algebra if $(A ;+, \cdot)$ is a distributive lattice and there exists a congruence R of $\left(A ;+, \cdot,{ }^{\prime}\right)$ such that any congruence class of R is a Boolean algebra with respect to the operations + , \cdot, and " restricted to this class.

We use a similar idea in this paper. In Section 1 we introduce a special congruence \sim in a lattice $\mathfrak{X}=(A ;+, \cdot)$ and by means of it we construct a new algebra. \mathfrak{A}_{\sim} of type $(2,2,1)$. We show that all algebras \mathfrak{H}_{\sim} form a variety (Theorem 1). In Section 2 we prove that if \mathfrak{A} is distributive then it is isomorphic to a subdirect product of a Stone algebra and a distributive lattice with an additional constant operation' whose value is the greatest element to this lattice.

1. Let $\mathfrak{A}=(A ;+, \cdot)$ be a lattice. A congruence \sim of \mathfrak{H} will be called a b.u.-congruence of \mathfrak{H} if it satisfies the following conditions (a)-(c):
(a) \mathfrak{A} / \sim is a Boolean lattice;
(b) in any congruence class $[x]$ of \sim there exists a greatest element $u([x])$;
(c) for any $x, y \in A$ we have:

$$
u([x]+[y])=u([x])+u([y]), \quad u([x] \cdot[y])=u([x]) \cdot u([y]) .
$$

Example 1 . If \mathfrak{Y} is a finite chain then any congruence of it having two congruence classes is a b.u.-congruence. In fact a congruence class of a lattice must be convex.

If a lattice \mathfrak{A} has a b.u.-congruence \sim then we can define a new algebra \mathfrak{A}_{\sim} of type τ_{0} by putting $\mathfrak{H}_{\sim}=\left(A ;+, \cdot,{ }^{\prime}\right)$ where the operations + and \cdot coincide in \mathfrak{H}

[^0]and \mathfrak{A}_{\sim} and the operation ${ }^{\prime}$ is defined by the formula $x^{\prime}=u\left([x]^{0}\right)$ where $[x]^{0}$ is the complement of the congruence class $[x]$ in the lattice \mathscr{U} / \sim.

We have
(i) any b.u.-congruence \sim of a lattice \mathfrak{H} is a congruence of \mathfrak{U}_{\sim} such that $\mathscr{H}_{\sim} / \sim$ is a Boolean algebra.

Lemma 1. Any algebra $\mathfrak{A}_{\sim}=(A ;+, \cdot, ')$ satisfies the following system of identities:
(1)

$$
\begin{gather*}
x+x=x, \quad x \cdot x=x \\
x+y=y+x, \quad x \cdot y=y \cdot x \tag{2}\\
(x+y)+z=x+(y+z), \quad(x \cdot y) \cdot z=x \cdot(y \cdot z) \tag{3}\\
x \cdot(x+y)=x=x+(x \cdot y) \tag{4}\\
\left(\left(x^{\prime}\right)^{\prime}\right)^{\prime}=x^{\prime} \tag{5}\\
(x+y)^{\prime}=x^{\prime} \cdot y^{\prime}, \quad(x \cdot y)^{\prime}=x^{\prime}+y^{\prime} \tag{6}\\
x+\left(x^{\prime}\right)^{\prime}=\left(x^{\prime}\right)^{\prime} \tag{7}\\
x^{\prime}+\left(x^{\prime}\right)^{\prime}=y^{\prime}+\left(y^{\prime}\right)^{\prime} \tag{8}
\end{gather*}
$$

$$
\begin{equation*}
x^{\prime}+\left(y^{\prime} \cdot z^{\prime}\right)=\left(x^{\prime}+y^{\prime}\right) \cdot\left(x^{\prime}+z^{\prime}\right) \tag{9}
\end{equation*}
$$

Proof. The proof follows easily from (a)-(c). We prove for example (8). Let us denote $x^{\prime \prime}=\left(x^{\prime}\right)^{\prime}$. Let $x \in A$. Then

$$
\begin{gathered}
x^{\prime}+x^{\prime \prime}=u\left([x]^{0}\right)+u\left(\left[x^{\prime}\right]^{0}\right)=u\left([x]^{0}+\left[x^{\prime}\right]^{0}\right)=u\left([x]^{0}+\left[u\left([x]^{0}\right)\right]^{0}\right)= \\
\\
=u\left([x]^{0}+\left([x]^{0}\right)^{0}\right)=u\left([x]^{0}+[x]\right)
\end{gathered}
$$

But the element $u\left([x]^{0}+[x]\right)$ is the greatest element of the greatest class of \mathfrak{A} so it is fixed and consequently (8) holds.

