On some generalizations of Boolean algebras

J. PŁONKA

0. We shall consider only lattices and algebras of the type $\tau_0 = (2, 2, 1)$ with fundamental operations $+, \cdot, '$, where + and \cdot are binary and ' is unary. Algebras of type τ_0 are often studied mainly as generalizations of Boolean algebras, e.g. pseudocomplemented lattices, Stone algebras (see [1], [3]-[6]).

In [4] we introduced the notion of a locally Boolean algebra as follows. An algebra $(A; +, \cdot, \prime)$ is called a locally Boolean algebra if $(A; +, \cdot)$ is a distributive lattice and there exists a congruence R of $(A; +, \cdot, \prime)$ such that any congruence class of R is a Boolean algebra with respect to the operations $+, \cdot,$ and \prime restricted to this class.

We use a similar idea in this paper. In Section 1 we introduce a special congruence \sim in a lattice $\mathfrak{A} = (A; +, \cdot)$ and by means of it we construct a new algebra. \mathfrak{A}_{\sim} of type (2, 2, 1). We show that all algebras \mathfrak{A}_{\sim} form a variety (Theorem 1). In Section 2 we prove that if \mathfrak{A} is distributive then it is isomorphic to a subdirect product of a Stone algebra and a distributive lattice with an additional constant operation ' whose value is the greatest element to this lattice.

1. Let $\mathfrak{A} = (A; +, \cdot)$ be a lattice. A congruence \sim of \mathfrak{A} will be called a b.u.congruence of \mathfrak{A} if it satisfies the following conditions (a)—(c):

(a) \mathfrak{A}/\sim is a Boolean lattice;

(b) in any congruence class [x] of \sim there exists a greatest element u([x]);

(c) for any $x, y \in A$ we have:

 $u([x]+[y]) = u([x])+u([y]), \quad u([x]\cdot [y]) = u([x])\cdot u([y]).$

Example 1. If \mathfrak{A} is a finite chain then any congruence of it having two congruence classes is a b.u.-congruence. In fact a congruence class of a lattice must be convex.

If a lattice \mathfrak{A} has a b.u.-congruence ~ then we can define a new algebra \mathfrak{A}_{\sim} of type τ_0 by putting $\mathfrak{A}_{\sim} = (A; +, \cdot, \cdot)$ where the operations + and \cdot coincide in \mathfrak{A}

Received October 4, 1984.

J. Płonka

and \mathfrak{A}_{\sim} and the operation ' is defined by the formula $x'=u([x]^0)$ where $[x]^0$ is the complement of the congruence class [x] in the lattice \mathfrak{A}/\sim .

We have

(i) any b.u.-congruence \sim of a lattice \mathfrak{A} is a congruence of \mathfrak{A}_{\sim} such that \mathfrak{A}_{\sim}/\sim is a Boolean algebra.

Lemma 1. Any algebra $\mathfrak{A}_{\sim} = (A; +, \cdot, \cdot)$ satisfies the following system of identities:

 $(1) x+x=x, x\cdot x=x,$

(2)
$$x+y=y+x, x \cdot y=y \cdot x,$$

(3)
$$(x+y)+z = x+(y+z), (x \cdot y) \cdot z = x \cdot (y \cdot z),$$

(4)
$$x \cdot (x+y) = x = x + (x \cdot y),$$

(5)
$$((x')')' = x',$$

(6)
$$(x+y)' = x' \cdot y', \quad (x \cdot y)' = x' + y',$$

(7)
$$x+(x')'=(x')',$$

(8)
$$x' + (x')' = y' + (y')',$$

(9)
$$x' + (y' \cdot z') = (x' + y') \cdot (x' + z')$$

Proof. The proof follows easily from (a)—(c). We prove for example (8). Let us denote x'' = (x')'. Let $x \in A$. Then

$$\begin{aligned} x'+x'' &= u([x]^0) + u([x']^0) = u([x]^0 + [x']^0) = u([x]^0 + [u([x]^0)]^0) = \\ &= u([x]^0 + ([x]^0)^0) = u([x]^0 + [x]). \end{aligned}$$

But the element $u([x]^0+[x])$ is the greatest element of the greatest class of \mathfrak{A} so it is fixed and consequently (8) holds.

