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/7-algebras with Stone congruence lattices 

T. KATRINAK and S. EL-ASSAR 

1. Introduction. In [12] we have described by means of subdirect factorization 
congruence distributive algebras A whose congruence lattices Con (A) are atomic, 
Boolean, or Stonean. The purpose of this paper is to give an intrinsic characteriza-
tion of those quasi-modular /»-algebras whose congruence lattices are atomic, Stonean 
or relatively Stonean. To obtain this we use the representation of congruence rela-
tions of quasi-modular /»-algebras in terms of congruence pairs. That means (see [11]), 
that every congruence relation a£Con (L) of a quasi-modular /»-algebra L can be 
uniquely represented by a congruence pair (aB, aD), where aB is a (Boolean) con-
gruence relation of B(L) and aD a (lattice) congruence relation of D(L). 

We start with a description of congruence pairs corresponding to (relative) 
pseudocomplements in the lattice Con (L) (Theorem 1). By way of application, 
we characterize those quasi-modular /»-algebras with atomic congruence lattices 
(Theorems 2, 3 and 4). As a second application we provide a characterization of 
(rejative) Stone congruence lattices of quasi-modular p-algebras (Theorems 5, 6 and 
11): Analogous, but deeper results, are obtained for distributive /»-algebras (Theo-
rems 7, 8 and 12). 

2. Preliminaries. A (modular, distributive) p-algebra or pseudocomplemented 
lattice is an algebra (L ; V, A, *, 0,1) in which the deletion of the unary opera-
tion * yields a bounded (modular, distributive) lattice and * is the operation of 
pseudocomplementation, that is, xSa* if and only if aAx=0. A /»-algebra is said 
to be quasi-modular if it satisfies the identity 

[{xKy)V = (xAjOV(z**Ax). 

The variety of quasi-modular /»-algebras properly contains the class of modular 
/»-algebras and is properly contained in the class of /»-algebras satisfying the identity 

x = x**A(x\/x*). 
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If, for any /»-algebra L, we write 

B(L) = {x£L: x = x**} and D(L) = x* = 0} 

then (B(L)\ V, A,*, 0,1) is a Boolean algebra (of closed elements) when a\fb 
is defined to be (a*/\b*)*, for any pair a, b£B(L), and D(L) is a filter in L (of 
dense elements). By a congruence relation of a /»-algebra we mean a lattice con-
gruence of L preserving *. The relation y of L defined by a=b(y) if and only if 
a*=b* is a congruence relation of L, called the Glivenko congruence of L, and 
L/y=B(L). The lattice Con (L) of all congruence relations of a /»-algebra L is 
algebraic and distributive, which implies that Con (L) is a distributive /»-algebra. 
The least and greatest elements of Con (L) will be denoted by A and V, respectively. 

A distributive /»-algebra L in which the identity 

x*Vx** = 1 

holds is called a Stone algebra (lattice). A relative Stone algebra (lattice) is a dis-
tributive lattice in which every interval [a, b\ is a Stone lattice. 

A double /»-algebra is an algebra (L; V, A, *, 0, 1) in which the deletion 
of + gives a /»-algebra and the deletion of * gives a dual /»-algebra, that is aVx—1 
if and only if x^a+. The relation $ of L defined by 

a = b{$) if and only if a* = b* and a+ = b+ 

is a congruence relation of L, called the determination congruence. It is known that 
a double /»-algebra is regular (that is, any two congruence relations of L having a 
class in common are the same) if and only &=A (see [16]). 

A special class of distributive /»-algebras is formed by the Heyting algebras 
(L; V, A, *, 0, 1), where (L; V, A, 0, 1) is a bounded lattice and xAySz if and 
only if y^x*z. Then . \*=x*0 plays the role of a pseudocomplement of x. It is 
easy to verify that Con (L) of a /»-algebra L is even a Heyting algebra. 

A lattice with 0 is called atomic, if for every a^0 there exists an atom pSa. 
We refer to [1], [8] or [10] for the standard results about /»-algebras and to [1], 

[9] or [16] for the standard results about double /»-algebras. For general lattice-
theoretic terminology, notation and results we follow G. Gratzer [6]. 

3. Congruence pairs. Let (L; V, A, *, 0, 1), henceforth simply L, be a quasi-
modular /»-algebra. Let Con (L) denote the lattice of congruence relations of L. 
Since Con (L) is a Heyting algebra, there exists a complete Boolean algebra 
2?(Con (L)) of closed elements (congruences) and the filter of dense elements (con-
gruences) Z>(Con (L)). We shall also consider Con (B(L)), the lattice of (Boolean) 
congruence relations of B(L) and Con (D(L)), the lattice of (lattice) congruence 
relations of D(L). , - • 
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Having 0€Con (L), the restrictions 0B=©\B(L) and 0D=0\D(L) are 
congruence relations of B(L) and D(L), respectively. Hence, there exists an isotone 
map 0>-*(0B, 0D) from Con (L) into Con (B(L))xCon (D(L)). The following 
definition is crucial (see also [11], [4]). 

A pair ( 0 l 5 02)€Con (B(L))XCon {D(Lj) is said to be a congruence pair of 
L if the following condition holds: a£B(L), u^D(L), u^a in L, and 0 = 1 ( 0 ^ ) 
imply that i / s 1 (02). 

