On superalgebras of the polydisc algebra

RAUL E. CURTO* ${ }^{*}$ PAUL S. MUHLY*, TAKAHIKO NAKAZI** and T. YAMAMOTO**

Let \mathbf{T} be the unit circle and, for $n \geqq 1$, let A_{n} be the uniform closure in $C\left(\mathbf{T}^{2}\right)$ of the algebra of polynomials in $z^{k} w^{l}$, where k and l are integers, $l \geqq 0$, and $k \geqq 0$ whenever $0 \leqq I \leqq n-1$. Each A_{n} contains the polydisc algebra and the intersection of the A_{n} is the polydisc algebra. In this paper we give a characterization of the subspaces of $L^{2}\left(\mathbf{T}^{2}\right)$ which are invariant under multiplication by the functions in A_{n}. The characterization is somewhat complicated, as one would expect, since for $n>1, A_{n}$ is not a Dirichlet algebra. In fact, for $n>1$; the point in the maximal ideal space of A_{n} represented by Lebesgue measure on \mathbf{T}^{2} has an infinite dimensional set of representing measures. Nevertheless, as a result of our analysis, we find that each simply invariant subspace of $L^{2}\left(\mathbf{T}^{2}\right)$ for A_{n} is finitely generated and the number of generators required is $\leqq n$. Examples can be constructed where n generators are necessary. Our analysis enables us to extend results of the third author and to parametrize the weak-* closed superalgebras of A_{n}.

1. Introduction

Let X be a compact Hausdorff space, let $C(X)$ be the space of complex-valued continuous functions on X, and let A be a uniform algebra on X. For $\varphi \in M_{A}$, the maximal ideal space of A, set $A_{0}=\{f \in A: \varphi(f)=0\}$.

Definition 1.1. Let $\varphi \in M_{A}$, let σ be a representing measure (on X) for φ, and let \mathfrak{M} be a (closed) subspace of $L^{2}(X, \sigma)$. Then \mathfrak{M} is said to be simply invariant (for A) if $A \mathfrak{M} \subset \mathfrak{M}$, but $\left[A_{0} \mathfrak{P l}\right]_{2} \neq \mathfrak{M}$ (where []$_{2}$ denotes L^{2}-closure).

Let ∂_{A} denote the Shilov boundary of A and N_{φ} denote the set of representing measures for $\varphi \in M_{A}$ whose support is contained in ∂_{A}. Note that N_{φ} is a weak-*

[^0]compact convex set of probability measures on ∂_{A}. The general theory of simply invariant subspaces is known only in the case when $N_{\varphi} \cap L^{1}(X, \sigma)$ is finite dimensional. For instance, if A is a Dirichlet algebra then $N_{\varphi} \cap L^{1}(X, \sigma)=\{\sigma\}$, and the simply invariant subspaces of $L^{2}(X, \sigma)$ have been characterized (cf. [2, p. 132]). In particular, Beurling's theorem can be derived from that characterization (the disc algebra, after all, is a Dirichlet algebra on the unit circle \mathbf{T}).

In this note we focus our attention on the following class of function algebras, $A_{n}, n \geqq 1$, contained in $C\left(\mathrm{~T}^{2}\right)$. The general theory of invariant subspaces does not apply to these algebras. Nevertheless, as we shall show, it is possible to give a fairly complete and concrete description of their invariant subspaces.

Definition 1.2. Let \mathbf{T}^{2} be the 2-torus and let n be an integer, $n \geqq 1$. By A_{n} we shall denote the uniform algebra on \mathbf{T}^{2} of all continuous functions on $\mathbf{T}^{\mathbf{2}}$ that can be uniformly approximated by polynomials in $z^{k} w^{l}$, where $l \geqq 0$, and $k \geqq 0$ when $0 \leqq l \leqq n-1$.

Equivalently, A_{n} may be described as the set of all functions f in $C\left(\mathbf{T}^{2}\right)$ such that \hat{f} is supported in the upper half-plane and, in the second quadrant, \hat{f} is supported on or above the line $y=n$. We have $A_{1} \supsetneqq A_{2} \supsetneqq \cdots$ and $\bigcap_{n=1}^{\infty} A_{n}=A_{\infty}$, the polidisc algebra. Observe that A_{n} is a Dirichlet algebra precisely when $n=1$. Let σ be the Haar measure on \mathbf{T}^{2} and define

$$
\varphi_{n}(f)=\int_{\mathbf{T}^{2}} f d \sigma \quad\left(f \in A_{n}\right)
$$

Clearly, $\varphi_{n} \in M_{A_{n}}$ and $\sigma \in N_{\varphi_{n}}$ for all n. Also note that $\partial A_{n}=\mathbf{T}^{2}$ for all n. However, $N_{\varphi_{n}} \cap L^{1}\left(\mathbf{T}^{2}, \sigma\right)$ is not finite dimensional for $n \geqq 2$, as may be seen quite easily.

Our hope is that an understanding of the A_{n} 's will help us understand better the polydisc algebra A_{∞}. After all, in one obvious sense, A_{∞} is the limit of the A_{n}. In another somewhat more vague sense, as we shall see, it appears that the lattice of invariant subspaces of A_{∞} is approximated by the invariant subspace lattices of the A_{n}. The following proposition, however, shows that in still another sense all the $A_{n}, n<\infty$, are similar to A_{1}. Observe that for $n<\infty, w^{n-1} A_{1} \subset A_{n}$ and therefore, $\left|A_{n}\right|=\left|A_{1}\right|$, where $\left|A_{n}\right|=\left\{|f|: f \in A_{n}\right\}$. However, $\left|A_{\infty}\right| \xi\left|A_{1}\right|$. Since $A_{n} \subset A_{1}$, there is a natural embedding ϱ_{n} of $M_{A_{1}}$ into $M_{A_{n}}$, given by restriction. Similarly, $\varrho_{\infty}: M_{A_{1}} \rightarrow M_{A_{\infty}}$ is an embedding.

