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On snperalgebras of the polydisc algebra 

RAUL E. CURTO*, PAUL S. MUHLY* TAKAHIKO NAKAZI«* and T. YAMAMOTO** 

Let T be the unit circle and, for w s l , let A„ be the uniform closure in C(T2) 
of the algebra of polynomials in zkwl, where k and / are integers, / s 0 , and k^0 
whenever Os / sn—1. Each A„ contains the polydisc algebra and the intersection 
of the A„ is the polydisc algebra. In this paper we give a characterization of the 
subspaces of L2(T2) which are invariant under multiplication by the functions in 
A„. The characterization is somewhat complicated, as one would expect, since for 
n > 1, A„ is not a Dirichlet algebra. In fact, for w>l , the point in the maximal 
ideal space of A„ represented by Lebesgue measure on T2 has an infinite dimensional 
set of representing measures. Nevertheless, as a result of our analysis, we find that 
each simply invariant subspace of L2(T2) for A„ is finitely generated and the number 
of generators required is s n . Examples can be constructed where n generators are 
necessary. Our analysis enables us to extend results of the third author and to 
parametrize the weak- * closed superalgebras of A„. 

1. Introduction 

Let X be a compact Hausdorff space, let C (X) be the space of complex-valued 
continuous functions on X, and let A be a uniform algebra on X. For (p£MA, the 
maximal ideal space of A, set A0={f£A: <p(/)=0}. 

De f in i t i on 1.1. Let <pdMA, let a be a representing measure (on X) for 
<p, and let 9JI be a (closed) subspace of L2(X, c). Then 931 is said to be simply invariant 
(for A) if /49Mc9Jl, but [^„9Jl]2?i9K (where [ ]2 denotes L2-closure). 

Let dA denote the Shilov boundary of A and N9 denote the set of representing 
measures for <p€MA whose support is contained in dA. Note that N9 is a weak-* 
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compact convex set of probability measures on dA . The general theory of simply 
invariant subspaces is known only in the case when N^DL1 (X, a) is finite dimen-
sional. For instance, if A is a Dirichlet algebra then N^C\L}(X, a) = {a}, and the 
simply invariant subspaces of L2(X, a) have been characterized (cf. [2, p. 132]). 
In particular, Beurling's theorem can be derived from that characterization (the 
disc algebra, after all, is a Dirichlet algebra on the unit circle T). 

In this note we focus our attention on the following class of function algebras, 
A„, « S i , contained in C(T2). The general theory of invariant subspaces does not 
apply to these algebras. Nevertheless, as we shall show, it is possible to give a fairly 
complete and concrete description of their invariant subspaces. 

D e f i n i t i o n 1.2. Let T2 be the 2-torus and let n be an integer, « s i . By A„ 
we shall denote the uniform algebra on T2 of all continuous functions on T2 that 
can be uniformly approximated by polynomials in zkwl, where / s 0 , and &S0 when 

Equivalently, An may be described as the set of all functions / in C(T2) such 
tha t / i s supported in the upper half-plane and, in the second quadrant , / is supported 

eo 
on or above the line y=n. We have A1^A23--- and f ) An=Aoa, the polidisc 

n = l 
algebra. Observe that A„ is a Dirichlet algebra precisely when H=1. Let a be the 
Haar measure on T2 and define 

<Pn(f)= J f d a (ftAn). 
T ! 

Clearly, <p„ZMAn and crfEA^ for all «. Also note that dA„=T2 for all n. How-
ever, N9 DUij2, a) is not finite dimensional for n s 2 , as may be seen quite 
easily. 

Our hope is that an understanding of the A„'s will help us understand better 
the polydisc algebra A„. After all, in one obvious sense, A„ is the limit of the A„. 
In another somewhat more vague sense, as we shall see, it appears that the lattice 
of invariant subspaces of A„ is approximated by the invariant subspace lattices 
of the A„. The following proposition, however, shows that in still another sense 
all the A„, «<<=•=, are similar to Ax. Observe that for w"~1A1c:A„ and 
therefore, | 4 J = Mil. where \An\={\f\: f^An). However, \Am\^\Ax\. Since 
AttcAx, there is a natural embedding g„ of MAi into MA , given by restriction. 
Similarly, q„: Ma^Ma is an embedding. 

