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On superalgebras of the polydisc algebra

RAUL E. CURTO*, PAUL S. MUHLY*, TAKAHIKO NAKAZI** and T. YAMAMOTO**

Let T be the unit circle and, for n=1, let A4, be the uniform closure in C(T?)
of the algebra of polynomials in z*w', where k and [ are integers, /=0, and k=0
whenever 0=/=n—1. Each 4, contains the polydisc aigebra and the intersection
of the A4, is the polydisc algebra. In this paper we give a characterization of the
subspaces of L2(T?) which are invariant under multiplication by the functions in
A,. The characterization is somewhat complicated, as one would expect, since for
n>1, A, is not a Dirichlet algebra. In fact, for n>1, the point in the maximal
ideal space of A, represented by Lebesgue measure on T? has an infinite dimensional
set of representing measures. Nevertheless, as a result of our analysis, we find that
each simply invariant subspace of L2(T2) for A, is finitely generated and the number
of generators required is =#n. Examples can be constructed where n generators are
necessary. Our analysis enables us to extend results of the third author and to
parametrize the weak-* closed superalgebras of 4,,.

1. Introduction

Let X be a compact Hausdorff space, let C(X) be the space of complex-valued
continuous functions on X, and let A be a uniform algebra on X. For ¢€M,, the
maximal ideal space of A4, set Ay={fc4: ¢(f)=0}.

Definition 1.1. Let @€M,, let ¢ be a representing measure (on X) for
¢, and let M be a (closed) subspace of L%(X, ¢). Then M is said to be simply invariant
(for A) if AMcM, but [4,M],=M (where [ ], denotes L-closure).

Let 9, denote the Shilov boundary of 4 and N, denote the set of representing
measures for €M, whose support is contained in 9. Note that N, is a weak-#
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compact convex set of probability measures on d,. The general theory of simply
invariant subspaces is known only in the case when N,NL(X, ¢) is finite dimen-
sional. For instance, if 4 is a Dirichlet algebra then N,NL'(X, 6)={c}, and the
simply invariant subspaces of L2?(X, o) have been characterized (cf. [2, p. 132]).
In particular, Beurling’s theorem can be derived from that characterization (the
disc algebra, after all, is a Dirichlet algebra on the unit circle T).

In this note we focus our attention on the following class of function algebras,
A,, n=1, contained in C(T?). The general theory of invariant subspaces does not
apply to these algebras. Nevertheless, as we shall show, it is possible to give a fairly
complete and concrete description of their invariant subspaces.

Definition 1.2. Let T? be the 2-torus and let # be an integer, n=1. By A4,
we shall denote the uniform algebra on T? of all continuous functions on T2 that
can be uniformly approximated by polynomials in z*w', where /=0, and k=0 when
O0=l=n-1.

Equivalently, 4, may be described as the set of all functions fin C(T?) such
that f'is supported in the upper half-plane and, in the second quadrant, f is supported

on or above the line y=n. We have AlgAz?Dﬁ... and ﬁ A,=A., the polidisc
n=1

algebra. Observe that 4, is a Dirichlet algebra precisely when n=1. Let 6 be the
Haar measure on T2 and define

@)= [fdo (fc4,).
'rl

Clearly, ¢,€M, and o€N, for all n. Also note that d4,=T* for all n. How-
ever, Nq,"ﬂLl(T?, o) is not finite dimensional for n=2, as may be seen quite
easily.

Our hope is that an understanding of the 4,’s will help us understand better
the polydisc algebra A... After all, in one obvious sense, 4. is the limit of the A4,.
In another somewhat more vague sense, as we shall see, it appears that the lattice
of invariant subspaces of A. is approximated by the invariant subspace lattices
of the A,. The following proposition, however, shows that in still another sense
all the 4,, n<oo, are similar to A,. Observe that for n<eo, w"'4,c 4, and
therefore, |4,|=|4,|, where [4,|={|f|: f€4,}. However, |4.|S|4,|. Since
A4,C 4,, there is a natural embedding g, of M, into M, , given by restriction.
Similarly, ¢-: M, —~M,_ is an embedding.