Proposition 1.3. For each finite $n, \varrho_{n}: M_{A_{1}} \rightarrow M_{A_{n}}$ is surjective, while $\varrho_{\infty}: M_{A_{1}} \rightarrow M_{A_{\infty}}$ is not surjective.

Proof. Let $\varphi \in M_{A_{n}}$. There are two possibilities: $|\varphi(z)|=1$ or $|\varphi(z)|<1$. In the first case, define $\left.\tilde{\varphi}\left(\bar{z}^{k} w^{l}\right)=\overline{\varphi(z)}\right)^{k} \varphi(w)^{l} \quad(k \geqq 0, l \geqq 1)$. Then $\tilde{\varphi} \in M_{A_{1}}$ and
$\left.\tilde{\varphi}\right|_{A_{n}}=\varphi$. If $|\varphi(z)|<1$ then $\varphi\left(w^{n}\right)=\varphi\left(z^{k}\right) \varphi\left(\bar{z}^{k} w^{n}\right)$ for all $k \geqq 0$, so that $|\varphi(w)|^{n} \leqq$ $\leqq|\varphi(z)|^{k}$ (all k), which implies that $\varphi(w)=0$. By [1, Theorem 5], φ has a unique extension $\tilde{\varphi}$ to A_{1}, and $\tilde{\varphi} \in M_{A_{1}}$. Therefore, $\varrho_{n}(\tilde{\varphi})=\varphi$. For the second assertion, observe that the proof just given shows that if $\varphi \in M_{A_{1}}$ and $|\varphi(z)|<1$ then $\varphi(w)=0$. It clearly follows that ϱ_{∞} cannot be onto because $M_{A_{\infty}}$ can be identified with the bidisc $\mathbf{D} \times \mathbf{D}$.

Definition 1.4. We shall let \mathscr{A}, \mathscr{B}, and \mathscr{C} denote the following subalgebras of $C\left(\mathrm{~T}^{2}\right)$:
i) \mathscr{A} is the uniform closure of the polynomials in the first variable z;
ii) \mathscr{B} is the uniform closure of the polynomials in z, \bar{z}, and w;
and
iii) \mathscr{C} is the uniform closure of the polynomials in z and \bar{z}.

Observe that:
i) \mathscr{A} is isomorphic to the disc algebra;
ii) \mathscr{C} is isomorphic to $C(\mathbf{T})$;
iii) \mathscr{B} is isomorphic to the tensor product of the disc algebra and $C(\mathrm{~T})$;
iv) \mathscr{B} is also the uniform closure of $\bigcup_{k=0}^{\infty} \bar{z}^{k} A_{n}$ (all n);
v) $A_{n} \varsubsetneqq \mathscr{B}$ (all n);
vi) $\bigcap_{k=0}^{\infty} z^{k} A_{n}=w^{n} \mathscr{B}$ (all n);
vii) $\mathscr{B}=\left(\sum_{i=0}^{n-1} \oplus w^{l} \mathscr{C}\right) \oplus w^{n} \mathscr{B}$ (all n); and
viii) $A_{n}=\left(\sum_{l=0}^{n-1} \oplus w^{l} \mathscr{A}\right) \oplus w^{n} \mathscr{B}$ (all n).

Definition 1.5. The closure in $L^{2}(\sigma)$ of $A_{n},\left[A_{n}\right]_{2}$, will be denoted H_{n}^{2} and the closure of \mathscr{B} in $L^{2}(\sigma)$ will be denoted \mathbf{H}^{2}. Likewise, we define $H_{n}^{\infty}=\left[A_{n}\right]_{*}$ and $\mathbf{H}^{\infty}=[\mathscr{B}]_{*}$, where []$_{*}$ denotes weak-* closure in $L^{\infty}(\sigma)$. For $p=2, \infty$, we set $H_{n, 0}^{p}=\left\{f \in H_{n}^{p} \mid \int f d \sigma=0\right\}$. Finally, we define $\mathscr{L}^{2}=[\mathscr{C}]_{2}, \mathscr{L}^{\infty}=[\mathscr{C}]_{*}, \mathscr{H}^{2}=[\mathscr{A}]_{2}$, and $\mathscr{H}^{\infty}=[\mathscr{A}]_{*}$.

Observe that for $p=2, \infty, \mathscr{L}^{p}$ and \mathscr{H}^{p} are spaces of functions in the first variable, z, only, while the splittings described above yield the decompositions

$$
\mathbf{H}^{p}=\left(\sum_{l=0}^{n-1} \oplus w^{l} \mathscr{L}^{p}\right) \oplus w^{n} \mathbf{H}^{p} \quad(\text { all } n)
$$

and

$$
H_{n}^{p}=\left(\sum_{l=0}^{n-1} \oplus w^{l} \mathscr{H}^{p}\right) \oplus w^{n} \mathbf{H}^{p}
$$

These decompositions are crucial to our analysis. In Section 2 we use them to
describe completely the non-simply invariant subspaces of $L^{2}(\sigma)$, and in Section 3 we use them to describe the simply invariant subspaces of $L^{2}(\sigma)$. Finally; in Section 4, we use them to determine the structure of the weak-* closed superalgebras of H_{n}^{∞}.

