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Ideals and Lie ideals of operators 

C. K. FONG and G. J. MURPHY 

1. Introduction 

Let § denote an infinite dimensional (complex) Hilbert space and 3&($j) the 
algebra of all (bounded, linear) operators on We say a linear manifold ££ in 
J>(§) is unitarily invariant if U*^CUQ !£ for all unitaries U in &(§>). If £? is such 
a manifold and R is another Hilbert space of the same dimension as then we 
can "transport" JSf to a unitarily invariant manifold of operators acting on it by 
taking any unitary transformation W from § onto ft and setting 
That is unitarily invariant, and that its definition is independent of the choice 
of W, follow from the fact that JS? is unitarily invariant. In particular, if we con-
sider the case when then is a unitarily invariant manifold of 
operators which can be expressed as 2X2 operator matrices with entries in 
Thus we can define the following two manifolds in $?(§): 
(* ) 

= {Tlseo: = {A£®(*>): ^ j e ^ s e s for some B, C,Z)£^(§)}, 

(**) = (J 
It was shown in [5] that is an ideal in &(&), and that JS?^ 

This fact covers a part of the following theorem, also proved in the 
same paper. 

Theorem 1 ([5]). Let JSP be a linear manifold in &(§>). Then the following con-
ditions are equivalent: 

(1) & is unitarily invariant; 
(2) JS? is a Lie ideal in 38(9)); 
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(3) there exists an ideal £ in 38(5)) such that 
[0(5) , J \ I. 

(The above results are shown in [5] only in the case where is separable; but, 
in fact, everything works in the non-separable case too. See remarks following 
Theorem 2.) 

For a unitarily invariant manifold S£ in the ideal J of the condition (3) 
above is uniquely determined by (shown in Section 2), and will be called the 
associate ideal of i£. Among other results in Section 2, we show that ¡£c (defined 
by (*)) is either or I. A consequence, shown in Section 3, is the fol-
lowing useful characterization of ideals in & (f>): a linear manifold ¡£ in 88 
is a proper ideal if and only if S£ is unitarily invariant, 7$ jSf and J§?cg ££. Several 
applications of this result (or its variant) are given in Section 3. 

In Section 4 we give some characterizations of ideals in C*-algebras satisfying 
a certain condition, viz., we show that the ideals are precisely the linear manifolds 
JS? for which PJ^PQ for all projections in the algebra.. 

The proof of Theorem 1 previously mentioned in [5] uses the following weaker 
form of a theorem of Fillmore: 

Theorem 2 ([3]). Every operator in &(§>) is a linear combination of projections. 

The original proof of this result is quite complicated. We include an appendix 
to this paper in which we prove Theorem 1 in such a way that, not only do we obtain 
it without Theorem 2, but the latter theorem actually drops out as a bonus in the 
•process. To generalize Theorem 1 for Hilbert spaces not necessarily separable, we 
need to extend a theorem of Calkin [1] to the non-separable case. Since this exten-
sion is by no means straightforward, we also include its proof in the appendix. 

: We use standard notation: denotes the Hilbert—Schmidt class and (p >0) 
the ideal of operators such that ( J * r ) p / 4 6 ^ 2 ; If i f , ! f are linear manifolds in 
3ft(§), we write OfST (resp. for the linear span of all operators of the form 
ST(resp. [S,T] = ST~TS) where S£Sf and T£3T. All Hilbert spaces are assumed 
to be infinite dimensional, but they are not required to be separable unless other-
wise stated. " 

2. The associate ideal of a Lie ideal in 38(§>) 

Let JS? be a unitarily invariant manifold in 3$($)). As mentioned in the introduc-
tion, the set . . . 