Proposition 1.3. For each finite n, g, M, ~M, s surjective, while
.- M A,"M 4 IS not surjective.

Proof. Let ¢cM, . There are two possibilities: |p(z)]=1 or |o(z)|<l.
In the first case, define G(ZFw)=0@E@)pWw) (k=0,/=1). Then GeM 4, and
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Pls =0 If |p(z)|<! then o(W")=@(Z)@(*w") for all k=0, so that |p(w)|*=
=|@(2)* (all k), which implies that ¢(w)=0. By [1, Theorem 5], ¢ has a unique
extension @ to A4,, and €M, . Therefore, 0,(¢)=¢. For the second assertion,
observe that the proof just given shows that if €M, and |@(z)|<1 then ¢(w)=0.
It clearly follows that g. cannot be onto because M, can be identified with the
bidisc DXD. -

Definition 1.4. We shall let &, 8, and % denote the following subalgebras
of C(T?:
i) f is the uniform closure of the polynomials in the first variable z;
i) 4 is the uniform closure of the polynomials in z, z, and w;
and
iii) € is the uniform closure of the polynomials in z and Zz.
Observe that:
i) & is isomorphic to the disc algebra;
il) € is isomorphic to C(T);
i) 4 is isomorphic to the tensor product of the disc algebra and C(T);
iv) 4 is also the uniform closure of kGO 24, (all n);
V) 4,S# (all n);

vi) ﬁ *4,=w"# (all n);
k=0
n—1
vii) B=(3 eow'@)ow'# (all n); and
=0
n—1
vii) 4,=(5 ewS)ew'Z (all n).
=0
Definition 1.5. The closure in L2(s) of A4,, [4,]., will be denoted H? and
the closure of # in L?*(c) will be denoted H2. Likewise, we define H;°=[4,], and
H”=[4%],, where [ ], denotes weak-* closure in L>(0). For p=2, -, we set
H,{0={f€H,f|ffda=0}. Finally, we define #%=[%),, £~ =[¥],, #*2=[«],, and
H={A],.

Observe that for p=2, =, #? and H#? are spaces of functions in the first
variable, z, only, while the splittings described above yield the decompositions

. n—1
H? = (3 owgr)ew'H? (all n),
=0
and

n—1
HP = (3 @w#)owH?.
1=0 :

These decompositions are crucial to our analysis. In Section 2 we use them to
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describe completely the non-simply invariant subspaces of L2(os), and in Section 3
we use them to describe the simply invariant subspaces of L2(s). Finally, in
Section 4, we use them to determine the structure of the weak-* closed superalgebras
of H.

2. Non-simply invariant subspaces

For n<e, H? is a simply invariant subspace (for 4,) while H? is not. The
following proposition gives an easy criterion to determine when an invariant
subspace is simply invariant. First, we list some important properties of the
algebras 4, ¢:

(i) 4,,0=24,, and

(ii) 4,,0=2A,+[w, w? ..., w"'], where [ ] denotes linear span.

Proposition 2.1. Let M be an invariant subspace of L*(6). Then M is simply
invariant for A, if and only if zZMGM.

Proof. If n=1, [4; (M)y=[z4,M),, so that if [4, (M],=M, then zM=9.
Conversely, if z@M=M, then [4,2M,=[4,WM=M]M. If n=l, [4,, ML=
=[z2M+w+...+w" M), by (i) above, and therefore [, oM],=[zIM + wiR],.
Hence if M is simply invariant, then 2MSM. Assume now that [A, (Di],=M.
Then from what we have just seen, [z+wi],=IM. Consequently, [zMN+w"M], =
=[z(D+w" 1) + w" M, =[zM + w* L DM+ w)], =200 + w1 M,

By repeating this argument, we find that [zt +w"M], =[zVt +w],=PVt. But
Zw"e 4,, so M=[zZM+w"M);=z[M+zw"WM],=2zM, as desired.

Corollary 2.2. Let M be an invariant subspace of L*(¢). Then M is not simply
invariant if and only if
M = yg, WD x5, L*(0),

where yg and yg denote the characteristic functions of two measurable sets E, and
Ey, % €27, Xg, +X5,=1, and |g|=1 ae. (0).