Lemma 2. Let $\mathfrak{A}=(A ;+, \cdot, ')$ be an algebra satisfying (1)-(9). Then there exists a b.u.-congruence relation \sim in the lattice $(A ;+, \cdot)$ such that \mathfrak{A} is identical with the algebra $(A ;+, \cdot)_{\sim}$.

Proof. Let us put for $x, y \in A$

$$
x \sim y \Leftrightarrow x^{\prime}=y^{\prime} .
$$

Obviously \sim is an equivalence. If $a_{1} \sim a_{2}$ and $b_{1} \sim b_{2}$ then by (6) we have $\left(a_{1}+b_{1}\right)^{\prime}=$ $=a_{1}^{\prime} \cdot b_{1}^{\prime}=a_{2}^{\prime} \cdot b_{2}^{\prime}=\left(a_{2}+b_{2}\right)^{\prime}$, so \sim satisfies the substitution law for + . Analogously \sim satisfies the substitution law for \cdot and ', so \sim is a congruence in \mathfrak{N} and consequently in $(A ;+, \cdot)$.

To prove (a) it is enough to show that \mathfrak{H} / \sim is a Boolean algebra. However by (5) we have $x^{\prime \prime} \sim x$ for any $x \in A$, so the identity $x^{\prime \prime}=x$ holds in \mathfrak{H} / \sim. By
(6), (5) and (8) we have

$$
\left(x+x^{\prime}\right)^{\prime}=\left(x^{\prime}+x^{\prime \prime}\right)^{\prime}=\left(y^{\prime}+y^{\prime \prime}\right)^{\prime}=\left(y+y^{\prime}\right)^{\prime}
$$

for any $x, y \in A$. So the identity $x+x^{\prime}=y+y^{\prime}$ holds in \mathfrak{M} / \sim. By (6) and (9) the distributive law
(10)

$$
x \cdot(y+z)=x \cdot y+x \cdot z
$$

holds in \mathfrak{H} / \sim, so \mathfrak{A} / \sim is a Boolean algebra.
To prove (b) we shall show that the element $x^{\prime \prime}$ is the greatest element in the class $[\dot{x}]$. We have already shown above that $x^{\prime \prime} \sim x$ for any $x \in A$, so $x^{\prime \prime} \in[x]$. If $x \sim y$ then $x^{\prime}=y^{\prime}$ and $x^{\prime \prime}=y^{\prime \prime}$. Now by (7) $x^{\prime \prime}=u([x])$.

The condition (c) follows at once from (5) and (6).
Finally $u\left([x]^{0}\right)=u\left(\left[x^{\prime}\right]\right)=\left(x^{\prime}\right)^{\prime \prime}=x^{\prime}$, so the operations ' in $(A ;+, \cdot)_{\sim}$ and \mathfrak{V} coincide.

Let us denote by L^{*} the class of all algebras of the form \mathfrak{A}_{\sim} for some lattice \mathfrak{A} and a b.u.-congruence \sim of \mathfrak{H}. By Lemmas 1 and 2 we have

Theorem 1. The class L^{*} is a variety defined by the identities (1)-(9).
Let us denote by D^{*} the class of all algebras \mathfrak{A}_{\sim} where \mathfrak{A} is a distributive lattice.
Corollary 1. The class D^{*} is a variety defined by the identities (1)-(8) and (10).
This follows from Lemmas 1 and 2.
2. Let us denote by L_{1} the variety of algebras of type τ_{0} satisfying (1)-(4) and the following two identities:

$$
\begin{align*}
x+y^{\prime} & =x^{\prime}, \tag{11}\\
x^{\prime} & =y^{\prime} . \tag{12}
\end{align*}
$$

We denote by D_{1} the variety of algebras of type τ_{0} defined by (1)-(4), (11), (12) and (10). Thus the algebras from L_{1} and D_{1} are lattices with unit defined by an additional operation '.

