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A note on Schmiidgen’s classes 9%, and R of pairs generated
by Toeplitz operators

V. VASYUNIN®)

1. K. ScuMUDGEN [1] introduced the following class of pairs of (unbounded)”
self-adjoint operators.

Definition 1. Let 4, B be self-adjoint operators on a Hilbert space J#. The
pair {4, B} belongs to the class N, if there exists a dense linear manifold % in
J such that

(i) 2<S Dom (AB)NDom (BA) and ABf=BAf for all f€9,

(ii)) 4|2 and B|2 are essentially self-adjoint.

Schmiidgen gives the following criterion for a pair {4, B} to be in %,. (In

what follows 2(-) means ‘“‘range of™.)
Theorem O (Theorem 1.7 in [1]). Suppose {d4,B}eRN;, «€R\a(4) and
BERN\o(B). Then the operators X & (A—a)™ and y¥ (B—Pp)~* satisfy the

Jollowing conditions:

4} Ker X = KerY = {0},
) (X, Y)N2(X) = (X, Y)N2(Y) = {0}

Conversely, if X and Y are bounded self-adjoint operators satisfying (1) and (2),
then {X 4o, Y 1+B}eR, for all o, BER.

The main method in [1] to construct pairs belonging to R, is to consider pairs
of the form {(Re T)~%, (Im T)~'} for certain operators T. Among others Toeplitz’
operators with analytic symbols have been investigated in [1]. It was shown that
Toeplitz operators with symbols which are cyclic for the backward shift do not
generate a pair in 9, ([1], Proposition 3.3). Moreover, the polynomials ¢ for which
{(Re T,)~%, (Im T,)"1}€R, are characterized in [1]..
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The aim of this note is to show that Schmiidgen’s method works in fact for
Toeplitz operators with arbitrary analytic (or antianalytic) symbols.

Suppose @€H™. Let T, be the multiplication by ¢ on H? Let X & Re T,
and ¥ ¥m T,. As usual, S* is the backward shift, P, is the orthogonal projec-
tion of L2 onto H?and P_=I—P, is the projection onto H? and V{...} denotes
the closed linear span of {...}.

Lemma 1. Z([X, Y])=V{(S*"p: n=1).

Proof. First note that, for any AhcH? [T, T h=(P,Pp—@P,p)h=
=P, oP_ph=H}Hh, where H,: H*—~H? (H;h=P_@ph) is the Hankel operator
with symbol @. Hence we have Z([X,YDN=2(T;, T ))=%(H;Hz)=R(HZ) =
-=P,oH?2 =V{P,Z"¢: n=1}. Now the assertion follows.

According to Beurling’s theorem, the S*-invariant subspace V{(S$*)"¢: n=1}
has the form H2© @ H? with a certain inner function @ or @ =0. We introduce the
bounded analytic functions ¢, and ¢_ by

p(d) = 5 00 Lp@) for |z =1.

O@ is indeed analytic, because (§0O, 2%)=(0, (5*)"¢)=0 for n=I.

Theorem 1. {(Re T,)~%, (Im T,)"'}¢N, if and only if ¢, and @_ are non-
zero outer functions.

Proof. Let us note at first that for @=0 we have by Lemma 1 Z([X, Y])= H?,
i.e. condition (2) in Theorem 0 is not fulfilled. Hence we may assume that @ is a
non-zero function. Since the only bounded self-adjoint Toeplitz operator with non-
trivial kernel is the zero operator, the conditions X0 and Y0 imply Ker X=
=Ker Y={0}, i.e. condition (1) in Theorem 0.

We show that (H*©O@H)NA(X)={0} iff ¢, is outer. Since Xf=

1
=3 P.(¢p+@)f=P.O¢, f, we have

P,@Xf=P,0P,0¢0,f=P,p.f= T;,,f-
Therefore, .

(H:© OHHNA(X) = {Xf: X LOH?) = (Xf: P,OXf=0} =
= XKer T}, = X(H*© (T,,)) = X(H>© ¢, H?),

where ¢, is the inner part of ¢, . Since Ker X={0}, (H20OH})NA(X)={0} if
and only if ¢, is outer. Similarly it follows that (H2© @H*)NR(Y)={0} if and
only if ¢_ is outer. By Theorem 0, this completes the proof of Theorem 1.

Corollary 1. If @€ H™ is S*-cyclic, then {(Re T,)~*, (Im T,)~"}¢N,.
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Proof. Note that ¢ and S*¢ are S*-cyclic simultaneously. In this case @ =0
and ¢, =¢_=0.