2. Non-simply invariant subspaces

For $n<\infty, H_{n}^{2}$ is a simply invariant subspace (for A_{n}) while \mathbf{H}^{2} is not. The following proposition gives an easy criterion to determine when an invariant subspace is simply invariant. First, we list some important properties of the algebras $A_{n, 0}$:
(i) $A_{1,0}=z A_{1}$, and
(ii) $A_{n, 0}=z A_{n}+\left[w, w^{2}, \ldots, w^{n-1}\right]$, where [] denotes linear span.

Proposition 2.1. Let \mathfrak{M} be an invariant subspace of $L^{2}(\sigma)$. Then \mathfrak{M} is simply invariant for A_{n} if and only if $z \mathfrak{M} \varsubsetneqq \mathfrak{M}$.

Proof. If $n=1,\left[A_{1,0} \mathfrak{M}\right]_{2}=\left[z A_{1} \mathfrak{M}\right]_{2}$, so that if $\left[A_{1,0} \mathfrak{M}\right]_{2}=\mathfrak{M}$, then $z \mathfrak{M}=\mathfrak{M}$. Conversely, if $z \mathfrak{M}=\mathfrak{M}$, then $\left[A_{1} z \mathfrak{M}\right]_{2}=\left[A_{1} \mathfrak{M}\right]_{2}=\mathfrak{M}$. If $n \neq 1, \quad\left[A_{n, 0} \mathfrak{M}\right]_{2}=$ $=\left[z \mathfrak{M}+w \mathfrak{M}+\ldots+w^{n-1} \mathfrak{M}\right]_{2}$, by (ii) above, and therefore $\left[A_{n, 0} \mathfrak{M}\right]_{2}=[z \mathfrak{M}+w \mathfrak{M}]_{2}$. Hence if \mathfrak{M} is simply invariant, then $z \mathfrak{M} \varsubsetneqq \mathfrak{M}$. Assume now that $\left[A_{n, 0} \mathfrak{M}\right]_{2}=\mathfrak{M}$. Then from what we have just seen, $[z \mathfrak{M}+w \mathfrak{M}]_{2}=\mathfrak{M}$. Consequently, $\left[z \mathfrak{M}+w^{n} \mathfrak{M}\right]_{2}=$ $=\left[z\left(\mathfrak{M}+w^{n-1} \mathfrak{M}\right)+w^{n} \mathfrak{M}\right]_{2}=\left[z \mathfrak{M}+w^{n-1}(z \mathfrak{M}+w \mathfrak{M})\right]_{2}=\left[z \mathfrak{M}+w^{n-1} \mathfrak{M}\right]_{2}$.

By repeating this argument, we find that $\left[z \mathfrak{P}+w^{n} \mathfrak{M}\right]_{2}=[z \mathfrak{M}+w \mathfrak{M}]_{2}=\mathfrak{M}$. But $\bar{z} w^{n} \in A_{n}$, so $\mathfrak{M}=\left[z \mathfrak{M}+w^{n} \mathfrak{M}\right]_{2}=z\left[\mathfrak{M}+\bar{z} w^{n} \mathfrak{M}\right]_{2}=z \mathfrak{M}$, as desired.

Corollary 2.2. Let \mathfrak{M} be an invariant subspace of $L^{2}(\sigma)$. Then \mathfrak{M} is not simply invariant if and only if

$$
\mathfrak{M}=\chi_{E_{1}} q \mathbf{H}^{2} \oplus \chi_{E_{\mathbf{2}}} L^{2}(\sigma)
$$

where $\chi_{E_{1}}$ and $\chi_{E_{8}}$ denote the characteristic functions of two measurable sets E_{1} and $E_{2}, \chi_{E_{1}} \in \mathscr{L}^{\infty}, \chi_{E_{1}}+\chi_{E_{3}} \leqq 1$, and $|q|=1$ a.e. (σ).

Proof. The sufficiency is clear. If $z \mathfrak{P}=\mathfrak{P}$, then \mathfrak{M} is invariant under \mathscr{B}. Since \mathscr{B} contains the Dirichlet algebra A_{1} on which σ is multiplicative, we may apply [6, First example, p. 165] to conclude that \mathfrak{M} is of the form $\mathfrak{M}=\chi_{E} q[D]_{2}$, where $D=\left\{f \in L^{\infty}: f \mathfrak{M} \subset \mathfrak{M}\right\}, q$ is unimodular, and $\chi_{E} \in D$. By [5, Example 3.(1)], D has the form $D=\chi_{F} H^{\infty}+\left(1-\chi_{F}\right) L^{\infty}$, where $\chi_{F} \in \mathbf{H}^{\infty}$. Letting $\chi_{E_{1}}=\chi_{E} \chi_{F}$ and $\chi_{E_{3}}=\chi_{E}\left(1-\chi_{F}\right)$, we see [5] that $\chi_{E_{1}} \in \mathscr{L}^{\infty}$ and \mathfrak{M} has the desired representation.

An alternate proof of this result may be based on [4] as follows. Since $z \mathbb{M}=\mathbb{P}$, \mathfrak{P} is invariant under \mathbf{H}^{∞}. But \mathbf{H}^{∞} may be viewed as the non-self-adjoint crossed product determined by the identity automorphism of $L^{\infty}(T)$. Hence the result
follows from the analysis in Section 3 of [4] (see in particular Theorem 3.3 and Proposition 3.4).

Before we proceed, we need a definition.
Definition 2.3. Let \mathfrak{M} be an invariant subspace of $L^{2}(\sigma)$. Then we define $\mathfrak{M}_{-\infty}$ to be $\left[\bigcup_{k \geqq 0} \bar{z}^{k} \mathfrak{M}\right]_{2}$ and \mathfrak{M}_{∞} to be $\left[\bigcap_{k \geqq 0} z^{k} \mathfrak{M}\right]_{2}$.