^ = (J 
forms an ideal. We call the associate ideal of S£ or the ideal associated with . 
There are several ways to describe this ideal, as the following proposition shows. 
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! P r o p o s i t i o n 3. Let S£ be a unitarily invariant manifold and J be an ideal in, 
& Then the following conditions are equivalent: 

(1) J is the associate ideal of JSP ; 
(2) [<%(§), + 
(3) [#(§) , and 
(4) J is the largest ideal among those ideals # satisfying Q jSf; 
(5) £ is the smallest ideal among those ideals $ satisfying 2? Q/+CI; 
(6) J is the ideal generated by [&(&), 
(1) S+ei={T£!%($): №($>), T)g &}. 

For the proof of the above proposition, we need the following lemma. 

Lemma 4. Let si be an algebra with identity I and &=J/2(si) be the algebra 
of all 2X2 matrices with entries in si. Then, for two ideals Jx and «/2 ' n 

[¿¡8, [J1, g Ji implies Z j i / j . 

Proof . Let ^ Then 

• [p.ttig.iign-e^-
Hence (g p j ^ i a n d k suffices to show that ^ Now ^ ^ = 

= ^ ^ and, by using the same computation as above, we obtain ^ ^ j £ ,/2 . 

Hence 

(o j>) = (2 o)(? • 
Proof of P r o p o s i t i o n 3. (1)=>(2) follows from Theorem 1. (2)=>(3) is obvi-

ous. To show (3)=>(6), let / be the ideal generated by [3S{§>), Then we have 
and hence ( § ) , . / ] ] £ [ J1 ( § ) , - ^ l i / - It follows 

from Lemma 4 (since and are isomorphic algebras) that 
Therefore Similarly we can show that (3)=>(4) and (2)=>(5). Since the ideal 
$ described by either (4), (5) or (6) is unique and since the associate ideal fits into 
each of these descriptions, we have (4)=>(1), (5)=>-(l) and (6)=>(1). Thus conditions 
(1) to (6) are equivalent. 

Finally, let JQ be the ideal associated with JSf and 

l@i*>),T] g JS?}. 

Then it is easy to see that £f is unitarily invariant and ^.Sf. Let # be the associate 
ideal of i f . Since 
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it follows from Lemma 4 that Therefore we have +C1. 
Hence and £f=<f+CI=S0+CI. We have proved (1) =>(7). Conversely, 
if y = S + C I , then S+CI=S0+CI and hence • /=• /„ . Therefore (7)=»(1) 
follows. • 

For brevity, in the rest of this section, we replace the term "unitarily invariant 
linear manifold in 0 ( 5 ) " by its synonym "Lie ideal in 0 ( 5 ) " . 

By definition, the associate ideal / of a Lie ideal i f in 0 ( 5 ) is obtained by 
taking the upper right corners of 2 x 2 matrices in i f g ( B g . The next result says, if 
we take the upper left corners instead, then either J or ¿ f + C I is produced. 

P ropos i t i on 5. If i f is a Lie ideal and J is its associate ideal, then either 
<ge=J or sec=j+ci. 

Proof . From Theorem 1, we have ¡ ¿ ^ . J + C l . It is elementary that if £ 
is an ideal in 0 ( 5 ) , then / c = / . Hence we have ££C(ZJC+CI=J+CI. 

Now we show J<^£ec. Let Then ^ ^ - ^ g e g - Let W be the unitary 

operator on § © 5 given by the matrix ^ . Then, since if&®§ is unitarily 

invariant, we have 
2 ^ * ( o To\w = [-T - r j e t f w « 

and hence T€ i f c . 
We have shown that J Q S?c<g S + C I from which it follows that either 

or I. • 

Now we consider some "permanence properties" of Lie ideals and their associate 
ideals. First we state the following obvious fact without proof in order to put it 
into record. 

P ropos i t i on 6. If {Sfj} is a family of Lie ideals in 0 ( 5 ) , then the intersection 
Pi i f , and the sum y. SP, are Lie ideals also. I f , furthermore, is the associate 
j J 
ideal of for each j, then the associate ideals of P| J j f j and 25 are D and 

J j j 

2 ¿j respectively. 
The next "permanence property" is less obvious and more interesting. 