T h e o r e m A (see [11, Theorem 1]). Every congruence relation 0 of a quasi-
modular p-algebra L determines a congruence pair (0B, 0D) and, conversely, every 
congruence pair ( 0 l 5 0 2 ) of L determines a unique congruence relation 0 of L 
having the property that 0B=01 and 0 f l = 0 2 . Moreover, x~y(0) if and only if 
x*=y*(01) and хЧх*=уЧу*(02). 

In what follows we shall often identify 0€Con(L) with the corresponding 
congruence pair (0 B , 0D) . If there is no danger of confusion, we shall omit the 
subscripts in notation of some congruence pairs, e.g. A=(A,A), V=(V, V), (A, a). 

Clearly, having a^Con (B(L)), there exists Ker ct=JfJ(B(L)) (= the lattice 
of all ideals of B(L)) such that a = 0[J]. Similarly, for /?€Con (Z)(L)), Ker/? = 
= {x£D(L): x=\(P)} is a filter of D(L), i.e. Ker p<iF{D(Lj). 

Given a quasi-modular p-algebra L, there is a map (p(L): B(L) — F(D(L)) 
defined as follows: 

a<p(L) = {x£D(L): x ^ a*} = [а*)ГШ(£). 
This map proved instrumental in characterizing the quasi-modular /»-algebras (see 
[13]). We shall need the following result. 

T h e o r e m В (see [13, Theorem 3]). In a quasi-modular p-algebra L, the map 
<p{L): B(L)-"F(D(L)) is a {0, 1, \l}-homomorphism. 

Now, we can reformulate the definition of a congruence pair. 

L e m m a 1. Let L be a quasi-modular p-algebra and let ( 0 l s 02)€Con (B(L))x 
XCon (D(L)). Then ( 0 1 ; 0 2 ) is a congruence pair if and only if J<p(L):= U 
U(a(p(L): a 6 / ) i K e r 0 2 , where J = K e r 0X. 

Proof . Clearly, a£J=Ker 0X if and only if а*=1(0!) . Therefore, J<p(L)Q 
g K e r 0 2 if and only if (0 1 ? 0 2 ) is a congruence pair. 

From Lemma 1 we see that for every 0 г €Соп (B(L)) with J = K e r 0X there 
exists a smallest S(01)^Con(D(L)) such that J(p(L)^Ker ¿(0J. That means, 
( 0 l 5 0 2 ) is a congruence pair of L if and only if 02^<5(0i). Dually, for every 
0 .6Con (£>(£)) there exists a largest ideal Jfj(B(L)) such that Jcp(L)Q,Ker02, 
1.e. ( 0 [ / ] , 0 2 ) is a congruence pair. Notation: т (0 2 ) = 0 [ / ] . Evidently, ( 0 l 5 0 2 ) 
is a congruence pair of L if and only if т ( 0 2 ) ^ 0 2 . 
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An abstract description of the lattice of all congruence pairs of quasi-modular 
/»-algebras can be found in [4]. In the next theorem we give a description of (relative) 
pseudocomplements in Con (L) by means of congruence pairs. 

Theorem 1. Let L be a quasi-modular p-algebra and let a, PdCon (L). Then 
(<*bVPb><XdVPd)> (aBA/?B, ctDApD) and (aB*PBAz(ctD#pD),<xD*pD) are congruence 
pairs of a.\jp, ai\P and a*P, respectively. In particular, 

(«SAT(aD),aS) and ((flSAr(«S))*AT(«J*)f „**) 

are congruence pairs of a* and a**, respectively. 

Proof . Clearly, (a\lP)B^aB\jpB and ( a \ jP ) D ^a D \ j p D . Assume a=b(a\/P) 
for a,b£B(L). Then there exists a finite sequence a=z0,..., zn=b such that 
z i - i= z i («) o r zi-i=zi(P) for every /=1, . . . , n. Therefore z**T=zf*(a) or zf*x= 
=z**(P), which implies a=b(aB\JPB). Hence (aVP)B=aB\/PB. A similar argu-
ment yields (a\/P)D=a.D\J PD, (<xAP)B=aBAPB and (aAP)D=txDAPD. 

It is easy to verify that (aB*pBAi(aD*PD) , aB*PD) is a congruence pair of L. 
Clearly, 

(ocB, aD)A(<xB*pBAx(ctD*pD), aD*pD) (j?B, PD). 

Assume (aB, <xD)A(t]B, t]D)^(PB, PD) in Con(Z,). Therefore, t]B^aB*PB and 
t]D^aD*pD. Since (riB,t]D) is a congruence pair, we have tiB^x(tiD)^T(<xD*P„). 
Hence (riB,riD)s(xB*PBAi:(<xD*PD),<xD*pD). The last part of Theorem can be 
established in the same way because (AB , AD)*=(UB, OLD)*(A, A). 

Coro l l a ry 1 (see [1, Theorem 2]). Let L be a quasi-modular p-algebra. Then 
Con (D(L))=[A, y], where y is the Glivenko congruence. 

Proof . Consider the map a2i-+(A, a2) from Con (D(L)) into Con (L). Since 
y=(A, V), we see that this map is an isomorphism between Con (D(L)) 
and [A, y]. 

Coro l la ry 2. Let L be a quasi-modular p-algebra. Then Con (fi(L))s[y, V]. 

Proof . Consider the map a1i-»(a1,V) from Con (B(L)) into Con (L). This 
map is an isomorphism between Con (B(L)) and [y, V]. 

