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Square subgroup of an abelian group 

A. M. AGHDAM 

Given an abelian group G, we call R a ring over G if the additive group R+=G. 
In this situation we write R=(G, *), where * denotes the ring multiplication. The 
multiplication is not assumed to be associative. Every group G can be provided 
with a ring structure in a trivial way, by defining all products to be 0; such a ring is 
called a zero-ring. In general, we call a group G a nil group if there is no ring on G 
other than the zero-ring. 

Suppose that H is a subgroup of G. G is called nil modulo H if G*G^H for 
every ring (G, *) on G. It is clear that if G is nil modulo both and H2 then G 
is nil modulo fiyClHo, this suggests the following definition of the square subgroup 
• G of G: 

• G = f\{H G|G is nil modulo H}. 

Clearly QG is the smallest subgroup with the property that G is nil modulo DG* 
For the first time the square subgroup was studied in [1] by A . E . STRATTON 

G 
and M . C . WEBB. The basic question about the square subgroup is whether 

• G 
is a nil group? If this is not true in general then under what conditions it is true 
and why it fails? 

In this note we are investigating the square subgroup of an abelian group. 
We will show that the square subgroup of a torsion reduced group is equal to itself 
and we will prove that 

where D is the maximal divisible subgroup of G and N is the reduced part of G; 
also, if G is a non-torsion group then 

G _ N 
• G ~ ON ' 
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By an example we will show that the square subgroup of a torsion-free group, 
in general, is not a direct summand of the group. 

All groups considered in this paper are abelian, with addition as the group 
operation. 

P r o p o s i t i o n 1. If G is cyclic (finite or infinite) then • G=G. 

Proof . Let (x) be a cyclic group, define a ring on (x) by (mx)(nx)=mnx. 
In this ring x is the neutral element of (x), so, (x)=(x)2 and hence 

• <*> = <*>• 

P r o p o s i t i o n 2. A=B®H implies that UB^UA. 

Proof . Suppose that there is a ring (B, *) over B. We can define a ring (A, o) 
by putting 

(b + h)o(b'+h') = b*b', 

this implies that AoA—B*B, hence OA. 

Theorem 3 ([2], page 288). A p-group G is a nil group if and only if it is 
divisible. 

Theorem 4 ([2], page 287). A multiplication p. on a p-group A is completely 
determined by the values aj) with a,, as running over a p-basis of A. Moreover, 
any choice of p(at, aj)£A with a{, as from a p-basis of A subject to the sole condi-
tion that 

o(n("i, aj)) == min (o(af), o(aj)) 

extends to a multiplication on A. 
Lemma 5. The reduced part of a p-group G has unbounded order if and only 

if any p-basic subgroup of G has unbounded order. 

Proof . Let G=D®N, D is the maximal divisible subgroup of G. Let B be a 
p-basic subgroup of N. If B has bounded order then J? is a direct summand of G, 

G 
hence G=D®B®N' and by the definition of B, N' should be 

B 
divisible, a contradiction, that is N'=0. Consequently N—B and is of bounded 
order. This concludes that N has unbounded order if and only if B has unbounded 
order. 

Lemma 6. Let G be a p-group. If the reduced part of G has unbounded order 
then n G = G . 
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Proof . Suppose that G is a /»-group and the reduced part of G has unbounded 
order. Let B=© (at) be a /7-basic subgroup of G. Let g be an arbitrary element 

i€/ 
of G with o(g)=pn. By Lemma 5, B has unbounded order, hence there is aK such 
that <?(%) >/>". In accordance with Theorem 4, a multiplication ^ on G is uniquely 
determined if we put 

, fO if either i ^ K or j ^ K, 
fi(al,aJ)= ( g ,f j = i = 

hence g€ QG, that is, mG=G. 

Lemma 7. Let G be a reduced p-group, then • G=G. 

Proof . If G has bounded order then G= © (*,), and by Propositions 1, 2, 

• G=G. If G has unbounded order then, by Lemma 6, DG=G. 

Theorem 8. Let G be a reduced-torsion group, then DG=G. 

Proof . G = © Gp, Gp is a /?-group. If G is reduced then Gp is reduced for all p 

prime p. By Lemma 7 • G p = G p . Therefore DG=G. 

R e m a r k 1. Let G be a group. Let R=(G, t]) be a ring on G, then 
f/€Hom(G®G, G) and ri(g1<8>g^)=g1g2, that is, G2=Im tj, therefore 

• G = (Imf/|f;6Hom (G<8>G, G)>. 

Note. A ®B means the tensor product of A and B. 

P r o p o s i t i o n 9. Let G be a non-torsion group, then 

<Im 9\0€Hom(G, z(p))) = Z(p). 

Proof . Z(p)=(c1, c2, ..., c„, ...\pcx-0, pc2=c1, ...,pc„=cn.x, ...). Let x be 
in G and the order of x be infinity, then the map f{ri)=nx {n£Z, the set of 
integer numbers) defines a short exact sequence: 

0 G — M — 0 

which induces the short exact sequence: 

0 - Horn (M, Z(p)) - Horn (G, zQ)) Horn (Z, Z(p)) - 0, 

the sequence being right exact because Ext (M , Z(p))=0. 
The definition of the m a p / * is given by f*(0)=6f for all 0£Hom (G, Z(p)). 