P ropos i t i on 7. If i f l 5 JS?2 are Lie ideals in 0 ( 5 ) with ./,, J2 as their associate 
ideals, then [Sflt St?2] is a Lie ideal with as its associate ideal. 

Remark . It is easy to check that is a n ideal in 0 ( 5 ) . Since every ideal 
in 0 ( 5 ) is self-adjoint, we have 
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. Proof . It is easy to check that [J5CX, SC2] is a Lie ideal. Let J be the ideal 
associated with \££x, JS?2]. From & j Q j ? j + C I U = h 2) we have [JSfx, &2]QJxJ2->rCI. 
Hence, by (l)<=>-(5) in Proposition 3, we have Next, suppose that A f i J j 
( /=1 ,2 ) . Then we have 

(o oj = ( / o) j o 02) ( / oj^"2^*®® 

and hence 

[ A t -A2A) = [(o 01)' (X -^J«®«-

Therefore it follows from Proposition 5 that AxA2£<f. • 

Remark . In case S£x and S£2 actually are ideals, i.e. Z£x=£x and Z£2=£2, 
we have an easier proof as follows. We have to show [0(§) , -^ l i l 
QJXJ2+CI. The second inclusion is obvious. The first follows from the identity 
[T, AB]=[TA, B]+[BT,A}. 

Example . Let <£x denote the set of trace class operators on § of trace zero. 
Then, by using some properties of the trace function, we have 
G . WEISS [17] has shown that " G Y ^ ^ 0 . Using this result, it is observed in 
[5, Remark 1] that [0(5) , Now we claim that for no Lie ideal <£ do 
we have i?°=[0(§), SC] or &]. Since, if the associate ideal of JSC is J , 
the associate ideals of [0(§) , £?] and [&, ¡e\ are J and J 2 respectively, 

JSf] would imply that J = < t x and <€[=[&, would imply S 2 = V 1 , 
i.e. . / = # 2 , both contradictory to the results previously mentioned. We do not 
know whether we can have J ] for distinct ideals J and 

3. A characterization of operator ideals and its applications 

We now turn our attention to the main theme of this paper: characterizations 
of operator ideals. 

P ropos i t i on 8. A linear manifold J£? in 0(§) is either an ideal or S+CI 
for some ideal J if and only if & is unitarily invariant and 

Proof . Suppose that JS? is a unitarily invariant manifold in 0 ( 5 ) and 
It follows from Theorem 1 that JS? is a Lie ideal and & Q J + C I where J is its 
associate ideal. From Propositions, we have Now we have 
Q&QS+C/. Hence either SC=J or S?=J+CI. 
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For the proof of the "only if" part, ii suffices to note that, if J is an ideal in 
then </gg'8. consists of all 2 x 2 operator matrices with entries in J . • ' 

The following immediate consequence of the above proposition is a useful 
characterization of ideals in 

P r o p o s i t i o n 9. A linear manifold ¡£ in &(£>) is a proper ideal if and only if 
it is unitarily invariant, <£ and 

Remark . The "if" part of Proposition 9, under the additional assumption 
that !£ contains all Hilbert—Schmidt operators, was obtained by SOUROUR [16]. 

Next we give a few applications, labelled as examples, of the above two propo-
sitions. In many cases, it is convenient to think of S£c in the following way. Take 
any subspace 9JJ in § with dim 9Jl=dim 93lx(=dim §) and let 

JSP® = {compression of T. to 93i: 

Then JSP® is a unitarily invariant manifold and (J5?TO)S=J2'C. Thus, roughly speaking, 
J2?C can be obtained by taking the compression of JS? to a subspace 93? with dim 931= 
=dim 9311 and then transporting it back to 

Example 1. Let if be a linear manifold of numerical sequences converging 
to zero. We consider the set J of those operators T such that, for each orthonormal 
sequence {e„} in the sequence {(Ten, e„)}~=1 is in i f . Then it is easy to see that 
J is a unitarily invariant manifold which does not contain I. By the obvious fact 
that an orthonormal sequence in a subspace is also an orthonormal sequence in the 
whole Hilbert space, one can see the validity of the inclusion J C < ^ J . By Proposi-
tion 9, it follows that J is an ideal. 