Lemma 2. Let $\mathfrak{A} = (A; +, \cdot, \cdot)$ be an algebra satisfying (1)—(9). Then there exists a b.u.-congruence relation \sim in the lattice $(A; +, \cdot)$ such that \mathfrak{A} is identical with the algebra $(A; +, \cdot)_{\sim}$.

Proof. Let us put for $x, y \in A$

$$x \sim y \Leftrightarrow x' = y'.$$

Obviously ~ is an equivalence. If $a_1 \sim a_2$ and $b_1 \sim b_2$ then by (6) we have $(a_1+b_1)' = a_1' \cdot b_1' = a_2' \cdot b_2' = (a_2+b_2)'$, so ~ satisfies the substitution law for +. Analogously ~ satisfies the substitution law for \cdot and \cdot , so ~ is a congruence in \mathfrak{A} and consequently in $(A; +, \cdot)$.

To prove (a) it is enough to show that \mathfrak{A}/\sim is a Boolean algebra. However by (5) we have $x'' \sim x$ for any $x \in A$, so the identity x'' = x holds in \mathfrak{A}/\sim . By

336

(6), (5) and (8) we have

$$(x+x')' = (x'+x'')' = (y'+y'')' = (y+y')'$$

for any $x, y \in A$. So the identity x+x'=y+y' holds in \mathfrak{A}/\sim . By (6) and (9) the distributive law

(10)
$$x \cdot (y+z) = x \cdot y + x \cdot z$$

holds in \mathfrak{A}/\sim , so \mathfrak{A}/\sim is a Boolean algebra.

To prove (b) we shall show that the element x'' is the greatest element in the class [x]. We have already shown above that $x'' \sim x$ for any $x \in A$, so $x'' \in [x]$. If $x \sim y$ then x' = y' and x'' = y''. Now by (7) x'' = u([x]).

The condition (c) follows at once from (5) and (6).

Finally $u([x]^0)=u([x'])=(x')''=x'$, so the operations ' in $(A; +, \cdot)_{\sim}$ and \mathfrak{A} coincide.

Let us denote by L^* the class of all algebras of the form \mathfrak{A}_{\sim} for some lattice \mathfrak{A} and a b.u.-congruence \sim of \mathfrak{A} . By Lemmas 1 and 2 we have

Theorem 1. The class L^* is a variety defined by the identities (1)-(9).

Let us denote by D^* the class of all algebras \mathfrak{A}_{\sim} where \mathfrak{A} is a distributive lattice.

Corollary 1. The class D^* is a variety defined by the identities (1)—(8) and (10).

This follows from Lemmas 1 and 2.

2. Let us denote by L_1 the variety of algebras of type τ_0 satisfying (1)-(4) and the following two identities:

$$(11) x+y'=x',$$

(12) x' = y'.

We denote by D_1 the variety of algebras of type τ_0 defined by (1)—(4), (11), (12) and (10). Thus the algebras from L_1 and D_1 are lattices with unit defined by an additional operation '.

The construction of algebras \mathfrak{A}_{\sim} can suggest that any algebra from L^* is isomorphic to a subdirect product of a Boolean algebra and an algebra from L_1 . This however is not true even for the variety D^* as it is shown by the following example.

Example 2. Let us consider an algebra $\mathfrak{B} = (\{a, b, c\}; +, \cdot, \cdot)$ where $(\{a, b, c\}; +, \cdot)$ is a lattice in which a < b < c and a' = c, b' = c' = a. Then the equivalence relation \sim with two classes $\{a\}$ and $\{b, c\}$ is a b.u.-congruence in the lattice $(\{a, b, c\}; +, \cdot)$ such that $\mathfrak{B} = (\{a, b, c\}; +, \cdot)_{\sim}$ (see the definition of \sim in Lemma 2). However \mathfrak{B} neither is a Boolean algebra nor belongs to D_1 , and it is subdirectly irreducible since \mathfrak{B} is a subdirectly irreducible Stone algebra (see [3]).