Proof. The sufficiency is clear. If zt=TM, then M is invariant under A.
Since & contains the Dirichlet algebra 4; on which ¢ is multiplicative, we may
apply {6, First example, p. 165] to conclude that M is of the form M=y.q[D].,
where D={fcL”: fRcM}, g is unimodular, and x €D. By [5, Example 3.(1)],
D has the form D=y H”+(1—xz)L™, where xpcH™. Letting Xg,=XgXr and
Xg,=Xz(1—xp), we see [5] that y; €™ and M has the desired representation.

An alternate proof of this result may be based on [4] as follows. Since zIM =R,
I is invariant under H™. But H™ may be viewed as the non-self-adjoint crossed
product determined by the identity automorphism of L*(T). Hence the result
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follows from the analysis in Section 3 of [4] (see in particular Theorem 3.3 and
Proposition 3.4).
Before we proceed, we need a definition.

Definition 2.3. Let 9 be an invariant subspace of L?*(¢). Then we define
M_.. to be [U z*aMM], and M.. to be [ﬂ Z*M],.

Clearly 9JI CMcM_o. Moreover, both M.. and M_.. are non-simply
invariant. By Corollary 2.2 we can describe both M., and M_... However, if M is
simply invariant, more can be said.

Proposition 2.4. Let M be a simply invariant subspace. Then M._..=q,H?
and M..=q, B2, where q, and g, are unimodular.

Proof. By Proposition 2.1, zGM, so M.SMSM_... By Corollary 2.2,

4 M_o = xe, 1 2Dy, L% with yg+xp, =1, g =1,
an .
M. = Xquzm@XFsz with xp,+xr, =1, lgd = 1.

Slnce M.cMcM_.., it follows that yx, +ng_xE +xE and g =yg. Since

w"€ A, forall k=0 and A4,TMcM, wesee that z w"SmcEUk for all k>0 There-
fore, WM _cM, thus w'M_w=w"z*M_.cz*M for all k=0, so w'M_..C
c 0 Z*M=M... Consequently, w"y; L*C Ze, L% and so xp =y Likewise,

k20

X5, =XF,» because w" XE, q,.H? Cxr, g.H2. Thus we find that M_.oM.=
=X, (q1H2eq2H2) Wthh in turn, is contained in xe, i (HEPOW"H?), since

W R_.cM... Set My=MOM.... Then since zM..=M.., "but ZMSM, it fol-
lows that zSJ?(,C‘.IRo If f is a nonzero function in M,©2zM,, then for all k=0,
we have 0=( f, )= f f | (e, e)|2e~™* df dp. Since [f| is real, this implies

that f | (", €°)2 do 1s constant, a.e., in 6. Since f is nonzero and g is a func-

tion of 6 alone, we conclude that y; =1. Thus M_.=¢,H* and M.=q,H?,
as promised.

Remark 2.5. When M=H?, we see that M_.=H? while D.=w"H2

3. Simply invariant subspaces

W8 Suppose that 9t is a simply invariant subspace such that w'H2=R.c%Rc
cR_.=H? where 1=I/=n. Then applying Lax’s generalization of Beurling’s
theorem, we find that M has a very special form. Specifically, using [3, VI.3, p. 60],
we sec that there is a j=/ and there are functions f;€.%2 1=i=j, 0sk=l-1,
such that
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-1 __

a) 2 f;.lfmk = 6im’ 1= i, m §j9 and
k=0

b) N=[z; fi,.., f;LLOWH?

-1
where fi= 3 fuw", 1=i=j, and where [z; f;, ..., f;]; denotes the smallest subspace
k=0 -

containing f;, f;, ..., f; that is invariant under multiplication by z. For instance,
it is clear that

Hi=[z; ,w,..,w",6wH? and H},=[z; z, w, ..., w1, DOwH

If, now, Fis a unimodular function and if M=F N, where N is of the above form,
then M is easily seen to be simply invariant, but of course, M need no longer be
nestled between some w'H? and H2 Our goal, Theorem 3.2, is to show that every
simply invariant subspace can be expressed in this way as F9t.