If we take £"=/p , the set of all numerical sequences such that 
oo 

2 then the corresponding ideal J turns out to be the '¿'"-class of opera-
i=i oo 
tors. If 7ij is a sequence of positive numbers decreasing to zero such that 2 7 1 j — °°> 

R=I OO 
and if if is the set of numerical sequences {Xj} satisfying 2 nj 1^1 then the 

j=i 
corresponding ideal J is GK which is defined in [7]. 

Example 2. An operator T in (here $ is assumed to be separable) is 
said to be universally absolutely bounded if, for every orthonormal basis {e„} in 
the matrix 

' 1 ( 7 ^ , ^ 1 1 ( 7 ^ , ^ 1 - ' 

\(Tei,eJ\ | (re a ,e2) | ... 

represents a bounded operator on I2. Let % be the set of all universally bounded 
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operators. Clearly Ql is a unitarily invariant manifold, and, for an infinite 
dimensional subspace of each operator in is also universally absolutely 
bounded. Hence it follows from Proposition 8 that -CI for some ideal </. 
In fact, HALMOS and SUNDER [10] showed that ^ = ^ ¿ + € 1 . Our discussion here 
can be used to shorten their proof. 

Example 3. For p>0, let % be the set of all those operators 
(§ is separable) satisfying the condition that the matrix 

'\(TelteJ\> \(Te2, e{)\p... 
{(Te^e^o |{Te%,eJ\>... • 

represents a bounded operator on l2 for every orthonormal basis {<?„} of §>. From 
the inequality (a+b)p^2p(ap+bp) (a, ft SO) we see that % is a linear manifold. 
It is easy to check that 1fp is unitarily invariant, and <U p ^l p . Hence, by 
Proposition 8, % p = J p + C l for some ideal J p . For 2, it follows from a classical 
result of Schur (which says, for two nXn matrices (akJ) and (bkJ), \\(akjbkJ)\\S 
s||(<3Ty)|| 11(^)11; see [15]) that % = & ( § ) . As we have mentioned in Example 2, 
4 ^ = ^ + 0 / . We do not know how to describe J p in an explicit way when l«=/?<2 
or 0< /?< l . 

Example 4. Let be the set of all those operators in 3S(§>) ( § is separable) 
which, in any matrix representation, allow triangular truncation. More precisely, 

if and only if, for an arbitrary orthonornal basis {e„} in the triangular 
matrix 

\TelteJ (Te2,ei) (Te^e,)...' 
0 (Te2, e2) (Tc3, e2) ... 
0 0 (Te»eJ... 

\ • 4 

represents a bounded operator on I2. Then it is easy to see that is a unitarily invari-
ant manifold and A little reflexion on forming submatrices reveals that 
Src<^z2T. Hence it follows from Proposition 8 that 9~=J+CI for some ideal J . 
It follows from a result of MACAEV (see [7]) that J contains all those operator T 

GO 
with their j-numbers {sn(r)} satisfying 2, n ~ l s n(T) < c a -

n = l 

Example 5. Let (X, m) be a separable c-finite measure space which is not 
purely atomic. We say that an operator T on § = £?2(X, m) is an integral operator 
if Tx(s)=J k(s, t)x(t) dm(t) a.e. (*€§) for some measurable function k on 
XxX. Proposition 8 can be used to give a simplified proof of a result due to KOROT-

KOV: if U*TU is an integral operator for every unitary U, then T D ^ + C / . For 
details, we refer to SOUROUR [16]. 
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4. Characterization of ideals in certain classes of C*-algebras 

In the present section, we give some characterizations of ideals in certain gen-, 
eral C*-algebras which share some "noncommutative" features with 

For the next two results, we consider those unital C ""-algebras st which satisfy 
the following condition: 

(C) Every unitary element in si can be expressed as a product of a scalar and 
several symmetries (i.e. hermitian unitaries) in si. 