This example is not accidental. In fact, the next theorem shows that for algebras from D^* we always have a subdirect decomposition.

Let B_1 denote the variety of Stone algebras of type τ_0 (see [1]). We have that (ii) the identities (1)-(8), (10) and

$$(13) x \cdot x' = y \cdot y'$$

form an equational base for the variety of Stone algebras.

In fact the identity (13) together with the identities $x \cdot (x \cdot x')' = x$, $(x \cdot x')'' = x \cdot x'$, $x \cdot (x \cdot y)' = x \cdot y'$, $x' + x'' = (x \cdot x')'$ form an equational base for B_1 . Using subdirectly irreducible algebras from B_1 (see [3]) it is easy to check that these two systems of identities are equivalent.

For a variety V of algebras of type τ_0 we denote by Id (V) the set of all identities of type τ_0 satisfied in V. For two varieties V_1 and V_2 we denote by $V_1 \lor V_2$ the join of V_1 and V_2 , and by $V_1 \otimes V_2$ the class of all algebras isomorphic to a subdirect product of two algebras \mathfrak{A}_1 and \mathfrak{A}_2 where $\mathfrak{A}_1 \in V_1$ and $\mathfrak{A}_2 \in V_2$.

Let $\mathfrak{A} = (A; +, \cdot, \prime)$ be an algebra of type τ_0 .

Theorem 2. The following four conditions are equivalent:

(1°) $\mathfrak{A}\in D^*$,

- (2°) $\mathfrak{A}\in B_1\otimes D_1$,
- (3°) $\mathfrak{A}\in B_1 \vee D_1$,
- (4°) \mathfrak{A} satisfies the identities (1)-(10).

To prove Theorem 2 we need some lemmas. In the next six lemmas we assume that the algebra $\mathfrak{A} = (A; +, ')$ belongs to D^* , so it satisfies (1)—(10) by Corollary 1.

Lemma 3. A satisfies the following identities:

$$(14) x' \cdot x'' = y' \cdot y'',$$

$$(15) x \cdot x' = x \cdot x' \cdot x'',$$

(16) (x+y)(x+y)' = xx'+yy',

(17)
$$(x \cdot y)(x \cdot y)' = xx' \cdot yy'.$$

Proof. By (6), (5), (3) and (8) we have x'x'' = (x''+x')' = (y''+y')' = y'y''. By (7) and (2) we have xx' = xx''x' = xx'x''. By (14) we can denote by *e* the constant element of *A* with e = x'x'' for any $x \in A$. By (15) and (10) we have

$$(x+y)(x+y)' = (x+y)(x+y)'(x+y)'' = (x+y) \cdot e = x \cdot e + y \cdot e =$$
$$= xx'x'' + yy'y'' = xx' + yy'.$$

Finally

$$(x \cdot y)(x \cdot y)' = (x \cdot y)(x \cdot y)'(x \cdot y)'' = xye = xyee = xe \cdot ye = xx' \cdot yy'.$$

We define in \mathfrak{A} two relations R_1 and R_2 by putting for $a, b \in A$

$$aR_1b \Leftrightarrow a + a'a'' = b + b'b'', \quad aR_2b \Leftrightarrow aa' = bb'.$$

Lemma 4. The relation R_1 is a congruence in \mathfrak{A} .

Proof. Obviously R_1 is an equivalence. If aR_1a_1 and bR_1b_1 then (a+b)++ $(a+b)'(a+b)'' = (a+b)+e = a+e+b+e = a_1+e+b_1+e = (a_1+b_1)+e = (a_1+b_1)+$ + $(a_1+b_1)' \cdot (a_1+b_1)''$. So R_1 satisfies the substitution law for +. To show the substitution law for \cdot we use the distributivity of + with respect of \cdot . If aR_1b then by (6) and (4) we have (a+a'a'')' = (b+b'b'')', hence a'(a'+a'') = b'(b'+b''), so a'=b', and consequently $a'R_1b'$.