4. Atomic congruence lattices. In [12] we have! extended Tanaka's result [15, 
Theorem 1]. 

Theorem C. Let A be a congruence distributive algebra. Then the following 
conditions are equivalent: 

(i) Con (A) is atomic; 
(ii) D(Con (A)) is a principal filter; 
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(iii) J? (Con (A)) is atomic and every dual atom of J3(Con (A)) is completely 
meet-irreducible in Con (A); 

(iv) Con (A) satisfies the (infinite) identity 

AO**: /€/) = (A(*,: /€/))**. 

Lemma 2. Let L be a quasi-modular p-algebra. Then a=(a B , aD) is an atom 
of Con (L) if and only if 

(i) aB=A and aD is an atom of Con (D (L)) 
or 

(ii) aD=A, aB^r(A) and aB is an atom of Con (B(Lj). 

P roo f . Suppose that (aB ,aD) is an atom of Con (I,). Two cases can arise: 
aD9iA or aB=A. In the first event (A, aD)Mx, whence a=(A, <xD) and aD is 
an atom of Con (D(L)). In the second case we obtain (ii). The converse is trivial. 

T h e o r e m 2. Let L be a quasi-modular p-algebra. Then Con (L) is atomic 
if and only if 

(i) Con(D(jL)) is atomic 
and 

(ii) {a£B(L): acp (L)=[l)} is an atomic ideal of B(L), i.e. it is an atomic lattice. 

P roo f . Assume that Con (L) is atomic. Therefore, [A,y] is atomic as well. 
By Corollary 1 of Theorem 1 we obtain (i). Take 0 ^ a ^ B ( L ) with aq>(L)=[ 1). By 
Lemma 1, (©[(«]], J)^Con(L). There exists an atom a 6 Con (L) with a = ( a B , a D ) S 
s (0 [ ( a ] ] , A). Hence <xD=A,aB^x(A) and aB is an atom of Con (B(L)) (Lemma 2). 
Thus KeraB=(£] and b is an atom of B(L) with b(p(L)=[l). 

Conversely, assume (i) and (ii). Take A^oc=(aB, aD) from Con (L). Two 
cases can occur: a ^ A or aD=A. In the first case, there is by (i) an atom 
/36Con (D(L)) with Hence (A, ft) is by Corollary 1 to Theorem 1 an 
atom of Con (L) and (A, /?)S(aB, <xD). In the second case, A?±CIbST(A). There 
exists an atom a£J=Ker aB by (ii). Hence (0[(a]], A) is an atom of Con (L) 
(Lemma 2) and ( 0 [(a]], A) S a. 

L e m m a 3. Let K be an ideal of a Boolean algebra B and let K be an atomic 
sublattice of B. Let J be the ideal of B generated by all atoms of K. Then J*=K* 
in the lattice 1(B) of all ideals of B. 

P roo f . Clearly JQK. Therefore, J*^K*. Take be J*. If (6]PlA:^(0], then 
there exists an atom a£K such that a^b. Hence aC/fl/*=(()] , a contradic-
tion. Thus, ATfV*=(0], which implies J*QK*. So, J*=K*. 

T h e o r e m 3. Let L be a quasi-modular p-algebra. Then (fi1, /?2)6Con (L) is 
the smallest element of Z>(Con (L)) if and only if 

6 
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. . . (i) is the smallest element of D(Con (D (L))) 
and 

(ii) the ideal K={a£B(L): aq>(L)=[ 1)} of B(L) is atomic and ft =©[ . / ] , 
where J is the ideal of B(L) generated by all atoms of K. 

P r o o f . Let ( f t , ft)6Con (L) be the smallest element of Z>(Con (L)). It is 
easy to verify that (T(^), a)€Con (L)for every A^Con (D(L)). Moreover, (T(^), a)* = 
= A if and only if a£Z)(Con (D(L))). Therefore, ( f t , p2)^(z(A), a) for every 
a€-D(Con (D(L))). Thus ft is the smallest element of D(Con (D(L))) and ft^t(d). 
Since A = ( f t , P2)*—(PxAz(A), A), we see that p*Sz(A)*. But P^x(A) implies 
Pt^z(Af. Hence p*=z(A)*. Clearly, p1 = 0[M] and z(A) = 0[K], where M is an 
ideal of B(L) and MQK. According to Theorems C and 2, K is atomic. Without 
difficulties one can check that M contains all atoms of K, as Pl=z(A)*. L e t / 
denote the ideal of B(L) generated by all atoms of K. Lemma 3 yields P*=z(A)* = 
= ©[/]*. Now, (©[/] , ft)* = (PIf\t(A), PI)=A implies P^0[J]. Eventually, 
p1 = 0[J]. 

Conversely, let L satisfy (i) and (ii). Take PL = 0[J] from Con (B{Lj) and 
P2£Con(D(L)) as defined in (i) and (ii). Clearly, ( f t , ft) € Con (L), as ft^rOd). 
By Lemma 3, Pt=z(A)*. Therefore, ( f t , f t ) * = z l ; that means ( f t , ft)€D(Con (L)). 
Consider (<*!, a2)£D(Con (L)). Since a%=A, we have ftsa2. In addition, a^A 
Az(A)=A. Hence o$Sz(A)*=P*. Clearly aX = 0[M] for some ideal M of B(L). 
We claim that M^J. Really, if J%M, then there exists an atom a£J—M and 
a£M*. That means 6>[ ( a ] ] s a*Af t=J , a contradiction. Therefore, JQM, as 
claimed. Hence ft^cti, and ( f t , ft) is the smallest dense congruence relation of L. 
The proof is complete. 

L e m m a 4. Let L be a quasi-modular p-algebra. Let a£B(L) with aq>(L)=[ 1). 
Then (0[(a]] ,J)€ JB(Con(L)). 