Lemma 2. If V{(§*)"¢: n=1}=H*©OH?, then ©% and © have no common
inner divisor.

Proof. Let 8 beacommon inner divisor of @3 and @ andlet @’ £ ©J. Then
O’'@cH® and ((S*)" @, O'f)=(z"f, ©’'P)=0for n=1and fe H%. Therefore, @ H*S
COH? ie., 3=0O’c¢H? and 9 is a constant function.

If @ is a finite Blaschke product, then ¢ is meromorphic in C, the function ¢

= _— ; 1 _
defined by ¢(z)=¢(1/Z) is meromorphic too, and ¢, (z) =—2— O(2) (qo @+o(2)
for |z]=1.

Corollary 2. Let O be afinite Blaschke product. Then, {(Re T,)~, (Im T,) 2} R,
if and only if ©®(z)#=@%(z) for every z€C, |z|#]1.

Proof. Suppose that ¢2(z2)=¢%(z) for some z€C, |z|#1. Since @%(1/2)=
. =0%(2)=¢*(z2)=0%(1/Z), we can assume without loss of generality that |z|<I.
Hence ¢, ¢_ has a zero inside the unit circle. Therefore it is not outer.

Suppose now that ¢, (or ¢_) is not outer. Then it has a zero, say z,, inside
the unit circle (see the remark just before Corollary 2). According to Lemma 2,
O(z)»#0 and therefore @(z20)+9(z)=0 (or @(z)—@(zo)=0, resp.), ie.
0*(20) =0*(2o)-

2. In [2] the study of commuting unbounded self-adjoint operators was con-
tinued. The more general classes M, are introduced in [2]. Here we only need the
‘class M.

Definition 2. Let 4, B be self-adjoint operators on a Hilbert space .
The pair {4, B} is in the class 92 if there exists a dense linear manifold 2 in #
such that

(Y 2<SDom (4 B*YNDom (B*4) and A'B* f=B* A’ f for all f¢2 and all

S k=0,1,...;

(i)Y 4%2 and B¥2 are essentially self-adjoint for all k=1.

For polynomial symbols it was shown in [2, Theorem 4.1] that all pairs
“{(Re T, (Im T,)"1}e€RN, are in fact in the class NZ. Using the same method as
in [2] we prove this assertion for arbitrary analytic symbols.

Theorem 2. For arbitrary @€ H™ the following are equivalent:
6) {(ReT,)™, Im T,)"1}eN,,
) {ReT,)™, (ImT,)"}eN=.
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def

Lemma-3. Q,, = V{2(X’ Y*[X, Y]): j<r, k<s}=H*©O"**'H2

Proof. Since the subspace H*© ©H?* is invariant under the operator T, it is
sufficient to show that .

V{®(TE(X, Y]): k <n}= H*©O"H™

We prove this assertion by induction. By Lemma 1 this is true in case n=1.
Suppose-that :
V{R(TL(X, Y)): k <n} = H20O0"H* ¥K,.

"Then oo
V{R(TEX, Y)): k <n+1} = V{T,K,, K,}-

If /1 v{T,K,,K,}, then f=0O"g and P.@f=0O"h, for some g€ H? h< H2. Hence
Oh=0""'P,pO0"g=0""1(0p)O" 'g=(0p)g. According to Lemma 2, @% and O
‘have no common inner divisor. Thus gc¢©@H? and fcO"**H2. Therefore,
K,+1S V{T,K,,K,}. On the other hand, (¢K,, @"*H%=(K,, 0"(0F)H?)=0.
Hence V{T,K,, K,}=K,,, which completes the induction proof.

Proof of Theorem 2. Since (4)=(3) is obvious by definition we only have
to prove the implication (3)=(4). Suppose that (3) is fulfilled. Then, by Theorem 1,
¢+ and ¢ _ are outer. To prove (4), we apply Corollary 1.9 in [2]. By this Corollary,
it is sufficient to verify the following two conditions:

“(x) Xf€Q, 41, =0€0,, forall r=0, s=0 andall fcH?
) YfeQ, .1 =0€Q,, forall r=0, s=0 andall feH2

Let Xfe€Q,.,,,=H20O"H?, n=r+ts, ie., Xf=P,0p,f1O"H? Hence
0=(P,0%, f, O"H)=(f, 9. O" *H?). Therefore, since ¢, is outer, fEH?*Q

©0" 'H?=Q,.. In a similar way we see that (y) is satisfied if ¢_ is outer. This
. completes the proof. .
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