P r o p o s i t i o n 1.3. For each finite n, ,g„: MA -*MA is surjective, while 
g„- MA^-*MA is not surjective. 

Proof . Let (p£MAn. There are two possibilities: |<p(z)| = l or |<p(z)|< 1. 
In the first case, define <p(zkw')=(p(z)k(p(w)1 (ZcSO, / S i ) . Then and 
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<p\A=<p. If l<p(z)|<l then <p(w")=(p(zk)<p(zkwn) for all k^O, so that 
q>(z)\k (all k), which implies that (p(w)=0. By [1, Theorem 5], cp has a unique 

extension $ to Alt and (p£MA^. Therefore, Q„((p)='p- For the second assertion, 
observe that the proof just given shows that if <p^MAi and |<p(z)|<l then cp(w)=0. 
It clearly follows that gm cannot be onto because MA can be identified with the 
bidisc DXD. 

Def in i t i on 1.4. We shall let stf, S), and denote the following subalgebras 
of C(T2): 

i) si is the uniform closure of the polynomials in the first variable z; 
ii) is the uniform closure of the polynomials in z, z, and w; 

and 
iii) is the uniform closure of the polynomials in z and z. 
Observe that: 

i) si is isomorphic to the disc algebra; 
ii) <6 is isomorphic to C(T); 

iii) S8 is isomorphic to the tensor product of the disc algebra and C(T); 
OO 

iv) is also the uniform closure of U zkA„ (all n); 

v) A g a (all n); 

vi) H zkAn=wn@ (all n); 
k = 0 

vii) %={2 ®wl(#)®wn@ (all n); and 
1 = 0 n-i 

viii) A„=( y ®-wlsi)®w"38 (all«). 
/=o 

De f in i t i on 1.5. The closure in L2(a) of A„, [A„]2, will be denoted and 
the closure of 38 in L2(a) will be denoted H2. Likewise, we define and 
H 0 0 ^ ^ ] * , where [ denotes weak-* closure in L°°(p). For p—2, we set 
H p

0 = { f € H p \ J f d a = 0 ) . Finally, we define .5?2=[<ii]2, =[#]„, and 
MT=[<*]*• 

Observe that for p=2, «>, and are spaces of functions in the first 
variable, z, only, while the splittings described above yield the decompositions 

H" = ("z ®wl&>)®wnH" (all n), 
1=0 

and 

Hg = ( " z ®w ' j e p )®w n №. 
1 = 0 

These decompositions are crucial to our analysis. In Section 2 we use them to 
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describe completely the non-simply invariant subspaces of L2(<r), and in Section 3 
we use them to describe the simply invariant subspaces of L2(a). Finally, in 
Section 4, we use them to determine the structure of the weak- * closed superalgebras 
of 

2. Non-simply invariant subspaces 

For n < H2 is a simply invariant subspace (for A„) while H2 is not. The 
following proposition gives an easy criterion to determine when an invariant 
subspace is simply invariant. First, we list some important properties of the 
algebras A„y. 

(i) A1>0=zA1, and 
(ii) A„f0=zA„+[w, w2 , . . . , H»"-1], where [ ] denotes linear span. 

P r o p o s i t i o n 2.1. Let 93i be an invariant subspace of L2(a). Then 931 is simply 
invariant for A„ if and only if z93t^93t. 

P roo f . If n = l , [ ¿ ^ o S J q ^ M j a R ] , , so that if Mli093t]2=93l, then z9M=93l. 
Conversely, if z93i=93l, then [^1z9Jl]2=[^12«]2=9K. If n^ 1, [/*„,<, ®i]2 = 
=[z9M+w93t + ...+u>',-193?]2, by (ii) above, and therefore 0aii]2=[zSD?VM'9W]2. 
Hence if 931 is simply invariant, then z93tEg90t. Assume now that [^n>09Jl]2=9Ji. 
Then from what we have just seen, [zSOl+w9Jl]2=9Ji. Consequently, [z9M+wn93i]3 = 
= [ z ( 9 3 t + w - ^ ) + wn9W]2=[z9K + w^izW.+w93t)]2=[z93l+w"-19«]2. 