The construction of algebras \mathfrak{U}_{\sim} can suggest that any algebra from L^{*} is isomorphic to a subdirect product of a Boolean algebra and an algebra from L_{1}. This however is not true even for the variety D^{*} as it is shown by the following example.

Example 2. Let us consider an algebra $\mathfrak{B}=(\{a, b, c\} ;+, \cdot, ')$ where $\cdot(\{a, b, c\} ;+, \cdot)$ is a lattice in which $a<b<c$ and $a^{\prime}=c, b^{\prime}=c^{\prime}=a$. Then the equivalence relation \sim with two classes $\{a\}$ and $\{b, c\}$ is a b.u.-congruence in the lattice $(\{a, b, c\} ;+, \cdot)$ such that $\mathfrak{B}=(\{a, b, c\} ;+, \cdot)_{\sim}$ (see the definition of \sim in Lemma 2). However \mathfrak{B} neither is a Boolean algebra nor belongs to D_{1}, and it is subdirectly irreducible since \mathfrak{B} is a subdirectly irreducible Stone algebra (see [3]).

This example is not accidental. In fact, the next theorem shows that for algebras from D^{*} we always have a subdirect decomposition.

Let B_{1} denote the variety of Stone algebras of type τ_{0} (see [1]). We have that
(ii) the identities (1)-(8), (10) and

$$
\begin{equation*}
x \cdot x^{\prime}=y \cdot y^{\prime} \tag{13}
\end{equation*}
$$

form an equational base for the variety of Stone algebras.
In fact the identity (13) together with the identities $x \cdot\left(x \cdot x^{\prime}\right)^{\prime}=x,\left(x \cdot x^{\prime}\right)^{\prime \prime}=$ $=x \cdot x^{\prime}, x \cdot(x \cdot y)^{\prime}=x \cdot y^{\prime}, x^{\prime}+x^{\prime \prime}=\left(x \cdot x^{\prime}\right)^{\prime}$ form an equational base for B_{1}. Using subdirectly irreducible algebras from B_{1} (see [3]) it is easy to check that these two systems of identities are equivalent.

For a variety V of algebras of type τ_{0} we denote by Id (V) the set of all identities of type τ_{0} satisfied in V. For two varieties V_{1} and V_{2} we denote by $V_{1} V_{2}$ the join of V_{1} and V_{2}, and by $V_{1} \otimes V_{2}$ the class of all algebras isomorphic to a subdirect product of two algebras \mathfrak{M}_{1} and \mathfrak{H}_{2} where $\mathfrak{N}_{1} \in V_{1}$ and $\mathfrak{H}_{2} \in V_{2}$.

Let $\mathfrak{H}=\left(A ;+, \cdot,^{\prime}\right)$ be an algebra of type τ_{0}.
Theorem 2. The following four conditions are equivalent:
(1) $\mathfrak{A} \in D^{*}$,
(2) $\mathfrak{A} \in B_{1} \otimes D_{1}$,
(3) $\mathfrak{A} \in B_{1} \vee D_{1}$,
(4) \mathfrak{U} satisfies the identities (1)-(10).

To prove Theorem 2 we need some lemmas. In the next six lemmas we assume that the algebra $\mathfrak{U}=\left(A ;+,^{\prime}\right)$ belongs to D^{*}, so it satisfies (1)-(10) by Corollary 1.

Lemma 3. \mathfrak{A} satisfies the following identities:

$$
\begin{gather*}
x^{\prime} \cdot \dot{x}^{\prime \prime}=y^{\prime} \cdot y^{\prime \prime} \tag{14}\\
x \cdot x^{\prime}=x \cdot x^{\prime} \cdot x^{\prime \prime} \tag{15}\\
(x+y)(x+y)^{\prime}=x x^{\prime}+y y^{\prime} \tag{16}\\
(x \cdot y)(x \cdot y)^{\prime}=x x^{\prime} \cdot y y^{\prime} \tag{17}
\end{gather*}
$$