P r o o f . Since 6>[(a]] r(zd), weseethat (€>[(«]], <d)£Con (L). By Theorem 1, 
(6>[(a]], A)**=(0[{c$\**Ax(A),A). Since 0[(a]]** = 0[(a]] , the proof is complete. 

T h e o r e m 4. Let L be a quasi-modular p-algebra. Then B(Con (L)) is atomic 
if and only if 

(i) 2? (Con (D(L))) is atomic 
and 

(ii) {a£B(L): acp(L)=[l)} is an atomic ideal of B(L). 

P r o o f . Assume that B(Con(L)) is atomic. Let A ^ a €-6 (Con (D(L))). There-
fore, (id, a)£Con (L). Clearly, (A, a)**=(t(a*)* Az (a), by Theorem 1. By 
assumption there exists an atom ( f t , p2) of 5(Con (L)) such that ( f t , ft)s 
^(z(a*)*Az(cc),a). Evidently, p%*=p2 in Con (D{L)). Hence ft Sot. We claim 
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that p2 is an atom of 5(Con (D(L))). First we show that p2?±A. Assume to the 
Contrary that p2=A. Hence ftst(A). Since r(zl)St(a*), we get 
•St(A)*. Therefore PX=A, a contradiction. Thus p2^A. Take A?ir)£B{Con (D(L))) 
with Therefore A^(A, implies (A, tj)**=(p1, p2), as ( f t , p2) 
is an atom of B(Con (L)). But (A, n)** =(z(n*)* At (ril M). Hence n=J?2 and j?2 

is an atom of B (Con (D(L))), as claimed. The second part of Theorem follows from 
Lemma 4. 

Conversely, let L satisfy (i) and (ii). Consider A a2)€/?(Con (£)). Clearly 
ct2=a2* in Con (D(L)). If a2=A then and 0 [J], where J is an 
ideal of {a£B(L): aq>(L)=[ 1)}. By (ii) there exists an atom a£J. Put P1=6[(a\] 
in Con (B(Lj). Clearly ( f t , A)** =(ft, A)^(ax, A), using Lemma 4. Thus ( f t , 4) is 
an atom of B (Con (L)). Assume a2^A. Then there exists an atom P2=<x2 in 
2? (Con (D(L))) by (i). Since (A, j82)s(a1? a2), we see that 

(A,p2T* = (r(P^*Ar(p2),p2)s(oc1,a2) = (a1,cC2r*. 

It remains to verify that (A, p2)** is an atom of B(Con (£)). Really, suppose that 
there exists A ̂ (»h, t]2)£B(Con (L)) with (>h, i]2)^(A, P2)**. Two cases can arise: 
t]27±A or t}2=A. But rj^A implies P2=r]2- Moreover, (A, P2)^(th, >/2)s 

A,p2)** implies (t]t, %)**=(%, r]2)=(A, ft)**. Assume rj2=A. Therefore, rj^ 
ST(J)ST(/?2). Similarly as above, rh^T(p 2)*^T(A)*, which implies >h=A, a 
contradiction. Thus, (A, p2)** is an atom of B(Con (£,)) and the proof is complete. 

5. Stonean congruence lattices. 

L e m m a 5. Let L be a Stone lattice and a£L. Then [0, a] is also a Stone 
lattice. 

The proof is straightforward (see [8, 2.11]). 

T h e o r e m 5. Let L be a quasi-modular p-algebra. Then Con (L) is a Stone 
lattice if and only if 

(i) Con (D (L)) is a Stone lattice, 
(ii) if (a l t a2)£Con (L) then Ker (a*AT(a2))=(a] for some a£B(L), 

(iii) if a€Con {D(L)) then T(a**)^(r(x)*Az(«*))*. 

P r o o f . Suppose that Con (L) is a Stone lattice. The condition (i) follows 
directly from Lemma 5 and Corollary 1 to Theorem 1. Take now (ax, a2)€Con (L). 
By Theorem 1 and the hypothesis, 

V = (a1; a2)*V(al5 <x2)** = (aiAt(a*), a|)V((ajf AT(a|))*AT(a2*), a2**). 

Therefore, 
(A? A T (A2)) V [ ( A ? A t (A|))*A T ( A £ * ) ] - V. 

6« 
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Consequently, (a?Ar(a2))V(a*Ar(a|))*=V. Hence, (a*AT(a|))* is a complement 
of a*Az(oc*) in Con (B(L)), and (a*Ar(a^))*=(<^Ar(a*))*Az(x**). Thus T(CC**)̂  
^(a*AT(a*))*. As (z(a), a)6Con (L) for every a from Con (D(L)), this yields (iii). 
The condition (ii) follows from the fact that a* A r ia l ) = <=>[/] and (a*A"r(a|))* = 
= 0[J*] for some J£I(B(L)). By the hypothesis, J* is a complement of J in 
J{B{L)). It follows that J=(a\ and J={a"\ for some a£B(L) (see [5] or [7]). 

Conversely, suppose that L satisfies (i)—(iii). Take (a l5 a2)6Con (L). Clearly 
(a1} a2)s(r(a2) , a2). By Theorem 1 and the hypothesis, 

(al5 a2)*V(ai, a2)** = (aiAr(a2), ^)V(((ai AT(a2*))*AT(«r), a f ) = 

= (0[(a]],a|)V(0[(a*]],«**) = V, 

because (a^ AT(af))*^(T(a2)*Ai:(a|))*. The proof is complete. 