Clearly $\mathfrak{M}_{\infty} \subset \mathfrak{M} \subset \mathfrak{M}_{-\infty}$. Moreover, both \mathfrak{M}_{∞} and $\mathfrak{M}_{-\infty}$ are non-simply invariant. By Corollary 2.2 we can describe both \mathfrak{P}_{∞} and $\mathfrak{M}_{-\infty}$. However, if \mathfrak{M} is simply invariant, more can be said.

Proposition 2.4. Let \mathfrak{M} be a simply invariant subspace. Then $\mathfrak{M}_{-\infty}=q_{1} \mathbf{H}^{2}$ and $\mathfrak{M}_{\infty}=q_{2} \mathrm{H}^{2}$, where q_{1} and q_{2} are unimodular.

Proof. By Proposition 2.1, z $\mathfrak{M l} \varsubsetneqq \mathfrak{M}$, so $\mathfrak{M}_{\infty} \varsubsetneqq \mathfrak{M} \varsubsetneqq \mathfrak{M}_{-\infty}$. By Corollary 2.2,
and

$$
\mathfrak{M}_{-\infty}=\chi_{E_{1}} q_{1} \mathbf{H}^{2} \oplus \chi_{E_{2}} L^{2}, \quad \text { with } \quad \chi_{E_{1}}+\chi_{E_{2}} \leqq 1, \quad\left|q_{1}\right|=1,
$$

$$
\mathfrak{M}_{\infty}=\chi_{F_{1}} q_{2} \mathbf{H}^{2} \oplus \chi_{F_{2}} L^{2}, \quad \text { with } \quad \chi_{F_{1}}+\chi_{F_{2}} \leqq 1, \quad\left|q_{2}\right|=1 .
$$

Since $\mathfrak{M}_{\infty} \subset \mathfrak{M} \subset \mathfrak{M}_{-\infty}$, it follows that $\chi_{F_{1}}+\chi_{F_{2}} \leqq \chi_{E_{1}}+\chi_{E_{3}}$ and $\chi_{F_{2}} \leqq \chi_{E_{2}}$. Since $\bar{z}^{k} w^{n} \in A_{n}$ for all $k \geqq 0$ and $A_{n} \mathfrak{M} \subset \mathfrak{M}$, we see that $\bar{z}^{k} w^{n} \mathfrak{M} \subset \mathfrak{M}$ for all $k \geqq 0$. Therefore, $w^{n} \mathfrak{M}_{-\infty} \subset \mathfrak{M}$, thus $w^{n} \mathfrak{M}_{-\infty}=w^{n} z^{k} \mathfrak{M}_{-\infty} \subset z^{k} \mathfrak{M}$ for all $k \geqq 0$, so $w^{n} \mathfrak{M}_{-\infty} \subset$ $\subset \bigcap_{k \geqq 0} z^{k} \mathfrak{M}=\mathfrak{M}_{\infty}$. Consequently, $w^{n} \chi_{E_{2}} L^{2} \subset \chi_{F_{2}} L^{2}$, and so $\chi_{E_{2}}=\chi_{F_{2}}$. Likewise, $\chi_{E_{1}}=\chi_{F_{1}}$, because $w^{n} \chi_{E_{1}} q_{1} \mathbf{H}^{2} \subset \chi_{F_{1}} q_{2} \mathbf{H}^{2}$. Thus we find that $\mathfrak{M}_{-\infty} \ominus \mathfrak{M}_{\infty}=$ $=\chi_{E_{1}}\left(q_{1} \mathbf{H}^{2} \ominus q_{2} \mathbf{H}^{2}\right)$ which, in turn, is contained in $\chi_{E_{1}} q_{1}\left(\mathbf{H}^{2} \ominus w^{n} \mathbf{H}^{2}\right)$, since $w^{n} \mathfrak{M}_{-\infty} \subset \mathfrak{M}_{\infty}$. Set $\mathfrak{M}_{0}=\mathfrak{M} \ominus \mathfrak{M}_{\infty}$. Then since $z \mathfrak{M}_{\infty}=\mathfrak{M}_{\infty}$, but $z \mathfrak{M} \subsetneq \mathfrak{M}$, it follows that $z \mathfrak{M}_{0} \nsubseteq \mathfrak{M}_{0}$. If f is a nonzero function in $\mathfrak{M}_{0} \ominus z \mathfrak{M}_{0}$, then for all $k>0$, we have $0=\left(f, z^{k} f\right)=\iint_{\mathbf{T}^{2}}\left|f\left(e^{i \theta}, e^{i \varphi}\right)\right|^{2} e^{-i k \theta} d \theta d \varphi$. Since $|f|$ is real, this implies that $\int_{\mathbf{T}}\left|f\left(e^{i \theta}, e^{i \varphi}\right)\right|^{2} d \varphi$ is constant, a.e., in θ. Since f is nonzero and $\chi_{E_{1}}$ is a function of θ alone, we conclude that $\chi_{E_{1}}=1$. Thus $\mathfrak{M}_{-\infty}=q_{1} \mathbf{H}^{2}$ and $\mathfrak{R}_{\infty}=q_{2} \mathbf{H}^{2}$, as promised.

Remark 2.5. When $\mathfrak{M}=H_{n}^{2}$, we see that $\mathfrak{M}_{-\infty}=\mathbf{H}^{2}$ while $\mathfrak{M}_{\infty}=w^{n} \mathbf{H}^{2}$.