Proposition 3.1. Let M be a simply invariant subspace for A, and (for n=2)
assume that A, ;MG M. Then M=FN where F is a unimodular function on T?
and N is a simply invariant subspace such that N.=w"H? and N_..=H?>.

Proof. By Proposition 2.4, M_..=q,H% and M..=q,H2, where |g;|=[g,|=1.
Since g,H2Cgq,H?, we must have g,¢,6H? and ¢,g,w"€¢H? (recall that w"M_..C

n
cM.). Set g=7,q,, so that gcH? and w"gcH?2. Therefore g= > c,w*, where
k=0
€ L% Since |q|=1, we have g= Zakxka", where each a; is a function of z
k=0

alone, |4)=1 a.e. on E,, 0=k=n, and Zn’xE =1. Since gq,qH*cMCq,H?,
k=0 ¥

we see that xqu1H2=xququ2choimconquz, and therefore, xEint=
= xququchqu2=Wl.,.. Now we may assume that xEozl, for otherwise M=M.,
and so M is not simply invariant. Moreover, 1, MM and, if yp #0, then it
is easy to see that ZIMCIM, so that M is not simply invariant. (Indeed, on the basis
of the Wold decomposition for an isometry, it is straightforward to show that if
a subspace M is invariant for a unitary operator U and if M is also invariant for some
nontrivial spectral projection of U, then M reduces U. In our special situation,
X, 1S @ spectral projection for multiplication by z since Xk, is a function of z alone.)
Thus 7, =0. Put D={fcL”: fRcM}). Then H;ScD and gH”CD, since
gH" Mg, qH? =g, H2CIR. Hence wi#™ and (since ﬁkxElEH“’) wxE‘.?“ are both
contained in D. Since £~ is isomorphic to L (T) with ##* corresponding to H = (T),
it follows that if yg 70, then [#=+y, ™), =% But then w¥~CD -and
HrcD. Thus A4,_, MM, a contradiction. Thus, %g,=0. One shows similarly
that yg =...=xg _ =0 and y; =1. Therefore, g=w"a,. Set F=g¢, and N=q,M
to complete the proof.
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Theorem 3.2. Let M be a simply invariant subspace for A,. Then M=FN
for some unimodular function F and a simply invariant subspace R such that N _.,=H?
and R.=w'H? for some I, 1=I=n. Moreover, MN Fw'*Hz=Fw'"1qHE, where
q is a unimodular function in L.

Proof. Let I, 1=/=n, be the smallest integer such that A,S!JIC&UL Proposi-
tion 3.1 then establishes the first part of the theorem. Now, MMM Fw' 'H2=
=FMNw'~'H2), and RNw " H2=g#2w' "' w'H?, because w1 (RNw'THY)O
ew'Hz)) is a simply invariant subspace of #2 under multiplication by z. Therefore
the second part of the theorem follows. :

The following corollary is of course well known since 4, is a Dirichlet algebra.
However, our methods provide an alternate proof.

Corollary 33. If n=1 and M is a simply invariant subspace, then M= FH}
for some unimodular function F.

Proof. Obviously, / must be 1 in this case, so that R=NNH2=gH?Z, which
implies that M =FN=FH_.

Corollary 3.4. Let MM be a simply invariant subspace for A,. Then
dim (Mo :zM)=1 if and only if M=FHE for some unimodular function F.

Proof. The sufficiency is clear. By Theorem 3.2, M=FN for some uni-
modular function F and a simply invariant subspace 9 such that %_..=H? and
N..=w'H2 for some /, 1=/=n. We claim that /=1. This will give the desired
result, as in the proof of the previous corollary. Since dim (MozM)=1, we also

have dim (MOzMN)=1, so that NSzN=[Cf], for some function f_kaw ,

where f,€ %2 (0=k=/). Since ® >N..=w'HZ, / must be orthogonal to w and there—

fore f,=0. Moreover, fw' '=fw'"'+w'g, where gcH? so that fyw' '€ NON..