By repeating this argument, we find that [z93i+vv"93l]2=:[z93t+tv93l]2=93i. But 
zw"eAn, so 931=[z93i + w" 93t]2=z [931+zw>" 93l]2=z93i, as desired. 

C o r o l l a r y 2.2. Let 931 be an invariant subspace of L2(a). Then 931 is not simply 
invariant if and only if 

W = xElqW®XEiL2{<r), 

where xE and xE denote the characteristic functions of two measurable sets Et and 
Ei, Z E . ^ . Z E ' + ^ S I , and \q\ = l a.e. (<r). 

P roo f . The sufficiency is clear. If z93t=93t, then 931 is invariant under ¿8. 
Since SS contains the Dirichlet algebra At on which a is multiplicative, we may 
apply [6, First example, p. 165] to conclude that 931 is of the form 93i=x£<7[Z)]2, 
where D={f£L°°: /931 c901}, q is unimodular, and xE^D - By [5, Example 3.(1)], 
D has the form D=XFW+(\—XF)L°°, where x f€H°°. Letting XE =XEXF and 
ZE,=Zb(1—XF)> we see [5] that and 931 has the desired representation. 

An alternate proof of this result may be based on [4] as follows. Since z93i=9K, 
9K is invariant under H°°. But H°° may be viewed as the non-self-adjoint crossed 
product determined by the identity automorphism of L°°(T). Hence the result 
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follows from the analysis in Section 3 of [4] (see in particular Theorem 3.3 and 
Proposition 3.4). 

Before we proceed, we need a definition. 

De f in i t i on 2.3. Let 901 be an invariant subspace of L2(A). Then we define 
9Jt_«, to be [ U z*9Jl]a and 991«, to be [ f | z*99l]2. JtgO k£ 0 

Clearly 9JtooC9Jtc9Jl_„. Moreover, both 9Ji„ and 9Jl_<*> are non-simply 
invariant. By Corollary 2.2 we can describe both 951«, and 90t_„. However, if 9JI is 
simply invariant, more can be said. 

P ropos i t i on 2.4. Let 9Ji be a simply invariant subspace. Then %fl-a>=ql H2 

and 9M„=£2H2, where qx and q2 are unimodular. 

Proof . By Proposition 2.1, z9Mg9H, so 95l„g95t§991_<». By Corollary 2.2, 

2K-« = M H 2 © / E 2 L a , with XEi+XE2 ^ 1, \qi\ = 1, 
and 

= X,xftH ,©ZFiL» f with XFi+XF2^U Ifel = 1. 

Since 9Jl„c95lc9Jl_0„, it follows that XF I+XF,-XE +7-E XF -XE • Since 
zkw"eA„ for all ¿SO and AnWl(zSJl, we see that V c 951 for all' kSO. There-
fore, H>"9Jl_«,c95i, thus w"9Jt_00 = w"zt93t_00cz,I95l for all fcsO, so wn9Jl_«,c 
c f ) zi95l=95l«>. Consequently, iv" YE L2 <z Y_F L2, and so XE —XF- Likewise, k%0 i t i s 
ZE =ZF,> because H>" xEi H2 c H2. Thus we find that 9Jt_TC©9Jtot> = 
=XE ( ? iH 2 0i 2 H 2 ) which, in turn, is contained in XE ?i(H2©vv"H2), since 
w"fflL»c®i». Set 9Ji0=»ie93ioo. Then since z95L,=9Jt~, 'but z9K§9Ji, it fol-
lows that z95l0^93l0. I f / i s a nonzero function in 95l0©z95i0, then for all A:>0, 
we have 0=(f,zkf)=ff\f(ele,eiv)\2e-ike d9 d(p. Since | / | is real, this implies 

T» 
that J | f(ew, ei<p)\2 dq> is constant, a.e., in 9. Since / is nonzero and XE, is a func-

T 1 

tion of 9 alone, we conclude that x£ = l . Thus 95l_„=g1H2 and 93to°=?2H2, 
as promised. 