3. Simply invariant subspaces

閣 Suppose that \mathfrak{N} is a simply invariant subspace such that $\boldsymbol{w}^{\boldsymbol{l}} \mathbf{H}^{2}=\mathfrak{N}_{\infty} \subset \mathfrak{N} \subset$ $\subset \mathfrak{M}_{-\infty}=\mathbf{H}^{2}$ where $1 \leqq l \leqq n$. Then applying Lax's generalization of Beurling's theorem, we find that \mathfrak{N} has a very special form. Specifically, using [3, VI.3, p. 60], we see that there is a $j \leqq l$ and there are functions $f_{i k} \in \mathscr{L}^{2}, 1 \leqq i \leqq j, 0 \leqq k \leqq l-1$, such that
a) $\sum_{k=0}^{t-1} f_{i j} \overline{f_{m k}}=\delta_{i m}, \quad 1 \leqq i, m \leqq j$, and
b) $\mathfrak{N}=\left[z ; f_{1}, \ldots, f_{j}\right]_{2} \oplus w^{l} \mathbf{H}^{2}$
where $f_{i}=\sum_{k=0}^{l-1} f_{i k} w^{k}, 1 \leqq i \leqq j$, and where $\left[z ; f_{1}, \ldots, f_{j}\right]_{2}$ denotes the smallest subspace containing $f_{1}, f_{2}, \ldots, f_{j}$ that is invariant under multiplication by z. For instance, it is clear that

$$
H_{l}^{2}=\left[z ; 1, w, \ldots, w^{l-1}\right]_{2} \oplus w^{l} \mathbf{H}^{2} \text { and } H_{l, 0}^{2}=\left[z ; z, w, \ldots, w^{l-1}\right]_{2} \oplus w^{l} \mathbf{H}^{2} .
$$

If, now, F is a unimodular function and if $\mathfrak{P}=F \mathfrak{\Omega}$, where \mathfrak{N} is of the above form, then \mathfrak{M} is easily seen to be simply invariant, but of course, \mathfrak{M} need no longer be nestled between some $w^{l} \mathbf{H}^{2}$ and \mathbf{H}^{2}. Our goal, Theorem 3.2, is to show that every simply invariant subspace can be expressed in this way as $F \mathfrak{M}$.

Proposition 3.1. Let \mathfrak{M} be a simply invariant subspace for A_{n} and (for $n \geqq 2$) assume that $A_{n-1} \mathfrak{M} ₫ \mathfrak{M}$. Then $\mathfrak{P}=F \mathfrak{M}$ where F is a unimodular function on \mathbf{T}^{2} and $\mathfrak{\Re}$ is a simply invariant subspace such that $\mathfrak{N}_{\infty}=w^{n} \mathbf{H}^{2}$ and $\mathfrak{N}_{-\infty}=\mathbf{H}^{2}$.

Proof. By Proposition 2.4, $\mathfrak{M}_{-\infty}=q_{1} \mathbf{H}^{2}$ and $\mathfrak{M}_{\infty}=q_{2} \mathbf{H}^{2}$, where $\left|q_{1}\right|=\left|q_{2}\right|=1$. Since $q_{2} \mathbf{H}^{2} \subset q_{1} \mathbf{H}^{2}$, we must have $\bar{q}_{1} q_{2} \in \mathbf{H}^{2}$ and $q_{1} \bar{q}_{2} w^{n} \in \mathbf{H}^{2}$ (recall that $w^{n} \mathfrak{M}_{-\infty} \subset$ $\left.\subset \mathfrak{M}_{\infty}\right)$. Set $q=\bar{q}_{1} q_{2}$, so that $q \in \mathbf{H}^{2}$ and $w^{n} \bar{q} \in \mathbf{H}^{2}$. Therefore $q=\sum_{k=0}^{n} c_{k} w^{k}$, where $c_{k} \in \mathscr{L}^{2}$. Since $|q|=1$, we have $q=\sum_{k=0}^{n} a_{k} \chi_{E_{k}} w^{k}$, where each a_{k} is a function of z alone, $\left|a_{k}\right|=1$ a.e. on $E_{k}, 0 \leqq k \leqq n$, and $\sum_{k=0}^{n} \chi_{E_{k}}=1$. Since $q_{1} q H^{2} \subset \mathfrak{M} \subset q_{1} \mathbf{H}^{2}$, we see that $\chi_{E_{0}} q_{1} H^{2}=\chi_{E_{0}} q_{1} q \mathbf{H}^{2} \subset \chi_{E_{0}} \mathfrak{M} \subset \chi_{\mathcal{E}_{0}} q_{1} \mathbf{H}^{2}$, and therefore, $\chi_{E_{0}} \mathfrak{M}=$ $=\chi_{E_{0}} q_{1} q \mathbf{H}^{2} \subset q_{1} q \mathbf{H}^{2}=\mathfrak{M}_{\infty}$. Now we may assume that $\chi_{E_{0}} \equiv 1$, for otherwise $\mathfrak{M}=\mathfrak{M}_{\infty}$ and so \mathfrak{M} is not simply invariant. Moreover, $\chi_{E_{0}} \mathfrak{M} \subset \mathfrak{M}$ and, if $\chi_{E_{0}} \not \equiv 0$, then it is easy to see that $\bar{z} \mathfrak{M} \subset \mathfrak{M}$, so that \mathfrak{M} is not simply invariant. (Indeed, on the basis of the Wold decomposition for an isometry, it is straightforward to show that if a subspace \mathfrak{M} is invariant for a unitary operator U and if \mathfrak{M} is also invariant for some nontrivial spectral projection of U, then \mathfrak{M} reduces U. In our special situation, $\chi_{E_{0}}$ is a spectral projection for multiplication by z since $\chi_{E_{0}}$ is a function of z alone.) Thus $\chi_{E_{0}} \equiv 0$. Put $D=\left\{f \in L^{\infty}: f \mathfrak{M} \subset \mathfrak{M}\right\}$. Then $H_{n}^{\infty} \subset D$ and $q H^{\infty} \subset D$, since $q \mathbf{H}^{\infty} \mathfrak{M} \subset q_{1} q \mathbf{H}^{2}=\boldsymbol{q}_{2} \mathbf{H}^{2} \subset \mathfrak{M}$. Hence $w \mathscr{H} \mathscr{C}^{\infty}$ and (since $\bar{a}_{k} \chi_{E_{1}} \in \mathbf{H}^{\infty}$) $w \chi_{E_{1}} \mathscr{L}^{\infty}$ are both contained in D. Since \mathscr{L}^{∞} is isomorphic to $L^{\infty}(\mathbf{T})$ with \mathscr{H}^{∞} corresponding to $H^{\infty}(\mathbf{T})$, it follows that if $\chi_{E_{1}} \neq 0$, then $\left[\mathscr{H}^{\infty}+\chi_{E_{1}} \mathscr{L}^{\infty}\right]_{*}=\mathscr{L}^{\infty}$. But then $w \mathscr{L}^{\infty} \subset D$ and $H_{1}^{\infty} \subset D$. Thus $A_{n-1} \mathfrak{M} \subset \mathfrak{M}$, a contradiction. Thus, $\chi_{E_{1}} \equiv 0$. One shows similarly that $\chi_{E_{2}}=\ldots=\chi_{E_{n-1}} \equiv 0$ and $\chi_{E_{n}} \equiv 1$. Therefore, $q=w^{n} a_{n}$. Set $F=q_{1}$ and $\mathfrak{N}=\bar{q}_{1} \mathfrak{N}$ to complete the proof.