Now given y£Z(p) there is >7 € Horn (Z, Z(p)) such that t](l)=y. Since f* is 
epic there is 06Horn (G, Z(p)) such that f*(&)=t\, hence y=t1(l)=(f*(Q))(l)^ 
= 9(f( 1)), yielding the result. 

4* 
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Theorem 10. Let G be a group, G=D®N where D is the maximal divisiblesub-
G D N 

group ofG. Then —— = —®——, where • D^T^D. If G is a non-torsion group, 
• G T • N 

G N 
then ——^ . 

• G • N 

Proof . G®G^(D®D)®(D®N)®(N®D)®(N®N). Since N is reduced and 
D®D, D®N, N®D are divisible, Horn (D®N, 7V)=Hom (N®D, N)= 
=Hom (D®D, N)=0. Hence 

Horn (G®G, G) ^ Horn (D ®D,D)® Horn (D ® N, D) 

(1) ©Horn (N®D, D)®Uom(N®N, N) 

©Horn ( N ® N , D ) . 
G D 

So, by remark (1), UG=T@nN where UD^T^D. This implies ^ — © 
• G T 

N 
ON 

Suppose that G is a non-torsion group. If the group of rational numbers is a 
subgroup of D, then D=H@K, where H is a direct sum of the groups of rational 
numbers and K is a direct sum of quasicyclic groups. Hence D®D=H®H is a 
direct sum of the groups of rational numbers. 

Horn (.D®D, D)=Hom (.H®H, # ) © H o m (H®H, K), 

because of (Im 0|0£Hom (Q, Q))=Q (Q is the group of rational numbers), by 
Proposition 9 and Remark 1 nD—D and nG=D@nN. 

If D is a torsion group, then D is a direct sum of quasicyclic groups and 
N is a non-torsion group, hence N®N is non-torsion, too. By Proposition 9 
(Im >/|>/€ Horn (N®N, D))=D. 

Consequently by (1) nG=D® • N, this concludes that 

w G 
. DG ON 

R e m a r k 2. Let G=Z(p)@Z(p), then we have G®G^Z{p)®Z(j>)^Z(p). 
Horn (G®G, G) ^ Horn (Z(p) ®Z(p), Z(p)) © Horn (Z(p) ®Z(p), Z(p)). By remark 
(1) UG=(c1)®Z(p). We deduce that DG is not a pure subgroup of G, con-

G Z(p) 
sequently QG IS not a direct summand of G. =— , that is (2) is not true 

• G (Ci) 
G 

in general when G is a torsion group. But is a nil group. 
• G 
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The following example shows that the square subgroup of a torsion-free 
group, in general, is not a direct summand. 

Example . Let A be the subgroup of Qxx©Qx2 generated by the set 

f 1 1 1 1 \ ~ p X l ' ~ ^ X i + y X 2 p !S running over 7ij 

where n is the set of all prime numbers. — x ^ A implies x1=p(—x1\£A, hence, 
P > 

(3) hp(xj S 1 for all p£n. 

Suppose that x1f_q2A for some prime q, then 

where ij/ is a finite set of prime numbers; 

lpe<l> v p p ) p i 

Since {jcl5 x2} is an independent set of A, this implies 
pe\t p 

We deduce l = o s y. this implies q £ s o , by (4) 
Pi<l>\ p p* J 

(4) PP = 0 (modp) for all p ^ . 

P P2 

(5) ftq = 0 (mod q). 
Let t h e n 

1 K q <7 / pfjol p p2) pfi° V P P2) 

this implies y f — i s an integer, therefore /? = 1 (mod q) a contradic-
pe<i>° \ p p2 J 

tion by (5). Consequently x^q2A. By (3) ht(x1)=l for all p£n. Hence, t(x1) = 

=(1, 1, ..., 1, ...). Let Z _ = 4 r X1+-TX2 then p6Z=psx1+x2, and since hJx1)=1, 
p2 pb 

hp(x2)=4 for all pin. Hence i(x2)=(4, 4, . . . , 4, ...) and i(x2)>-t(x1). i(xj and 
t(x2) are not idempotent, that is any ring R=(A, *) over A satisfies x\— 
=x2x1=x%=0, a is a rational number. 
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Let y=uxl+vx2, w=ftx1+yx2 then, yw=aufix2, this implies A2^(x2)* ((x2)* 
is a pure subgroup of A generated by x^). Since (A, *) was arbitrary, 

(6) OA S <*2>*. 

L e t a = l , then yw=fiux2, and by the structure of A, ¡hix2£A. Hence A is not 
a nil group. We claim that A2=(x2)*. For the proof it is enough to show that 

-i-*26 A2. 
P 

Let Z = — — - x 2 , then Z2=—x2, so — x2€A2 for all p€n. By (6) 
p2 p* p* p* 

OA=(x2)*. Let U={u£Q\uxx+vx2£A for some v£Q}. If • A is a direct 
summand of A, then 

A = (x2)*®B, t{B) = t [ 7 ^ ) = t(uy, 

by the structure of A, t(U)=(2, 2, ..., 2,...). This implies t(xJ)<t(B)<t(x2) but 
this is impossible, since r(A)=2 ([2], page 112, Ex. 10). 

Consequently • A is not a direct summand of A. 
A 

Note. Since is of rank one and its type is not idempotent, it follows that 
OA 

A • is a ml group. 
OA 
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