That satisfies condition (C) is a consequence of the following result of 
HALMOS a n d KAKUTANI [9] : 

Theorem 10. Each operator on an infinite dimensional Hilbert space is a product 
of four symmetries. 

This result was generalized by FILLMORE [3] to properly infinite von Neumann 
algebras. Note that if si is a commutative C ""-algebra and dim si^2, then condi-
tion (C) fails. 

The notion of unitarily invariant manifolds in 0 ( § ) can be extended to gen-
eral C*-algebras in a straightforward manner: in a C*-algebra si, a linear mani-
fold i f is unitarily invariant if and only if U*SPU^S? for all unitary elements U 
in si. The following result characterizes unitarily invariant manifolds in a C *-alge-
bra satisfying condition (C). 

P ropos i t i on 11. A linear manifold in a C*-algebra si satisfying (C) is 
unitarily invariant if and only if ( / — J S f for all projections P in srf. 

Proof . Suppose that is unitarily invariant. Let P be a projection in si 
and T^Se. Then both U=I-2P and V=P+i(I-P) are unitary and hence 

Tx=^(T-V*TU)i& and 

(I-P)TP = j{Tx-iV*TxV)Z&.. 

Conversely, suppose that (I~P)<£P<^L£P for all projections P. Let 5 be a symmetry 
in si. Then S=2P—I for some projection P. Hence, for 

STS = T-2(PT(I-P)+(I-P)TP)££e. 

By condition (C) we see that jSf is unitarily invariant, since si is linearly spanned 
by unitaries. • 

P ropos i t i on 12. A linear manifold in a C*-algebra si satisfying (C) is 
an ideal if and only if PSfPQ <£ for all projections P in si. 



Ideals and Lie ideals of operators 449! 

Proof . Suppose that P i f P ^ i f for all projections P. Let i f and S be 
a symmetry so that S=2P—I for some projection P. Then 

STS = 2 (PTP+(i-P)T(r-p))-T^se. 

Hence, by condition (C), i f is unitarily invariant. Therefore, by Proposition 11, 
(I—P)3?PQ& for all projections P in si. Now, for a symmetry S=2P—I and 
TGif, we have 

TS = 2 (PTP+(I-P)TP)-T<i&. 

By condition (C) again, we have TT/gif for each TCif and each unitary U. 
Since unitary elements span si linearly, we have i f s i Q i f . In the same way we 
can show that . s / i f g i f . Hence i f is an ideal of si. O 

A linear manifold i f in a C *-algebra si is said to be a Jordan ideal if AX-1-
+XA<i£e for all and X^si. It is shown in [5, Theorem 3] that Jordan 
ideals in 0 ( 5 ) are just associative ideals. This result can be generalized for a class 
of C*-algebras wider than 0 ( 5 ) : 

Coro l l a ry 13. If i f is a Jordan ideal in a C*-aIgebra si which satisfies condi-
tion (C), then i f is an associative ideal. 

Proof . Let P be a projection in si and T £ i f . Then 

P(PT+TP)+(PT+TP)P = 2PTP+(PT + TP)€ & 

and hence PTPZ.SP. Now the corollary follows from Proposition 12. • 

Sourour has informed the authors that, in case si=&(§>), Proposition 12 can 
be deduced in the following way. Assume that i f is a linear manifold such that 
p s e p ^ s e for all projections P. For T£if and a projection P we have TP+PT= 
=T+PTP-(I-P)T(I-P)£Se. By the fact that projections span 0 ( 5 ) linearly 
(Theorem 2), we see that i f is a Jordan ideal. Now it follows from [5, Theorem 3] 
that i f is an associative ideal. 

The condition (C) in Proposition 12 is essential. For example, if s/—C[0, 1], 
then there is no proper projection in si and hence the inclusion P3?PQ i f is 
automatically satisfied for every linear manifold i f in si; but of course there are 
linear manifolds in si which are not ideals. 