Theorem 3.2. Let \mathfrak{M} be a simply invariant subspace for A_{n}. Then $\mathfrak{M}=F \mathfrak{M}$ for some unimodular function F and a simply invariant subspace \mathfrak{N} such that $\mathfrak{N}_{-\infty}=\mathbf{H}^{2}$ and $\mathfrak{M}_{\infty}=u^{l} \mathbf{H}^{2}$ for some $l, 1 \leqq l \leqq n$. Moreover, $\mathfrak{M} \cap F w^{l-1} \mathbf{H}^{2}=F w^{l-1} q H_{1}^{2}$, where q is a unimodular function in \mathscr{L}^{∞}.

Proof. Let $l, 1 \leqq l \leqq n$, be the smallest integer such that $A_{l} \mathfrak{M l} \subset \mathfrak{D} l$. Proposition 3.1 then establishes the first part of the theorem. Now, $\mathfrak{M} \cap F w^{l-1} \mathbf{H}^{2}=$ $=F\left(\mathfrak{N} \cap w^{l-1} \mathbf{H}^{2}\right)$, and $\mathfrak{N} \cap w^{l-1} \mathbf{H}^{2}=q \mathscr{H}^{2} w^{l-1} \oplus w^{l} \mathbf{H}^{2}$, because $\bar{w}^{l-1}\left(\left(\mathfrak{N} \cap w^{l-1} \mathbf{H}^{2}\right) \ominus\right.$ $\left.\Theta w^{l} \mathbf{H}^{2}\right)$) is a simply invariant subspace of \mathscr{L}^{2} under multiplication by z. Therefore the second part of the theorem follows.

The following corollary is of course well known since A_{1} is a Dirichlet algebra. However, our methods provide an alternate proof.

Corollary 3.3. If $n=1$ and \mathfrak{M} is a simply invariant subspace, then $\mathfrak{M}=F H_{1}^{2}$ for some unimodular function F.

Proof. Obviously, l must be 1 in this case, so that $\mathfrak{M}=\mathfrak{M} \cap \mathbf{H}^{2}=q H_{1}^{2}$, which implies that $\mathfrak{M}=F \mathfrak{9}=F H_{1}^{2}$.

Corollary 3.4. Let \mathfrak{M} be a simply invariant subspace for A_{n}. Then $\operatorname{dim}(\mathfrak{M} \ominus z \mathfrak{M})=1$ if and only if $\mathfrak{M}=F H_{1}^{2}$ for some unimodular function F.