Proof. By (6), (5), (3) and (8) we have $x^{\prime} x^{\prime \prime}=\left(x^{\prime \prime}+x^{\prime}\right)^{\prime}=\left(y^{\prime \prime}+y^{\prime}\right)^{\prime}=y^{\prime} y^{\prime \prime}$. By (7) and (2) we have $x x^{\prime}=x x^{\prime \prime} x^{\prime}=x x^{\prime} x^{\prime \prime}$. By (14) we can denote by e the constant element of A with $e=x^{\prime} x^{\prime \prime}$ for any $x \in A$. By (15) and (10) we have

$$
\begin{gathered}
(x+y)(x+y)^{\prime}=(x+y)(x+y)^{\prime}(x+y)^{\prime \prime}=(x+y) \cdot e=x \cdot e+y \cdot e= \\
=x x^{\prime} x^{\prime \prime}+y y^{\prime} y^{\prime \prime}=x x^{\prime}+y y^{\prime} .
\end{gathered}
$$

Finally

$$
(x \cdot y)(x \cdot y)^{\prime}=(x \cdot y)(x \cdot y)^{\prime}(x \cdot y)^{\prime \prime}=x y e=x y e e=x e \cdot y e=x x^{\prime} \cdot y y^{\prime} .
$$

We define in \mathfrak{A} two relations \boldsymbol{R}_{1} and \boldsymbol{R}_{2} by putting for $a, b \in A$

$$
a R_{1} b \Leftrightarrow a+a^{\prime} a^{\prime \prime}=b+b^{\prime} b^{\prime \prime}, \quad a R_{2} b \Leftrightarrow a a^{\prime}=b b^{\prime} .
$$

Lemma 4. The relation R_{1} is a congruence in $\mathfrak{\mathcal { N }}$.
Proof. Obviously R_{1} is an equivalence. If $a R_{1} a_{1}$ and $b R_{1} b_{1}$ then $(a+b)+$ $+(a+b)^{\prime}(a+b)^{\prime \prime}=(a+b)+e=a+e+b+e=a_{1}+e+b_{1}+e=\left(a_{1}+b_{1}\right)+e=\left(a_{1}+b_{1}\right)+$ $+\left(a_{1}+b_{1}\right)^{\prime} \cdot\left(a_{1}+b_{1}\right)^{\prime \prime}$. So R_{1} satisfies the substitution law for + . To show the substitution law for \cdot we use the distributivity of + with respect of. If $a R_{1} b$ then by (6) and (4) we have $\left(a+a^{\prime} a^{\prime \prime}\right)^{\prime}=\left(b+b^{\prime} b^{\prime \prime}\right)^{\prime}$, hence $a^{\prime}\left(a^{\prime}+a^{\prime \prime}\right)=b^{\prime}\left(b^{\prime}+b^{\prime \prime}\right)$, so $a^{\prime}=b^{\prime}$, and consequently $a^{\prime} R_{1} b^{\prime}$.

Lemma 5. R_{2} is a congruence of \mathfrak{Y}.
Proof. Obviously R_{2} is an equivalence. The substitution law for + , for \cdot and for ' follows at once from (16), (17) and (14), respectively.

Lemma 6. $R_{1} \cap R_{2}=\omega$ where ω is the diagonal.
Proof. If $a R_{1} b$ and $a R_{2} b$ then

$$
\begin{gathered}
a=a+a a^{\prime}=a+\left(a \cdot a^{\prime \prime}\right) \cdot a^{\prime}=a+\left(a a^{\prime}\right) \cdot\left(a^{\prime} a^{\prime \prime}\right)=a+\left(b b^{\prime}\right)\left(b^{\prime} b^{\prime \prime}\right)= \\
=a+b b^{\prime} b^{\prime \prime}=a+b e=(a+b)(a+e)=(a+b) \cdot(a+e)(a+e)= \\
=(a+b)(a+e) \cdot(b+e) .
\end{gathered}
$$

Analogously, we can prove that $b=(b+a) \cdot(b+e) \cdot(a+e)$. So by (2) $a=b$.
Lemma 7. \mathfrak{A} / R_{1} is a Stone algebra.
Proof. We shall show that for any $x, y \in A$ we have $\left(x \cdot x^{\prime}\right) R_{1}\left(y \cdot y^{\prime}\right)$. In fact

$$
\begin{aligned}
\left(x x^{\prime}\right)+\left(x x^{\prime}\right)^{\prime}\left(x x^{\prime}\right)^{\prime \prime} & =x x^{\prime}+\left(x^{\prime}+x^{\prime \prime}\right) x^{\prime} x^{\prime \prime}=x x^{\prime}+x^{\prime} x^{\prime \prime}= \\
& =x^{\prime}\left(x+x^{\prime \prime}\right)=x^{\prime} x^{\prime \prime}=e .
\end{aligned}
$$

Analogously $\left(y y^{\prime}\right)+\left(y y^{\prime}\right)^{\prime}\left(y y^{\prime}\right)^{\prime \prime}=e$. So $x x^{\prime} R_{1} y y^{\prime}$. Thus the algebra \mathfrak{A} / R_{1}. satisfies (13) and by (ii) it is a Stone algebra.