In the next result, we let 0 be a C*-algebra with the identity /, si = 

and P0 be the projection in si given by the matrix ^q o) ' 

P ropos i t i on 14. A linear manifold i f in si is an ideal if and only if i f is 
unitarily invariant and P 0 i f P 0 Q i f . 
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Proof . Suppose i f is unitarily invariant and Let 

If U is a unitary element in 38 and B^J, then 

(I 0 W 0 5 H 7 0) (0 BU) ^ 
№ E / J l p o j^o t / j - io 0 

and hence BU and LIB are in J. Since unitary elements in ^ span the whole algebra 
3&, we see that J is an ideal in Now let J be the set of all 2 x 2 matrices with, 
entries in J. Then £ is an ideal in si. 

Let p j be an element in i f . We are going to show that For 

this purpose, we introduce the following unitary elements in si: 

" - (i IIL- -Co)' » = 

Then we have 

and 

Hence, B, C^J. We also have 

2W*P0TP0W = (J 2W*P(I(JTJ)POW=[Q 

By the previous argument, we have A, D^J. 

Next we show that / g i f and let T = ^ ^ j^J^ . From the definition o f / 

we know A, B, C and D are in J, or, in other words, 

c _ (0 A s _ (0 A _ (0 c-j _ (0 D\ 
^ - lo o j ' ^ - ( p o j ' 3 — (o 0 J ' ^ - ( o 0) 

are in i f . We have to show that 

T - ( A T - A T - I° T - (° 

are in i f . This can be seen from the following identities : 

7 \ = 2 P 0 ( J F S 1 » ' * ) P o , T2 = S2, T3=JSZJ, T, = 2J(P0WSIW*P0)J, 

where J and W are the unitary operators previously defined. • 
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Ideas similar to those in the above proof appear in [12]. 

Coro l l a ry 15. If P0 is a projection in 0 ( 5 ) with dim P 0 5=d im (/—P0)§ and 
if i f is a unitarily invariant manifold in 0 ( § ) satisfying P0£PP0Q i f , then i f is an 
ideal in 0 (5) -

Proof . This follows from the previous proposition and the fact that 0 ( 5 ) 
and . / /2(0(§)) are isomorphic C*-algebras. • 

Example. Let i f ^ J f (§) be an ideal in Jf (5), i.e., for and 
A^g, we have XA<i i f and AX£ i f . In general, i f is not necessarily an ideal 
in 0 ( 5 ) . Among other things, it was shown in [6] that if i f is also a Lie ideal and 
i f is countably generated as an ideal of X ( § ) , then i f is also an ideal of 0 ( 5 ) . 
This result can be proved in the following alternative way. 

Let J be the linear span of operators of the form XAY, where and 
X, Y€3f(§>). It is easy to see that J is an ideal in 0 ( 5 ) and On the other 
hand, it follows from a lemma in [6] that there is a projection P0 in 0 ( 5 ) such that 
dim i>05=dim ( / - ? „ ) § and P0S, SP0£J? for all S in ¿P. Notice that each element 
S in i f can be expressed as a finite sum: 

S = D+Ij (ttj Aj+Bj Xj+Yj Cj) 

where 0Cj€C; Aj, Bj, Xj, Yfitfi,5) and For such a sum, we have 

P0SP0 = PoDPo+ZjixjPoiAjPJHPoBJXPo + PoYjiCjPo))^ 

since J is an ideal in 0 ( 5 ) and the operators D, AjP0, P0Bj, CjP0 are all in J. 
Now it follows from Corollary 15 and J^ i f that i f is an ideal in 0 ( 5 ) . 

Finally, we have the. following characterization of ideals in 0 (5) -

Propos i t i on 16. If i f is a unitarily invariant manifold in 0 ( 5 ) consisting of 
compact operators and if T€if implies |T |= ( r*T) 1 / 2 € i f , tf,en <£ ¡s an ideal. 