Lemma 5. R_2 is a congruence of \mathfrak{A} .

Proof. Obviously R_2 is an equivalence. The substitution law for +, for \cdot and for ' follows at once from (16), (17) and (14), respectively.

Lemma 6. $R_1 \cap R_2 = \omega$ where ω is the diagonal.

Proof. If aR_1b and aR_2b then

$$a = a + aa' = a + (a \cdot a'') \cdot a' = a + (aa') \cdot (a'a'') = a + (bb')(b'b'') =$$

= $a + bb'b'' = a + be = (a + b)(a + e) = (a + b) \cdot (a + e)(a + e) =$
= $(a + b)(a + e) \cdot (b + e).$

Analogously, we can prove that $b=(b+a)\cdot(b+e)\cdot(a+e)$. So by (2) a=b.

Lemma 7. \mathfrak{A}/R_1 is a Stone algebra.

Proof. We shall show that for any
$$x, y \in A$$
 we have $(x \cdot x')R_1(y \cdot y')$. In fact
 $(xx')+(xx')'(xx')'' = xx'+(x'+x'')x'x'' = xx'+x'x'' =$
 $= x'(x+x'') = x'x'' = e.$

Analogously (yy')+(yy')'(yy')''=e. So $xx'R_1yy'$. Thus the algebra \mathfrak{A}/R_1 satisfies (13) and by (ii) it is a Stone algebra.

Lemma 8. \mathfrak{A}/R_2 belongs to D_1 .

Proof. By (11) and (12) we have to prove that for any $x \in A$ we have $(x+x')R_2x'$ and for any $x, y \in A$ we have $x'R_2y'$. In fact

$$(x+x')(x+x')' = (x+x') \cdot x' x'' = xx' x'' + x' x'' = x' x'' = x'(x')'.$$

Further x'(x')' = e = y'(y')'.

Proof of Theorem 2. By Corollary 1 condition (1°) is equivalent to (4°) . Obviously $B_1 \otimes D_1 \subset B_1 \lor D_1$, so $(2^{\circ}) \Rightarrow (3^{\circ})$. Further $B_1 \lor D_1 \subset D^*$ since each of the identities (1)—(10) belongs to Id (B_1) by (ii), and each of the identities (1)—(10) belongs to Id (D_1) . So any of (1)—(10) belongs to Id $(B_1) \cap \text{Id } (D_1)$. Thus $(3^{\circ}) \Rightarrow (4^{\circ})$. To complete the proof it is enough to show that $(1^{\circ}) \Rightarrow (2^{\circ})$ i.e. any algebra $\mathfrak{A} \in D^*$ is isomorphic to a subdirect product of a Stone algebra and an algebra from D_1 . However, this follows from Lemmas 4—8 and the decomposition theorem (see [2], Theorem 2, p. 123).

Remark 1. The distributive law (10) in Theorem 2 is an essential assumption, i.e. we cannot omit this identity in condition (4°) and substitute D^* by L^* and D_1 by L_1 in conditions (1°)—(3°).

In fact, we have the following:

(iii) the variety L^* is essentially larger than the variety $B_1 \lor L_1$.

Indeed, by Theorem 2 we have $B_1 \subset D^* \subset L^*$. Further Id $(L^*) \subset Id(L_1)$, as it is easy to check. So $L_1 \subset L^*$, and consequently $B_1 \lor L_1 \subset L^*$. Let us take the lattice $N_5 = (\{a, b, c, 0, 1\}; +, \cdot)$ where 0 < a < b < 1, 0 < c < 1, the elements *a* and *c* are incomparable and the elements *b* and *c* are incomparable. We consider in N_5 an equivalence \sim with two equivalence classes $\{0, a, b\}$ and $\{c, 1\}$. Obviously \sim is a b.u.-congruence in N_5 where $u(\{0, a, b\}) = b$ and $u(\{c, 1\}) = 1$. Hence the algebra $(N_5)_{\sim}$ belongs to L^* . However $(N_5)_{\sim}$ does not belong to $B_1 \lor L_1$, as the identity

(d)
$$x + y \cdot y' = (x + y) \cdot (x + y')$$

belongs to Id $(B_1) \cap Id(L_1) = Id(B_1 \lor L_1)$, while $(N_5)_{\sim}$ does not satisfy (d) since $a+c \cdot c' = a+c \cdot u(\{0, a, b\}) = a+c \cdot b = a$ and $(a+c) \cdot (a+c') = (a+c) \cdot (a+b) = b$. Let B_0 denote the variety of Boolean algebras of type τ_0 .