C o r o l l a r y . Let L be a quasi-modular p-algebra and let Con (L) be a Stone 
lattice. Then for («j, a,) 6 Con (L) we hate 

(i) (a**, «DC Con (L), 

(ii) (a l5 a2)** = (at*, <£*)** = ((^Atfe*))*, a**) 

and 

(iii) ag Con (£>(£)) implies z(a**) S T(a)++Vt(a+)+-

P r o o f , (i) Since, by Theorem 5, we have (a?*, a|*)£Con (Z,). 
(ii) and (iii) follows from Theorems 1 and 5. 

In [12] we have also investigated algebras whose congruence lattices satisfy 
the (infinite) identity 
(1) V ( * r : i€/) = (V(*,: ¡6/))**. 

T h e o r e m 6. Let L be a quasi-modular p-algebra. Then Con (L) satisfies the 
identity (1) if and only if 

(i) Con (L) is a Stone lattice 
and 

(ii) 5 (Con (£,)) is finite. 

P r o o f . Assume that Con (L) satisfies the identity (1). Then by [12, Lemma 2], 
Con (L) is a Stone lattice and B(Con (L)) is atomic. Moreover, [12, Theorem 9] 
says that L has an irredundant discrete subdirect factorization with finitely sub-
directly irreducible factors. Let {«¡: /£/} denote the set of all dual atoms of 
5 (Con (L)). Then by [12, Theorem 2], (L/a;: i t I ) is the subdirect factorization 
of L in question. Therefore, every element x£L can be represented as (X(),€/, 
where x^L/a-, for every i£F. Take now the elements u = 0 and u = 1 from L, 
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i.e. the smallest and the largest elements of L, respectively. Since the factoriza-
tion of L is discrete, there exists a finite subset such that {¿6/: ul?*vi}=I1. 
Moreover, O s x s l implies ui=xi=vi for every 71. But the factorization 
(L/a;: i£7) is irredundant that means A (a¡: j£l, i ^ j ^ A for every id I. Hence 
I = I i is finite. 5 (Con (£,)) is an atomic and complete Boolean algebra. Therefore, 
¿(Con (£)) is finite. 

Conversely, assume that L satisfies (i) and (ii). Therefore, Con (L) satisfies 
theidentity VOtf*: i€/)=(V(xf: /€/))** for every finite 7. According to (ii), Con (L) 
enjoys the identity (1) for arbitrary I. The proof is complete. 

Deeper results can be obtained for distributive p-algebras. First we recall two 
results. 

T h e o r e m D. Let L be a distributive lattice with 0. Then L can be embedded in 
a generalized Boolean lattice B such that every congruence relation of L has one and 
only one extension to B, that means Con (L)=Con (B). 

For the proof see [6, Lemma 11.4.5]. 

T h e o r e m E ([10, Theorem 2]). Every distributive p-algebra can be embedded 
in a Hey ting algebra H of order 3 (i.e. D{H) is relatively complemented) such that 

(i) every congruence relation of L has one and only one extension to H, i.e. 
Con (L)==Con (H), 

(ii) B(L)=B(H) 
and 

(iii) D(H) is an extension of D{L) such that Con (Z>(L))s=Con (D(H j). 
For the proof of (ii) and (iii) see the proof of [10, Theorem 2]. 

T h e o r e m 7. Let L be a distributive p-algebra. Then Con (£) is a Stone lattice 
if and only if 

(i) D(L) is relatively complemented, 
(ii) the dual lattice L is a Stone lattice 

and 
(iii) B(L) is a complete Boolean algebra. 

Proo f . Let Con (L) be a Stone lattice. Then there exists a Hey ting algebra 
H of order 3 such that L is a subalgebra of the p-algebra H and Con (L)sCon (H) 
(Theorem E). It is well known that Con (H)^F(H), that means, every congruence 
relation of H is uniquely determined by a filter of H. Hence F(H) is a Stone lattice. 
Now we can apply [7, Satz 9]. Therefore, (a) the dual lattice H is a Stone lattice and 
(b) B(H) is a complete Boolean algebra. Evidently, B(H)QB(H) =B(L) (Theorem E). 
Take a£L. There exists a dual pseudocomplement a+£B(H) of a in H, i.e. a\fx=\ 
if and only if As B(H)QB(L), a+€L and L is dual pseudocomplemented> 
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that means L is pseudocomplemented. Moreover, L is a Stone lattice by (a). Again, 
B(L)QB(H)<^B(L) implies B(L)=B(H). Hence, B(L) is a complete Boolean 
algebra by (b). We have established (ii) and (iii). 

Now we shall prove (i). Using (a) we see that H is a double /»-algebra. Moreover, 
by the hypothesis, D(H) is relatively complemented. Therefore, H is a regulár 
double /»-algebra (see [9, Theorem 2]). Above we have shown that L is a subalgebra 
of the double /»-algebra H (see also Theorem E). But the regular double /»-algebras 
form a variety (see [9, Theorem 2] or [16]). Hence, again by [9, Theorem 2], L is 
also regular and this implies that D(L) is relatively complemented. 

Conversely, let L satisfy (i)—(iii). Then L is a distributive double /»-algebra. 
By [9, Theorem 2], L is a regular double /»-algebra, because D (L) is relatively com-
plemented. According to [9, Theorem 1], L forms a (double) Heyting algebra H. 
But every congruence relation of L is also a Heyting algebra congruence relation, 
that means Con (L) = Con (H ) (see [10, Lemma 1]). Therefore, Con (L) = F(H) = 
—F(L). Now, conditions (ii) and (iii) imply by [7, Satz9] that F(L) is a Stone 
lattice. Thus, Con (L) is a Stone lattice and the proof is complete. 