Proof . Again, let J be the ideal of those operators B such that ^ q j^ -^ses-

Then, from Theorem 1, we have i f g j r . Next we show that Since every 
ideal in 0 ( 5 ) is linearly spanned by its positive elements, it suffices to show that 

positive elements in are in i f S f f i S . So let T= ^ be a positive element 

in Then A, B, C and D are in J . Hence 

(c o) = (o o) + (/ o) (o o)(? o)^©6> 

(o 3 = |(o (p o) = |(/ o)(o o)(/ o)|e 

Hence we obtain T€ifS f f l S . • 
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Appendix 

In this appendix we give a transparent proof of Theorem 1 and Theorem 2 
based on an idea in [4]. The main tool we use in this proof is Halmos—Kakutani's 
Theorem (Theorem 10): every unitary operator can be expressed as a product of 
not more than four symmetries. This theorem can be deduced constructively by 
the following three short steps: first express it as a direct sum of countably many 
blocks such that each block has the same dimension as the Hilbert space; then, 
using this expression, write the operator as a product of two bilateral shifts (of 
infinite rank); finally, write each bilateral shift as a product of two symmetries. 
(For details, we refer to [9].) From this argument we see that the symmetries involved 
can be chosen in such a way that their eigen-subspaces have the same dimension as 
the underlying Hilbert space. 

In order to reveal the essential part of our argument in proving Theorem 1, 
we consider a more general situation. We let <% be a unital C*-algebra, si =MZ{28) 

and i f be the set of all those symmetries of the form — w ^ e r e ^ ' s 

the identity in OS and U is a unitary element in si. We consider the following con-
dition : 

(C') each unitary element in si is a product of finitely many elements in £f and 
a scalar. 

It follows from our previous remark that for si=&(§>), condition (C') is 
satisfied. 

In the following three lemmas, we always assume that si is the C*-algebra 
described in the previous paragraph and condition (C') is satisfied. Furthermore, 
we assume that i f is a unitarily invariant manifold in si, 

/ = { * * : (2 o M 
and 

J = si\ A, B, C and D are in / } . 

By using the same argument as that in the proof of Proposition 14, we see that # 
is an ideal in £¡8 and J is an ideal in si. 

Lemma A. With the above assumption, we have [J, s/]Q i f . 

P roof . It suffices to show that [J, t / ] g if for all unitary elements U in si. 

First we note that if ^ t ' i e n 

[(¿3. (i -ofiH((2 -o£M? 9(2 S)G 
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since i f is unitary and B, Now if T O and S ^ I F * ^ WZST (W is 

unitary), then 

[T, S] = W* ^VTW*, _°7]]^if. 

Now we consider an arbitrary unitary element U ins/ and show that [T, £/]6-Sf. 
By condition (C), U can be written as a product XS1S2...S„ where 5 1 ; ..., SnOf 
and A€C. We proceed by induction on n. Let V=S2S3...Sn. Then 

[T, U] = A[rSx, V]+X[VT, SJ. 

Since and TS^J, we have [VT, S ^ i f by our previous argument and 
[TS1} K]eif by our induction assumption. Therefore [T,U]€£C. • 

Lemma B. The linear span of £f includes [si, si]. 

Proof . Let i f 0 be the linear span of SP. Then i f 0 is unitarily invariant. Let 
and J 0 be the ideals defined from i f 0 in the same way as J defined from i f . Since 

y ( / i ) ^ 0 ' WC s e e t h a t a n d h e n c e (Q / j ^ 0 ' T h e r e f o r e Thus, 
by Lemma A, [si, si]=[si, . / 0 ] c i f 0 . • 

Lemma C. [ i f , [si, st]\ QSOSC. 

Proof . It follows from Lemma B that it suffices to show [ i f , Sf\g Jflif. 