Corollary 2. $B_0 \lor D_1 = B_0 \otimes D_1$ and $B_0 \lor D_1$ is defined by the identities (1)—(10) and

$$(18) x+x'=y+y'.$$

Proof. Let us denote by K the variety of algebras of type τ_0 defined by (1)— (10) and (18). Obviously $B_0 \otimes D_1 \subset B_0 \lor D_1$ and $B_0 \lor D_1 \subset K$, since Id $(K) \subset \subset (\text{Id } (B_0) \cap \text{Id } (D_1))$. If $\mathfrak{A} \in K$ then $\mathfrak{A} \in D^*$, since Id $(D^*) \subset \text{Id } (K)$. So by Theorem 2 \mathfrak{A} is isomorphic to a subdirect product of two algebras \mathfrak{A}_1 and \mathfrak{A}_2 with $\mathfrak{A}_1 \in B_1$ and $\mathfrak{A}_2 \in D_1$. But \mathfrak{A} satisfies (18), so also \mathfrak{A}_1 does. Thus \mathfrak{A}_1 satisfies (1)—(10), (13) and (18), whence it is easy to show that \mathfrak{A}_1 is a Boolean algebra. This completes the proof.

Example 3. Let X be a set. Put $Y = \{\langle A, B \rangle : A, B \in 2^X, A \subset B\}$. We define an algebra \mathfrak{B}_0 of type τ_0 by putting $\mathfrak{B}_0 = (Y; +, \cdot, \cdot)$ where $+ = \cup, \cdot = \cap$ and $(\langle A, B \rangle)' = \langle X \setminus A, X \rangle$.

4

By Corollary 2 and Theorem 2 \mathfrak{A} belongs to D^* since it is a subdirect product of a Boolean algebra $\mathfrak{A}_1 = (2^X; \bigcup, \cap, \cdot)$ and an algebra $\mathfrak{A}_2 = (2^X; \bigcup, \cap, \cdot)$ where Z' = X for any $Z \subset X$. If |X| = 1 then \mathfrak{B}_0 has only 3 elements: $\langle \emptyset; \emptyset \rangle$, $\langle \emptyset, X \rangle$ and $\langle X, X \rangle$. But \mathfrak{B}_0 neither is a Stone algebra nor belongs to D_1 . So \mathfrak{B}_0 is not a direct product of a Stone algebra and an algebra from D_1 . This shows that Theorem 2 cannot be strengthed to direct product.

Remark 2. We can obtain results dual to those of this paper by assuming the existence of a least element o([x]) in (b), and by substituting u by o in (c). Then (7), must be substituted by x+x''=x, and so on.

References

- [1] R. BALBES, P. DWINGER, Distributive lattices, Univ. Missouri Press (Columbia, 1974).
- [2] G. GRÄTZER, Universal Algebra, Van Nostrand (Princeton, 1968).
- [3] G. GRÄTZER, General Lattice Theory, Akademie-Verlag (Berlin, 1978).
- [4] J. PLONKA, On bounding congruences in some algebras having the lattice structure, in: Banach Center Publications, Vol. 9, Polish Scientific Publishers (Warsaw, 1982); pp. 203-207.
- [5] H. RASIOWA, R. SIKORSKI, The mathematics of metamathematics, 3rd ed., Polish Scientific Publishers (Warsaw, 1970).
- [6] T. WESOLOWSKI, On some locally pseudocomplemented distributive lattices, Demonstratio Mathematica, 13 (4) (1980); pp. 907-918.

MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES UL, KOPERNIKA 18 WROCLAW, POLAND