R e m a r k 2.5. When 95t=#2 , we see that 9J1_„=H2 while 9Jl«,=w"H2. 

3. Simply invariant subspaces 

P Suppose that 91 is a simply invariant subspace such that w 'H 2 =9i 0 „c9lc 
c 9 l _ „ = H 2 where 1 ^ / S n . Then applying Lax's generalization of Beurling's 
theorem, we find that 91 has a very special form. Specifically, using [3, VI.3, p. 60], 
we see that there is a jsl and there are functions l ^ / s y , Os&s/— 1, 
such that 
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1 - 1 
a) 2 f u f m k = 8im, l ^ i , m s j , a n d . . 

k=0 

b) 9t = [z; / , ]2©w'H2 

i - i 
where /¡=2 fikWk, 1 and where [z; U, . . . ,/.]2 denotes the smallest subspace 

k = 0 

containing / l s / 2 , . . . , f j that is invariant under multiplication by z. For instance, 
it is clear that 

Hf = [z; 1, w, ..., w ' - ^ e w ' H 2 and = [z; z, w, ..., w ' - ^ e w ' H 2 . 

If, now, F i s a unimodular function and if 9Ji=F9i, where 9t is of the above form, 
then 9M is easily seen to be simply invariant, but of course, 9JZ need no longer be 
nestled between some iv'H2 and H2. Our goal, Theorem 3.2, is to show that every 
simply invariant subspace can be expressed in this way as F9t. 

P r o p o s i t i o n 3.1. Let 9Jt be a simply invariant subspace for A„ and (for n ^ 2) 
assume that cfSOi. Then 9Jt=F9t where F is a unimodular function on T2 

and 91 is a simply invariant subspace such that 9ilo==w"H2 and 9?_„=H 2 . 

P roo f . By Proposition 2.4, 9Ji_00=91H2 and 932„=^2H2, where |<7il = |g2l = l-
Since ^ f f c ^ H 2 , we must have q, q2£H'2 and q1q2w"iH2 (recall that w"9Ji_„cz 

n 
ciWioo). Set q=qxq2, so that q£H2 and H2. Therefore q= 2 ckwk> where 

*=o n 
ck£JS?2. Since |<?| = 1, we have q= 2 aklE wk> where each ak is a function of z 

*=o k 
n 

alone, |ak| = l a.e. on Ek, O^k^n, and 2 XE
 sinie ^ i ^ c a K c ^ H 2 , 

k-0 k 

we see that X ^ t f i H ^ ^ ^ H 2 c / ^ a R c j ^ H 2 , and therefore, Z£()9K = 
=X£09I?H2C^19H2=9K« j . Now we may assume that X£o^l> for otherwise 9Jl=9Jl„ 
and so 9Ji is not simply invariant. Moreover, /£()9Jic9Ji and, if then it 
is easy to see that z93ic93i, so that 931 is not simply invariant. (Indeed, on the basis 
of the Wold decomposition for an isometry, it is straightforward to show that if 
a subspace 93i is invariant for a unitary operator U and if 93? is also invariant for some 
nontrivial spectral projection of U, then 931 reduces U. In our special situation, 
XE is a spectral projection for multiplication by z since xE is a function of z alone.) 
Thus xE= ^ D = {f£L": /9Kc93i}. Then and qWczD, since 
qW9K¿qxqW=H2 c 93t. Hence and (since akxE€H°°) wxE&°° are both 
contained in D. Since is isomorphic to £°°(T) with №°° corresponding to H°°(T), 
it follows that if then = But then H>JS?°°<=Z> and 
H"czD. Thus ^ a w c a i i , a contradiction. Thus, XE = 0 . One shows similarly 
that = = 0 and X£n = l. Therefore, q = w"a„\ Set F=qx and 91=^931 
to complete the proof. 
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Theorem 3.2. Let M be a simply invariant subspace for A„. Then 2JÎ = F9t 
for some unimodular function F and a simply invariant subspace 91 such that 9l_o==H2 

and 91oo = H'H2 for some I, l^l^n. Moreover, <mf]Fwl'-1H2 = Fwl~1qH2, where 
q is a unimodular function in JS?~. 