Proof. The sufficiency is clear. By Theorem 3.2, $\mathfrak{M}=\tilde{F} \mathfrak{N}$ for some unimodular function \tilde{F} and a simply invariant subspace \mathfrak{N} such that $\mathfrak{R}_{-\infty}=\mathbf{H}^{2}$ and $\mathfrak{M}_{\infty}=w^{l} \mathbf{H}^{2}$ for some $l, \quad 1 \leqq l \leqq n$. We claim that $l=1$. This will give the desired result, as in the proof of the previous corollary. Since $\operatorname{dim}(\mathfrak{M} \ominus z \mathfrak{M})=1$, we also have $\operatorname{dim}(\mathfrak{N} \ominus z \mathfrak{N})=1$, so that $\mathfrak{N} \ominus z \mathfrak{N}=[\mathbf{C}]_{2}$ for some function $f=\sum_{k=0}^{l} f_{k} w^{k}$, where $f_{k} \in \mathscr{L}^{2}(0 \leqq k \leqq l)$. Since $\boldsymbol{N} \supset \boldsymbol{N}_{\infty}=w^{l} \mathbf{H}^{2}, f$ must be orthogonal to w^{l} and therefore $f_{l}=0$. Moreover, $f w^{l-1}=f_{0} w^{l-1}+w^{l} g$, where $g \in \mathbf{H}^{2}$, so that $f_{0} w^{l-1} \in \mathfrak{N} \ominus \mathfrak{N}_{\infty}$. Now, $\mathfrak{N} \ominus \mathfrak{N}_{\infty}=\left[\bigcup_{i \geq 0} z^{i} f\right]_{2}=[z ; f]_{2}$, and there exists a sequence $\left\{g_{m}\right\} \subset \mathscr{H}^{\infty}$ such that $g_{m} f \rightarrow f_{0} w^{l-1}$ in L^{2}. By projecting onto $w^{l-1} \mathscr{L}^{2}$ we get: $g_{m} f_{l-1} \rightarrow f_{0}$. Assume that $l>1$. Then $g_{m} \sum_{k=0}^{l-2} f_{k} w^{k}=g_{m}\left(f-f_{l-1} w^{l-1}\right) \rightarrow 0$, and in particular, $g_{m} f_{0} \rightarrow 0$. However, by the second part of Theorem 3.2 we must have $f_{0} w^{l-1} \in w^{l-1} q H_{1}^{2}$, or $f_{0} w^{l-1}=w^{l-1} q h$, where $|q|=1, q \in \mathscr{L}^{\infty}$ and $h \in \mathscr{H}^{2}$. Therefore $\left|f_{0}\right|=|h|$ a.e. If $f_{0}=0$ a.e. then $\mathfrak{N}_{-\infty} \subset w \mathrm{H}^{2}$, so that $\left|f_{0}\right|>0$ on a set of positive measure. That forces $|h|>0$ a.e. and then $\left|f_{0}\right|>0$ a.e. If $\left\{g_{m_{i}}\right\}$ is a subsequence such that $g_{m_{i}} f_{0} \rightarrow 0$ a.e., the previous observation implies that $g_{m_{i}} \rightarrow 0$ a.e., so that $g_{m_{i}} f_{l-1} \rightarrow 0$ a.e., or $f_{0}=0$ a.e. This contradiction establishes the original claim and completes the proof.

4. Weak-* closed superalgebras

The following theorem generalizes [5, Theorem 4] (see [5, Example 3.(1)]).
Theorem 4.1. Let B be a weak-* closed subalgebra of L^{∞} containing H_{n}^{∞}. Then either $B \subset \mathbf{H}^{\infty}$, or $B=\chi_{E} \mathbf{H}^{\infty}+\left(1-\chi_{E}\right) L^{\infty}$, for some measurable set E with $\chi_{E} \in \mathscr{L}^{\infty}$. If $B \subset \mathbf{H}^{\infty}$ then $\bigcap_{k \geqq 0} z^{k} B=w^{l} \mathbf{H}^{\infty}$ for some $l, 1 \leqq l \leqq n$.

Proof. Put $B_{-\infty}=\left[\bigcup_{k \geq 0} \bar{z}^{k} B\right]_{*}$ and $B_{\infty}=\bigcap_{k \geq 0} z^{k} B$. Then $B_{\infty} \subset B \subset B_{-\infty}$. By [5, Lemma 1] and Corollary 2.2, $B_{\infty}=\chi_{E_{1}} q_{1} \mathbf{H}^{\infty}+\chi_{E_{2}} L^{\infty}$, where $\chi_{E_{1}} \in \mathscr{L}^{\infty}, \chi_{E_{1}}+\chi_{E_{2}}=1$, and $B_{-\infty}=\chi_{F_{1}} q_{2} \mathbf{H}^{\infty}+\chi_{F_{2}} L^{\infty}$, with $\chi_{F_{1}} \in \mathscr{L}^{\infty}$ and $\chi_{F_{1}}+\chi_{F_{2}}=1$. As in the case of invariant subspaces of $L^{2}, w^{n} B_{-\infty} \subset B_{\infty}$. Thus $w^{n} \chi_{F_{2}} L^{\infty} \subset \chi_{E_{2}} L^{\infty}$, and this implies $\chi_{E_{2}}=\chi_{F_{2}}$, because $\chi_{E_{2}} L^{\infty} \subset \chi_{F_{2}} L^{\infty}$. Since $B_{-\infty}$ is also an algebra and $q_{2} \in B_{-\infty}$, we get $q_{2} B_{-\infty} \subset B_{-\infty}$. Thus $B_{-\infty} \subset \bar{q}_{2} B_{-\infty}$. This implies that $\chi_{E_{1}} B_{-\infty} \subset$ $\subset \bar{q}_{2} \chi_{E_{1}} q_{2} \mathbf{H}^{\infty}=\chi_{E_{1}} \mathbf{H}^{\infty}$. In particular, $\chi_{E_{1}} B \subset \chi_{E_{1}} \mathbf{H}^{\infty}$. Put $D=\chi_{E_{1}} B+\chi_{E_{2}} \mathbf{H}^{\infty}$. Then D is a weak-* closed superalgebra of H_{n}^{∞} and $D \subset \mathbf{H}^{\infty}$. We shall consider two cases:

Case 1: $B \nsubseteq \mathbf{H}^{\infty}$. In this case $\chi_{E_{s}} \neq 0$. Consequently (as in the proof of Proposition 3.1) $\left[\mathscr{H}^{\infty}+\chi_{E_{2}} \mathscr{L}^{\infty}\right]_{*}=\mathscr{L}^{\infty}$. We have $\mathscr{H}^{\infty} \subset B$, hence $D \supset \mathscr{H}^{\infty}+\chi_{E_{2}} \mathscr{L}^{\infty}$, and so $D \supset \mathscr{L}^{\infty}$. This implies $D \supset \mathbf{H}^{\infty}$, which yields $D=\mathbf{H}^{\infty}$. Now $\chi_{E_{1}} B=$ $=\chi_{E_{1}} D=\chi_{E_{1}} \mathbf{H}^{\infty}$. On the other hand, $\chi_{E_{2}} L^{\infty}=\chi_{E_{2}} B_{\infty} \subset \chi_{E_{2}} B \subset \chi_{E_{2}} B_{-\infty} \subset \chi_{E_{2}} L^{\infty}$. Consequently $\chi_{E_{2}} B=\chi_{E_{2}} L^{\infty}$, and so we can conclude $B=\chi_{E_{1}} H^{\infty}+\left(1-\chi_{E_{1}}\right) L^{\infty}$.