If ^ i f , then, by an argument similar to that in the proof of Proposition 14, 

we can show that ^ ^ j and ^ Q| are in J DSC and hence 

[(¿¿Mi-^He-O'w. 
If W<iSf, where W is unitary, and if J € i f , then 

[T, s] = w* [iVTW*, (0
7 ^ J j ^ e ^ n if. • 

Proof of Theorem 2. Apply Lemma B to the case si=@(f)) and note that 
0 ( 5 ) ] = * ( $ ) , (see [8]). • 

Proof of Theorem 1. By Halmos—Kakutani's Theorem and Theorem 2, we 
can easily deduce the equivalence of (1) and (2). (For details, see [5].) That (3) implies 
(1) is obvious. It remains to show (1)=>(3). By Lemma A, Lemma C and the fact 
that we have [&(§), and i f ] g . / . 

Now Theorem 1 follows from the following theorem of CALKIN [1]: 

o 



454- C. K. Fong and G. J. Murphy 

Theorem D. If J? is a proper ideal in 38(§>), T£38(%) and if [T, 
then T£S+CI. 

Calkin only showed this-theorem for the case when § is separable. Now we 
prove this theorem under the assumption that § is nonseparable. 

Let M (9>) be the unique maximal ideal in 38(9)). (Thus, for an operator S 
• on S£J( (§) if and only if there exists a projection Em 38 (§) such that ESE=S 
and dim ¿¿§<dim §.) Let ^(9>) be the "Calkin algebra" 38(9))Ui(9)). Let t be 
the canonicali mage of T in <<?(&). 

Since y is self-adjoint, with no loss of generality, we may assume T=T*. 
Let T=J X dEx be the spectral decomposition of T. Note that X£o(t) if and 
only if, for all e>0, dim E(X-E, A+e)§ = dim 9>. 

First we demonstrate that o(t) is a singleton. Assume the contrary: we have 
X.lrA2^o(t) with X^X 2 . Choose. £>0 such that the intervals [Ai—a, Aj+e] and 
[A2—£, X2+E] are disjoint. Let 9)~E[LJ-E, XJ+E]§> ( J = l , 2 ) and 5 \ = § Q ( § 1 © § 2 ) . 

Then dim §!=dim § 2 =d im Let U be a imitary transformation from § onto 
£ © S © t f such that J/S^SffiOffiO, C/§2=0ffi§ffi0 and {/f t=0©0©ft . Then 

\T1 0 
U~1TU = 0 T2 

* / 

for some hermitian operators and T2 in 38(9)) with disjoint spectra. ,By a well-
known result of ROSENBLUM [14], there exists an operator A in 38(9)) such that 
T1A—AT2=I. Let | 

0 A 
X= Ù 0 0 | U-1 

0, 
Then 

0 I 
TX-XT = u 0 0 

o ] 

and hence IT J . Therefore J=3S(§), a contradiction to our assumption that J 
is proper. 

We have T=S+XI for some AÇC and self-adjoint operator S in M (?>). 
Choose a projection E in 38(9)) such that ESE—S and dim £ § = d i m ( /—£)§ . 
Let W be a unitary transformation from 9) onto § © § such that W(E9>)=$)®0 

and W((I-E)$)=0hf>. Then W S W " 1 ^ 0 for some S^38(9)). Let 
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V=W-FQ W. Then we have 

and hence Therefore S i J . • 

By using the above three lemmas, Fillmore's extension [3] of Halmos and 
Kakutani's Theorem and the fact that [si, si] = si for a properly infinite von Neu-
mann algebra [13], we can show the following two results. 

Theorem Y. Let i£ be a linear manifold in a properly infinite von Neumann 
algebra. Then the following conditions are equivalent: 

(1) S£ is unitarily invariant; 
(2) Se is a Lie ideal in si, i.e., [J5?, si] g 
(3) there is an ideal J in si such that [si, and [si, 

Theorem 2' [13]. Every element in a properly infinite von Neumann algebra 
is a linear combination of projections. 

As in Section 2, in a properly infinite von Neumann algebra, we can define 
the associate ideals of Lie ideals. Also we can show that conditions (1), (3), (4), (6) 
in Proposition 3 are equivalent in this general situation. 
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