Proof . Let/ , i m l ^ n , be the smallest integer such that /i(iIicsJJi. Proposi-
tion 3.1 then establishes the first part of the theorem. Now, 2Jtn.Fw'_1H2= 
=FCJinu' '-1H2), and ,Hir]w l-1H2=qM?2w l-1®w'H\ because ^ ( ( S l i n w ' - ' f f j e 
Qw'H2)) is a simply invariant subspace of i f 2 under multiplication by z. Therefore 
the second part of the theorem follows. 

The following corollary is of course well known since A1 is a Dirichlet algebra. 
However, our methods provide an alternate proof. 

Coro l l a ry 3.3. If 72 = 1 andWl is a simply invariant subspace, then <3Si = FHl 
for some unimodular function F. 

Proof . Obviously, I must be 1 in this case, so that 9 l=9inH 2 =#. i f 2 , which 
implies that 9R = F9t = /7/2 . 

Co ro l l a ry 3.4. Let M be a simply invariant subspace for An. Then 
dim ($RQz9ft) = l if and only if 9JÎ = FH\ for some unimodular function F. 

Proof. The sufficiency is cl,ear. By Theorem 3.2, 9R=F9l for some uni-
modular function F and a simply invariant subspace 91 such that 9t_co=H2 and 
gi^^vv'H2 for some /, 1 ë / â n . We claim that /=1. This will give the desired 
result, as in the proof of the previous corollary. Since dim (®î©z$î) = l, we also 

have dim (91©z9l) = l, so that 9l©z9t=[C/]2 for some function / = 2 k w\ 
*=o 

where fkÇ.&2 (0 Sk^l). Since 9Î ZD = w'H2, f must be orthogonal to wl and there-
fore / ,=0 . Moreover, fw'-1=f0wl-1 + w'g, where geH2, so that / 0w'- 1e91©9U. 
Now, 9l©9lco=[U z ' / ] 2 =[z ; / ] 2 , and there exists a sequence such 
that gm /-*/0w'_ 1 in L2. By projecting onto w ' - 1 i f 2 we get: gmf-i~*f0- Assume 

that />1. Then gm z"fkwk~gm(f—fi-1 w' ~x) — 0, and in particular, gmf0*0. 
k = 0 

However, by the second part of Theorem 3.2 we must have /0w' -1Ov , _1<7#i, or 
f^w1*1 — wl_1 qh, where \q\ = \, and hitf2. Therefore \f0\=\h\ a.e. If 
/ 0 = 0 a.e. then 91_00c>fH2, so that | / 0 | >0 on a set of positive measure. That 
forces \h\ >0 a.e. and then | /0 | > 0 a.e. If {g„ } is a subsequence such that gm./0—0 
a.e., the previous observation implies that gm— 0 a.e., so that gm tf-x—0 a.e., 
or fv=0 a.e.. This contradiction establishes the original claim and completes 
the proof. 
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4. Weak- * closed snperalgebras 

The following theorem generalizes [5, Theorem 4] (see [5, Example 3.(1)]). 

T h e o r e m 4.1. Let B be a weak-* closed subalgebra of L" containing 
Then either BeH°°, or 5 = x £ H ° ° + ( l — xE)L°°, for some measurable set E with 

If ficH" then D zkB=wlW° for some I, 1 ?=/=§«. 