Now, RONR.=[U z'f].=[z;fl., and there exists a sequence {g,}Cs#= such
iz0

that g, f—~fow' ™ in L2 By projecting onto w'™ %2 we get: g, fi_1~/f,. Assume
that /=1. Then g,,,Z'fk wr=g (f—fi.iw' -0, and in particular, g, f,—0.

However, by the second part of Theorem 3.2 we must have fyw'~le¢w'~*qH} or
fow'"t=w'"1gh, where |q|=1, g¢ £= and hes#?. Therefore |f,|=|h a.e. If
fo=0 a.e. then N_..cwH? so that |f]=0 on a set of positive measure. That
forces |A]=>0 a.e. and then [fy|=0 a.e. If {g,,,i} is a subsequence such that 8m, fo—0
a.e., the previous observation implies that g, —~0 ae., so that g, fi_,~0 ae,
or fy=0 a.e.. This contradiction establishes the original claim and completes
the proof.
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4, Weak-x closed superalgebras

The following theorem generalizes [5, Theorem 4] (see [5, Example 3.QD))).

Theorem 4.1. Let B be a weak-* closed subalgebra of L™ containing H,>.
Then either BCH™, or B=y;H”+(1—3g) L™, for some measurable set E with
€ L. If BCH™ then () z*B=w'H* for somel, 1=I=n.

k20

Proof. Put B_ w—[U zZ*B], and Bw=() z*B. Then B.cBcB_... By

k20

[5, Lemma 1] and Corollary22 Bo=xg,q: H™ + 5, L=, where 1k, €F= s Xg, T XE, = =1,
and B_o=xp ¢.H”+1p L7, with Xpﬁg and x,,l—i-sz—-l As in the case
of invariant subspaces of L?, W"'B_oCB.. Thus w"yp L™ CygL™, and this
implies Ag,=Xr,, because yp L™Cyp L% Since B._. is also an algebra and
g:€B_, we get goB_.CB_.. Thus B_..C3,B_.. This implies that Xg,B_C
C‘?zXE,42H°°=XE,H°°- In particular, xp BCyx; H”. Put D=y; B+x; H”. Then
D is a weak-* closed superalgebra of H;> and DcH®™. We shall consider two
cases:

Case 1: BCH™. In this case xp #0. Consequently (as in the proof of Prop-
osition 3.1) [#=+yxp 7], =Z7. We have #~CB, hence DOH"+y, L=,
and so D> . This implies D>OH™, which yields D=H". Now X, B=
=xE‘D=xElH°°. On the other hand, XE’LOO=XEZB°°CXE,BCXEZB—-“'CXE,LN'
Consequently XE,B=XE,L°°, and so we can conclude B=xE1H°°+(l—z£‘)L°°.

Case 2: BCH™. In this case xg,=0. Since w"H*cBcH®” and B..=¢,H”,
q = Z"'xswj where xse.?“ 0=j=n, and Z’xs=1. If x5,#0, then B=H"

because Xs, =N Xs, €B and zBcB. If k is the ﬁrst integer such that s, #0 then
Bow'H™ ‘and B..=w*H". For, if x5, =1 then BOw*H™ trivially. I s, #1
then Bow*H™ because w*ys €B and “.BCB. By the hypothesis on k, ql_w"
and therefore B..=w"H>.

When n=2 in the above theorem, more can be said about B.

Theorem 4.2. Let B be a weak-x closed subalgebra of H> containing H,,
and assume that [\ z*B=w?H”. Then B=X#" O wis>dw*H™, where q is an
k20
inner function.

Proof. Consider B;=BN%#*". B, is a weak-% closed subalgebra of ¥~

containing #*; moreover, if B,=%~ then £*c () z*B, a contradiction. There-
k20

fore B,=4", i, H#~CB. Let P, be the orthogonal prOJectlon from H2 onto

wi#?. Since () Z*B=w?H™ and #~CB, it follows that P,B:={P, f: fcB}CB,

k20
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and that B=3¢* @ P, Bd®w*H>. Moreover, P, B=will;, where M, := { f€c ¥~ : wfc B}
is an J##*~-submodule of #; M, is, therefore, of the form IM;=gs#=, for some
unimodular function g€ #*=. Since #“cCM,, we easily get that g is inper. Thus,
P, B=wg#".
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