For the next Theorem we need the following 

L e m m a 6. Let L be a distributive lattice with 0. Then B(Con(L)) is finite 
if and only if L is finite. 

Proo f . By Theorem D there is an extension K of L such that K is a generalized 
Boolean lattice and Con (L) = Con (K). Every congruence relation of K is uniquely 
determined by its kernel, that means Con (K)^I(K). By assumption, B(l(K)) 
is finite. Take a£K. We claim that (a]£B(I(K)). Really, if JO(K), then J* = 
= {x£K: xAy=0 for every y£J}- Consider (a]* and (a]**. It suffices to show 
that (a]**={d\. Clearly (a]g(a]**. Choose ¿>€(<2]**. Take c=a\/b and observe 
(c]£l(K). (c] is a Boolean lattice. Since (a]V((a]*A(c])=(c], we see that b^a and 
(a]=(a]**€5(/(AT)), as claimed. Hence K is finite, as B(I(K)) is finite. Consequently, 
L is finite. The converse implication is trivial. , 

T h e o r e m 8. Let L be a distributive p-algebra. Then Con (L) satisfies the 
identity (1) if and only if 

(i) Con (L) is a Stone lattice, 
(ii) D(L) is finite , 

and 
(iii) {a£B(L) : a<p(Z,)=[l)} is finite. 

P r o o f . Lét Con (L) satisfy the identity (1). The condition (i) follows froiö 
Theorem 6. Again from Theorem 6 we know that 5 (Con (L)) is finite. Hence, 
5(Con (L)) is atomic.-With regard .to Theorem 4, £(Con (D(L))) is also atomic 
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and the set of all atoms of jB(Con (Lj) comprises 

{{A, a)6Con (L): a is an atom of .B (Con (D (£)))} 
and 

{(©[(a]], A)€Con (L): aq>(L) = [1) and a is an atom of B(Lj). 

This and Lemma 6 imply (ii), because 2? (Con (L)) is finite. Now we shall establish 
(iii). Again by the hypothesis the set of atoms a£B(L) such that acp(L) = [ 1) is 
finite. Observe b£B(L) with b<p(L)=[ 1). We claim that b=a1V...Van, where 
a,<p(Z.)=[l) and at is an atom of B(L) for every i = l , .. . ,«. Let a£B(L) be a 
join of atoms a ; of B(L) with a^b, i.e. a=a1V-- V<2„- Therefore, asb. Then 
there exists c£B(L) such that aAc—0 and b=aVc. Hence bcp(L)=a<p(L)\j 
Vc(p(L)=[l) (see Theorem B). Consequently, c<p(L)=[ 1). If i S c and t is an 
atom of B{L) then by assumption t^ a. This implies c=0. Thus b=a, as claimed. 
Now it is easy to show that {a£B(L): acp(L)=[ 1)} is finite. 

Conversely, let L satisfy (i)—(iii). By Theorem 4, B (Con (Lj) is atomic and 
the set of all atoms of fi(Con (Lj) is finite. Therefore, the Boolean algebra 
2?(Con (L)) is finite. The rest follows from Theorem 6. 

Before closing this section we shall generalize Beazer's [1, Theorem 6] (see 
also [2]). We shall characterize those finite /»-algebras, which have the same con-
gruence lattices as the finite distributive /»-algebras. 

Having an (arbitrary) finite /»-algebra L, then Con (L) is a finite distributive 
lattice, and thus, Con (L) can be considered as a finite double /»-algebra. In this 
case we introduce the ideal D(Con (L)) of dual dense elements from Con (L), 
that means, a?5(Con(L)) if and only if a + = V . 

T h e o r e m 9. Let L be a finite p-algebra. Then the following statements are 
equivalent: 

(i) there exists a finite distributive p-algebra L' such that Con (L) s Con (L'); 
(ii) Z>(Con (Lj) is a Boolean lattice; 

(iii) D (Con (L)) is a Boolean lattice; 
(iv) Con (L) is a regular double p-algebra. 

Proof . By assumption, Con (L) is finite and distributive. Now the equiv-
alence between (ii)—(iv) follows from [9, Theorem 2]. Assume (i). Then there exists 
a finite Heyting algebra H of order 3 with Con (H)=Con (L). Since H is finite, 
we see that i i is a double p-algebra. Eventually, H is regular, because H is of order 3. 
The same is also true for the dual lattice H. But Con (H) s F(H) ^ H. Hence 
His Con (L), and (iv) is true. Conversely, assume (iv). Let H denote the dual lattice 
of Con (L). Clearly, H is also a regular double /»-algebra. By [9, Theorem 2] H is 
in fact a Heyting algebra of order 3. Let L' be H considered as a /»-algebra. Then 
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Con(L')^F(H), by [10, Lemma 1]. Since H is finite, we see that 
ssCon (L), and (i) is established. 

L e m m a 7. Let L be a finite quasi-modular p-algebra. Then 5(Con (L)) = 
—[A, y] (that means that the Glivenko congruence is the largest dual dense element 
of Con (L)). 

P r o o f . We know that y=(A, V). Take a = ( a l 5 a2)£Con (L) with V=yVa. 
Therefore, a 1=V. As (aA, a2) is a congruence pair, we see that a 2 =V. Now, 
assume a S y for some a£Z)(Con (L)). Corollary 2 to Theorem 1 says that 
V^a€[y, V]=Con (B(L)). But Con (B(L))^B(L), as L is finite. Take the com-
plement a ' of a in [y, V]. But a V V is impossible, because Z)(Con (L)). Hence 
a '=V, which implies a=y . 