Proo f . Put and B „ = f \ ^ B . Then By 
tgo »go 

[5,Lemma 1] and Corollary 2.2, B „ w h e r e X E i & m , X E + X E = 1, 
and B_„=/F q2Uc°+xFiL°°, with a n d ZF1+XF !=1- a S in the case 
of invariant subspaces of L2, w"B_„czB„. Thus w" x^E" <zxElE°°, and this 
implies fo = z F , because yEL°aC-xFL"'. Since B_m is also an algebra and 

co, we get q2B_„czB^oa. Thus B_„cq.2B_„. This implies that xEB_^cz 
c ^ X i j ^ H " =xi;JH0°. In particular, xE l

B c zXE lH~. Put D = x E B + x E H " . Then 
D is a weak-* closed superalgebra of H" and Z)cH™. We shall consider two 
cases: 

Case 1: 5c t H°°. In this case xE Consequently (as in the proof of Prop-
osition 3.1) = We have °°c:B, hence D D ^ + z ^ r , 
and so DZDJ?™. This implies Z)DH°°, which yields Z>=H°°. Now y.E B= 
=X E l

D =X E P°°- O n ^ other hand, X E L m = X E B m c y . E B c x E B ^ c x E L ~ -
Consequently XEtB=XEtL°°, and so we can conclude B=xEH°° 

Case 2: BeH°°. In this case * £ j = 0. Since w"H°°c5cH°° and Boa=q1W, 

q x = Z x s y , where zs€JS?~, O ^ j ^ n , and Z x S f = l - If then S = H ~ 
j=0 J ' j=0 1 0 

because Xs —<hXs and zBczB. If k is the first integer such that Xs then 
B^wkH°a"aad B~=wkH~. For, if ^ = 1 then B=>wkW trivially. If ys^l 
then fiDiv'H* because wk/Sk€B and zBczB. By the hypothesis on k, ql = wk 

and therefore Bm—wkWa. 
When n=2 in the above theorem, more can be said about B. 

T h e o r e m 4.2. Let B be a weak-* closed subalgebra of H°° containing H2, 
and assume that f | z*5=w2H~. Then B=J^m @wq^f°° ®w2H", where q is an 

0 

inner function. 

Proof . Consider B^BH^C". B0 is a weak-* closed subalgebra of 
containing ; moreover, if B0=J£f™ then ¿ " ° c f | zkB, a contradiction. There-

Jig o 
fore B0=JV°°, i.e., Let Px be the orthogonal projection from H2 onto 
w3V2. Since D r*5=w 2 H~ and 34?°° cB, it follows that PXB:= (P x / : f£B}cB, 

tgo 
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and that Jf 0 0 ©PjjB© waH~. Moreover, P15=w2R1, where 9 ^ : = {/<E S": wfiB) 
is an ^f°°-submodule of S£°°\ SOlj is, therefore, of the form 9 J f o r some 
unimodular function Since we easily get that q is inner. Thus, 
P1B = wq3#,c°. 

[1] R. ARENS, A Banach algebra generalization of conformai mappings of the disc, Trans. Amer. 
Math. Soc., 81 (1956), 501—513. 

[2] T. GAMELIN, Uniform algebras, Prentice-Hall, Englewood Cliffs, N.J. (1969). 
[3] H. HELSON, Lectures on invariant subspaces, Academic Press (New York, 1964). 
[4] M. MCASEY, P. MUHLY, K.-S. SAITO, Nonselfadjoint crossed products. II, J. Math. Soc. Japan, 

33 (1981), 485—495. 
[5] T. NAKAZI, Nonmaximal weak-* Dirichlet algebras, Hokkaido Math. J., 5 (1976), 88—96. 
[6] T. NAKAZI, Invariant subspaces of weak-* Dirichlet algebras, Pacific J. Math., 69 (1977), 

References 

151—167. 

(R. C. AND P. M.) 
DEPARTMENT OF MATHEMATICS 
UNIVERSITY OF IOWA 
IOWA CITY, IOWA 52242 U.S.A. 

(T. N. AND T. Y.) 
DEPARTMENT OF APPLIED MATHEMATICS 
RESEARCH INSTITUTE OF APPLIED ELECTRICITY 
HOKKAIDO UNIVERSITY 
SAPPORO 060, JAPAN 