Lemma 8. \mathfrak{U} / R_{2} belongs to D_{1}.
Proof. By (11) and (12) we have to prove that for any $x \in A$ we have $\left(x+x^{\prime}\right) R_{2} x^{\prime}$ and for any $x, y \in A$ we have $x^{\prime} R_{2} y^{\prime}$. In fact

$$
\left(x+x^{\prime}\right)\left(x+x^{\prime}\right)^{\prime}=\left(x+x^{\prime}\right) \cdot x^{\prime} x^{\prime \prime}=x x^{\prime} x^{\prime \prime}+x^{\prime} x^{\prime \prime}=x^{\prime} x^{\prime \prime}=x^{\prime}\left(x^{\prime}\right)^{\prime}
$$

Further $x^{\prime}\left(x^{\prime}\right)^{\prime}=e=y^{\prime}\left(y^{\prime}\right)^{\prime}$.

Proof of Theorem 2. By Corollary 1 condition (1°) is equivalent to (4°). Obviously $B_{1} \otimes D_{1} \subset B_{1} \vee D_{1}$, so $\left(2^{\circ}\right) \Rightarrow\left(3^{\circ}\right)$. Further $B_{1} \vee D_{1} \subset D^{*}$ since each of the identities (1)-(10) belongs to Id (B_{1}) by (ii), and each of the identities (1)-(10) belongs to Id $\left(D_{1}\right)$. So any of (1)-(10) belongs to Id $\left(B_{1}\right) \cap \operatorname{Id}\left(D_{1}\right)$. Thus $\left(3^{\circ}\right) \Rightarrow\left(4^{\circ}\right)$. To complete the proof it is enough to show that $\left(1^{\circ}\right) \Rightarrow\left(2^{\circ}\right)$ i.e. any algebra $\mathfrak{U} \in D^{*}$ is isomorphic to a subdirect product of a Stone algebra and an algebra from D_{1}. However, this follows from Lemmas 4-8 and the decomposition theorem (see [2], Theorem 2, p. 123).

Remark 1. The distributive law (10) in Theorem 2 is an essential assumption, i.e. we cannot omit this identity in condition (4) and substitute D^{*} by L^{*} and D_{1} by L_{1} in conditions $\left(1^{\circ}\right)-\left(3^{\circ}\right)$.

In fact, we have the following:

(iii) the variety L^{*} is essentially larger than the variety $B_{1} \vee L_{1}$.

Indeed, by Theorem 2 we have $B_{1} \subset D^{*} \subset L^{*}$. Further $\operatorname{Id}\left(L^{*}\right) \subset \operatorname{Id}\left(L_{1}\right)$, as it is easy to check. So $L_{1} \subset L^{*}$, and consequently $B_{1} \vee L_{1} \subset L^{*}$. Let us take the lattice $N_{5}=(\{a, b, c, 0,1\} ;+, \cdot)$ where $0<a<b<1,0<c<1$, the elements a and c are incomparable and the elements b and c are incomparable. We consider in N_{5} an equivalence \sim with two equivalence classes $\{0, a, b\}$ and $\{c, 1\}$. Obviously \sim is a b.u.-congruence in N_{5} where $u(\{0, a, b\})=b$ and $u(\{c, 1\})=1$. Hence the algebra $\left(N_{5}\right)_{\sim}$ belongs to L^{*}. However $\left(N_{5}\right)_{\sim}$ does not belong to $B_{1} \vee L_{1}$, as the identity

$$
\begin{equation*}
x+y \cdot y^{\prime}=(x+y) \cdot\left(x+y^{\prime}\right) \tag{d}
\end{equation*}
$$

belongs to $\operatorname{Id}\left(B_{1}\right) \cap \operatorname{Id}\left(L_{1}\right)=\operatorname{Id}\left(B_{1} \vee L_{1}\right)$, while $\left(N_{5}\right)_{\sim}$ does not satisfy (d) since $a+c \cdot c^{\prime}=a+c \cdot u(\{0, a, b\})=a+c \cdot b=a \quad$ and $\quad(a+c) \cdot\left(a+c^{\prime}\right)=(a+c) \cdot(a+b)=b$.