Case 2: $B \subset \mathbf{H}^{\infty}$. In this case $\chi_{E_{2}} \equiv 0$. Since $w^{n} \mathbf{H}^{\infty} \subset B \subset \mathbf{H}^{\infty}$ and $B_{\infty}=q_{1} \mathbf{H}^{\infty}$, $q_{1}=\sum_{j=0}^{n} \chi_{S_{j}} w^{j}$, where $\chi_{S_{j}} \in \mathscr{L}^{\infty}, 0 \leqq j \leqq n$, and $\sum_{j=0}^{n} \chi_{S_{j}}=1$. If $\chi_{S_{0}} \neq 0$, then $B=\mathbf{H}^{\infty}$ because $\chi_{s_{0}}=q_{1} \chi_{s_{0}} \in B$ and $z B \subset B$. If k is the first integer such that $\chi_{S_{k}} \neq 0$ then $B \supset w^{k} H^{\infty}$ and $B_{\infty}=w^{k} \mathbf{H}^{\infty}$. For, if $\chi_{s_{k}} \equiv 1$ then $B \supset w^{k} \mathbf{H}^{\infty}$ trivially. If $\chi_{s_{k}} \neq 1$ then $B \supset w^{k} H^{\infty}$ because $w^{k} \chi_{s_{k}} \in B$ and $z B \subset B$. By the hypothesis on $k, q_{1}=w^{k}$ and therefore $B_{\infty}=w^{k} \mathbf{H}^{\infty}$.

When $n=2$ in the above theorem, more can be said about B.
Theorem 4.2. Let B be a weak-* closed subalgebra of \mathbf{H}^{∞} containing H_{2}^{∞}, and assume that $\bigcap_{k \geqq 0} z^{k} B=w^{2} \mathbf{H}^{\infty}$. Then $B=\mathscr{H}^{\infty} \oplus w \bar{q} \mathscr{H}^{\infty} \oplus w^{2} \mathbf{H}^{\infty}$, where q is an inner function.

Proof. Consider $B_{0}=B \cap \mathscr{L}^{\infty}$. B_{0} is a weak-* closed subalgebra of \mathscr{L}^{∞} containing \mathscr{H}^{∞}; moreover, if $B_{0}=\mathscr{L}^{\infty}$ then $\mathscr{L}^{\infty} \subset \bigcap_{k \geqq 0} z^{k} B$, a contradiction. Therefore $B_{0}=\mathscr{H}^{\infty}$, i.e., $\mathscr{H}^{\infty} \subset B$. Let P_{1} be the orthogonal projection from \mathbf{H}^{2} onto $w \mathscr{H}^{2}$. Since $\bigcap_{k \geq 0} z^{k} B=w^{2} \mathbf{H}^{\infty}$ and $\mathscr{H}^{\infty} \subset B$, it follows that $P_{1} B:=\left\{P_{1} f: f \in B\right\} \subset B$,
and that $B=\mathscr{H}^{\infty} \oplus P_{1} B \oplus w^{2} \mathbf{H}^{\infty}$. Moreover, $P_{1} B=w \mathfrak{M}_{1}$, where $\mathfrak{M}_{1}:=\left\{f \in \mathscr{L}^{\infty}: w f \in B\right\}$ is an \mathscr{H}^{∞}-submodule of $\mathscr{L}^{\infty} ; \mathfrak{M}_{1}$ is, therefore, of the form $\mathfrak{M}_{1}=\bar{q} \mathscr{H}^{\infty}$, for some unimodular function $q \in \mathscr{L}^{\infty}$. Since $\mathscr{H}^{\infty} \subset \mathscr{M}_{1}$, we easily get that q is inner. Thus, $P_{1} B=w \bar{q} \mathscr{H}^{\infty}$.

References

[1] R. Arens, A Banach algebra generalization of conformal mappings of the disc, Trans. Amer. Math. Soc., 81 (1956), 501-513.
[2] T. Gamelin, Uniform algebras, Prentice-Hall, Englewood Clifs, N.J. (1969).
[3] H. Helson, Lectures on invariant subspaces, Academic Press (New York, 1964).
[4] M. McAsey, P. Muhly, K.-S. Sarto, Nonselfadjoint crossed products. II, J. Math. Soc. Japan, 33 (1981), 485-495.
[5] T. Nakazi, Nonmaximal weak-* Dirichlet algebras, Hokkaido Math. J., 5 (1976), 88-96.
[6] T. Nakazı, Invariant subspaces of weak-* Dirichlet algebras, Pacific J. Math., 69 (1977), 151-167.
(R. C. AND P. M.)

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF IOWA
IOWA CITY, IOWA 52242 U.S.A.
(T. N. AND T. Y.)

DEPARTMENT OF APPLIED MATHEMATICS
RESEARCH INSTITUTE OF APPLIED ELECTRICITY HOKKAIDO UNIVERSITY
SAPPORO 060, JAPAN

[^0]: * Supported in part by a National Science Foundation grant (U.S.A.).
 ** Supported in part by Kakenhi (Japan).
 Received July 10, 1984; revised May 20, 1985.