T h e o r e m 10. Let L be a finite quasi-modular p-algebra. Then there exists a 
finite distributive p-algebra L' such that Con (L)=Con (£/) if and only if Con (Z>(L)) 
is a Boolean lattice. 

P r o o f . Corollary 1 to Theorem 1 and Lemma 7 imply that 5(Con (Lj) = 
=[A, y]sCon (D(L)). Hence, by Theorem 9, Con (D(L)) is a Boolean lattice 
if and only if there exists a finite distributive lattice L' such that Con (Z,)=Con (£•')• 

C o r o l l a r y (see [1, Theorem 6]). Let L be a finite modular p-algebra. Then 
there exists a finite distributive p-algebra L' such that Con (L)s=Con (L '). 

P roo f . D(L) is a finite modular lattice. It is well known that the congruence 
lattice of a finite modular lattice is Boolean. Hence Con (D (L)) is a Boolean lattice. 
The rest follows from Theorem 10. 

6. Relative Stone congruence lattices. We start with general results. 

L e m m a 8. Let L be a distributive lattice with 1. The following statements are 
equivalent: 

(i) L is relative Stone; 
(ii) for every a£L, \a, 1] is a Stone lattice; 

(iii) for every asb in L, [a, b] is a relative Stone lattice; 
(iv) L is a Brouwerian lattice (i.e. relatively pseudocomplemented) satisfying 

the identity x*yVy*x = 1. 

P r o o f . The equivalences between (i), (ii) and (iii) follow from Lemma 5. The 
equivalence between (i) and (iv) can be found in [8, 2.10]. 

Lemma 9. Let L be a Hey ting algebra. Then L is a relative Stone lattice if 
and only if 

(i) Lis a Stone lattice 
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and 
(ii) D(L) is relative Stone. 
For the proof see [8, 2.13]. 

L e m m a 10. Let L be a quasi-modular p-algebra and let B(L) be finite. Then 
(<*i> a2)6Z)(Con (Z,)) if and only if 

(i) a*=A, i.e. a26Z)(Con (D(L))) 
and 

(ii) CCiSTCd). 

P r o o f . Assume (a l5 a2)£D(Con (£)). Then, by Theorem 1, A=(a1 , a2)* = 
=(aJtAT(J), A). So, a \ = A . Moreover, A=a£Ax(A) in Con(B(L)). Since B(L) 
is finite, we have 5 ( L ) s C o n (B(L)). Hence a=a** for every agCon (B(L)). 
Now, A=<x*Ar(A) implies = a 1 ^ t ( A ) proving (ii). Conversely, (i) and (ii)-
imply (a l5 a2)*=(a£Ax(A), A)=A, as a*St (A)* . 

L e m m a 11. Let B be a Boolean algebra. Then Con (B) is a relative Stone 
lattice if and only if B is finite. 

P r o o f . Let Con (B) be a relative Stone lattice. This is equivalent to the fact 
that I(B/J) is a Stone lattice for every J£l(B) (Lemma 8). But 1(B) is a Stone 
lattice if and only if B is complete (see [5] or [7, Satz 9]). By [3, Theorem 4.3] every 
infinite complete Boolean algebra contains an ideal J such that BjJ is not com-
plete. That means I(B/J) is not a Stone lattice. Hence B is finite. The converse is 
trivially true. 

T h e o r e m 11. Let Lbe a quasi-modular p-algebra. Then Con (L) is a relative 
Stone lattice if and only if 

(i) Con (L) is a Stone lattice, 
(ii) B(L) is finite, 

(iii) Con (D(L)) is a relative Stone lattice 
and 

(i\) for any <x, feCon (D(Lj) with a s f t 0<=D(Con (D(L))) and 
it is true that x (a * ft* ST ((a * P) * P). 

P r o o f . Let Con (L) be relative Stone, (i) follows from Lemma 9. Corollary 2 
to Theorem 1 says that Con (2?(L))s[y, V]. Using Lemma 8 we see that [y, V] 
is also relative Stone. Hence Con (B(L)) is relative Stone. By Lemma 11, B(L) is 
finite and (ii) is established. The condition (iii) follows from the hypothesis and 
Corollary 1 to Theorem 1. Eventually we shall prove (iv). Lemma 9 and the hypoth-
esis imply that D(Con (L)) is relative Stone. Take a 2 = a and ft =/? from Con (D(L)) 
with a s f t PeD(Con (D(L))) and x(P)^x(A). Since (T(J), a2), (r(J), ft) 6 Z) (Con (L)) 
(see Lemma 10), there exist (a l5 a2), ( f t , ft)€D(Con (L)) with (a l5 cc2)^(Pl, ft). 
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By the hypothesis, [(ft, ft), V] is a Stone lattice (Lemma 8). The pseudocom-
plements of elements in this interval can be calculated using Theorem 1. Therefore, 

(<*!, a 2 )*( f t , ft) = ( a ^ f t A - r ^ f t ) , a 2 * f t ) 

and 

{(«i, <*£*(fii, P2))*(fii, Pz) = (<*i*Pihx(a2*p2), a 2 * f t ) * ( f t , f t ) = 

= (((ai*0i)Ar(a2*ft))*ftAT((a2*ft)*ft), (ft*ft)*ft). 
By the hypothesis 

(«i, <h)*(fii, &)V((al5 a2)*(ft, ft))* (ft, p2) = V. 
Since B(L) is finite, we have Con (B(L))=B(L). This implies that in Con (B(L)) 
pseudocomplements are complements (i.e. a*=a') and oc*/?=a'Vft Bearing this 
in mind we see that ((ax*ft)Ar(a2*ft))*ft is the complement of a 1 *ftAr(a 2 *f t ) 
in [ft,V]. Therefore, 

((â  * ft) A r(as * p2)) * ft = (a1*plf\Jx(a2*p2fypi t((a2*ft)*ft) 
and consequently, x (a2 * ft)* S x ((a2 * ft) * p2). 