Let B_{0} denote the variety of Boolean algebras of type τ_{0}.
Corollary 2. $B_{0} \vee D_{1}=B_{0} \otimes D_{1}$ and $B_{0} \vee D_{1}$ is defined by the identities (1)(10) and

$$
\begin{equation*}
x+x^{\prime}=y+y^{\prime} \tag{18}
\end{equation*}
$$

Proof. Let us denote by K the variety of algebras of type τ_{0} defined by (1)(10) and (18). Obviously $B_{0} \otimes D_{1} \subset B_{0} \vee D_{1}$ and $B_{0} \vee D_{1} \subset K$, since Id (K) \subset $\subset\left(\operatorname{Id}\left(B_{0}\right) \cap \operatorname{Id}\left(D_{1}\right)\right)$. If $\mathfrak{A} \in K$ then $\mathfrak{A} \in D^{*}$, since Id $\left(D^{*}\right) \subset \operatorname{Id}(K)$. So by Theorem $2 \mathfrak{A}$ is isomorphic to a subdirect product of two algebras \mathfrak{M}_{1} and \mathfrak{N}_{2} with $\mathfrak{X}_{1} \in B_{1}$ and $\mathfrak{A}_{2} \in D_{1}$. But \mathfrak{A} satisfies (18), so also \mathfrak{Q}_{1} does. Thus \mathfrak{H}_{1} satisfies (1)-(10), (13) and (18), whence it is easy to show that \mathfrak{A}_{1} is a Boolean algebra. This completes the proof.

Example 3. Let X be a set. Put $Y=\left\{\langle A, B\rangle: A, B \in 2^{X}, A \subset B\right\}$. We define an algebra \mathfrak{B}_{0} of type τ_{0} by putting $\mathfrak{B}_{0}=(Y ;+, \cdot, ')$ where $+=U, \cdot=\cap$ and $(\langle A, B\rangle)^{\prime}=\langle X \backslash A, X\rangle$.

By Corollary 2 and Theorem $2 \mathfrak{H}$ belongs to D^{*} since it is a subdirect product of a Boolean algebra $\mathfrak{U}_{1}=\left(2^{X} ; \cup, \cap,{ }^{\prime}\right)$ and an algebra $\mathfrak{U}_{2}=\left(2^{X} ; \cup, \cap, ?\right.$ where $Z^{\prime}=X$ for any $Z \subset X$. If $|X|=1$ then \mathfrak{B}_{0} has only 3 elements: $\langle\emptyset ; \emptyset\rangle,\langle\emptyset, X\rangle$ and $\langle X, X\rangle$. But \mathfrak{B}_{0} neither is a Stone algebra nor belongs to D_{1}. So \mathfrak{B}_{0} is not a direct product of a Stone algebra and an algebra from D_{1}. This shows that Theorem 2 caunot be strengthed to direct product.

Remark 2. We can obtain results dual to those of this paper by assuming the existence of a least element $o([x])$ in (b), and by substituting u by o in (c). Then (7), must be substituted by $x+x^{\prime \prime}=x$, and so on.

References

[1] R. Balbes, P. Dwinger, Distributive lattices, Univ. Missouri Press (Columbia, 1974).
[2] G. Grätzer, Universal Algebra, Van Nostrand (Princeton, 1968).
[3] G. Grïtzer, General Lattice Theory, Akademie-Verlag (Berlin, 1978).
[4] J. Pronka, On bounding congruences in some algebras having the lattice structure, in: Banach Center Publications, Vol. 9, Polish Scientific Publishers (Warsaw, 1982); pp. 203-207.
[5] H. Rasiowa, R. Sukorski, The mathematics of metamathematics, 3rd ed., Polish Scientific Publishers (Warsaw, 1970).
[6] T. Wesolowski, On some locally pseudocomplemented distributive lattices, Demonstratio Mathematica, 13 (4) (1980); pp. 907-918.

MATHEMATICAL INSTITUTE

OF THE POLISH ACADEMY OF SCIENCES
UL. KOPERNIKA 18
WROCLAW, POLAND

[^0]: Received October 4, 1984.