Conversely, suppose that L satisfies (i)—(iv). With regard to (i) and 
Lemma 9 it suffices to show that Z)(Con (L)) is a relative Stone lattice. Take 
(fiit ft)££>(Con (L)). By Lemma 10, J3*=J and x(p2)^x(A). We want to show 
that [(ft, ft), V] is a Stone lattice (Lemma 8). Take (aa, a 2 ) ^ ( f t , ft) in Con (L). 
Evidently, (<*!, a2) * ( f t , ft) and ((aL, a2) * ( f t , ft)) * ( f t , ft) is a pseudocomple-
ment of (a l5a2) and (o^, a2) * ( f t , ft), respectively, in [(ft, ft), V]. By Theo-
rem 1, 

(ft, ft) = (als a2) * (ft, ft)V((al5 a2)*(ft, ft))* (ft, ft) = 

= ((«i * ft A t (a2 * ft))) V (((ax * ft A t (a2 * ft)) * ft A t ((a2 * ft) * ft)), a2*ftV 

V(a 2 *f t )*f t ) . 
Condition (iii) implies a 2 *f tV (« 2 *f t )* f t=V. Clearly, a 2 S ( a 2 * f t ) * f t yields 
fts«1^t((a2*ft)*ft). The last condition, (ii) and (iv) imply 

* ft A T (A2 * ft)) * ft = (aiAft*)VT(a2*ft)*Vft S T ( ( « 2 * F T ) * F T ) . 

Now, it is easy to see that ( f t , ft)=V. Thus Con (Z) is relative Stone and the 
proof is complete. 

Before establishing the last theorem we need a concept. A lattice L is said to be 
locally finite if all intervals in L are finite. 

Lemma 12. L be a Stone lattice. Assume that B(L) is finite. Let J£I(L). 
77*«? JdD(I(L)), i.e. J*=(0], if and only if Jf)D(L)^Q. \ 
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Proof . Assume that J€D(l(Lj). Assume to the contrary that JOD(L)—0. 
It is well known that there exists a prime ideal P£l{L) such that JQP and 
Pf)D(L)=0. Note that a£P implies a**£P, as a*Aa**=0. Let a£B(L) be 
the join of all elements from Pf)B(L). Since B(L) is finite and L is a Stone lattice, 
we have (a]=P. Evidently Hence (fl*]s/*, a contradiction. Thus JC\D(L)^Q. 
The converse statement is trivially true. 

T h e o r e m 12. Let L be a distributive p-algebra. Then Con (L) is a relative 
Stone lattice if and only if 

(i) B(L) is finite, 
(ii) D(L) is locally finite and relatively complemented, 
(iii) the dual lattice L is a Stone lattice 

and 
(iv) the ideal of dual dense elements D(L) (i.e. D(L)=D(L)) is locally finite 

and relatively complemented. 

Proof . Suppose that Con (L) is a relative Stone lattice. Combining Lemma 9, 
Theorem 7 and Theorem 11 we get (i), (iii) and that D(L) is relatively complemented. 
In other words, L is a regular double /;-algebra (see [9, Theorem 2]). Again by this 
theorem we get that D(L) is also relatively complemented. By Theorem 11 
Con (D(Lj) is a relative Stone lattice. But Con (D(L))s=F(D(L)). Take a£D(L). 
Then [[1), [a)] is an interval in the lattice of all filters F(D(L)). Since [a) is a Boolean 
lattice and [[1), [a)] = F([a)), we see that [a) is finite, as [[1), [a)] is a relative 
-Stone lattice (see Lemma 11). Thus D(L) is locally finite and (ii) is completely 
established. It remains to prove the locally finiteness of D (L). Since every congruence 
relation 0 6 Con (L) is also a Heyting algebra congruence relation of L ([10, 
Lemma 1]), we see that Con (L)^ f (L) . Take b£D(L), i.e. b+ = 1. Evidently, 
(6] is a Boolean lattice and F((b]) [[6), [0)]. By assumption [[6), [0)] is a relative 
Stone lattice. Therefore, by Lemma 11, (¿] is a finite Boolean lattice. Thus D(L) 
is locally finite, and of course, relatively complemented. 

Conversely, suppose that L satisfies (i)—(iv). Theorem 7 says that Con (L) 
is a Stone lattice. According to Lemma 10 it suffices to prove that D (Con (L)) 
is a relative Stone lattice. This follows from the fact (Lemma 9) that for every 
<x£D(Con(Lj), [a, V] is a Stone lattice. Again [9, Theorem 2] and [10, Lemma 1] 
imply that Con (L)=F(L). Let K e r a = K £ F ( L ) . With regard to Lemma 12, 
KC\D(L)?i0. Take b£KC\D(L). By (iv), (b] is a finite Boolean lattice. Thus Con (L) 
is a relative Stone lattice and the proof is complete. 
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