A note on Schmüdgen's classes \mathfrak{N}_1 and $\mathfrak{N}_\infty^\infty$ of pairs generated by Toeplitz operators

V. VASYUNIN*)

1. K. Schmüdgen [1] introduced the following class of pairs of (unbounded) self-adjoint operators.

Definition 1. Let A, B be self-adjoint operators on a Hilbert space \mathcal{H} . The pair $\{A,B\}$ belongs to the class \mathfrak{N}_1 if there exists a dense linear manifold \mathcal{D} in \mathcal{H} such that

- (i) $\mathcal{D} \subseteq \text{Dom}(AB) \cap \text{Dom}(BA)$ and ABf = BAf for all $f \in \mathcal{D}$,
- (ii) $A|\mathcal{D}$ and $B|\mathcal{D}$ are essentially self-adjoint.

Schmüdgen gives the following criterion for a pair $\{A, B\}$ to be in \mathfrak{N}_1 . (In what follows $\mathcal{R}(\cdot)$ means "range of".)

Theorem 0 (Theorem 1.7 in [1]). Suppose $\{A, B\} \in \mathfrak{N}_1$, $\alpha \in \mathbb{R} \setminus \sigma(A)$ and $\beta \in \mathbb{R} \setminus \sigma(B)$. Then the operators $X \stackrel{\text{def}}{=} (A - \alpha)^{-1}$ and $Y \stackrel{\text{def}}{=} (B - \beta)^{-1}$ satisfy the following conditions:

(1)
$$\operatorname{Ker} X = \operatorname{Ker} Y = \{0\},\$$

(2)
$$\overline{\mathscr{R}([X,Y])} \cap \mathscr{R}(X) = \overline{\mathscr{R}([X,Y])} \cap \mathscr{R}(Y) = \{0\}.$$

Conversely, if X and Y are bounded self-adjoint operators satisfying (1) and (2), then $\{X^{-1}+\alpha, Y^{-1}+\beta\}\in \mathfrak{R}_1$ for all $\alpha, \beta\in \mathbf{R}$.

The main method in [1] to construct pairs belonging to \mathfrak{N}_1 is to consider pairs of the form $\{(\operatorname{Re} T)^{-1}, (\operatorname{Im} T)^{-1}\}$ for certain operators T. Among others Toeplitz operators with analytic symbols have been investigated in [1]. It was shown that Toeplitz operators with symbols which are cyclic for the backward shift do not generate a pair in \mathfrak{N}_1 ([1], Proposition 3.3). Moreover, the polynomials φ for which $\{(\operatorname{Re} T_{\varphi})^{-1}, (\operatorname{Im} T_{\varphi})^{-1}\} \in \mathfrak{N}_1$ are characterized in [1].

Received October 16, 1984.

^{*)} Research supported by Naturwissenschaftlich-Theoretisches Zentrum (Karl-Marx-Universität, Leipzig).

The aim of this note is to show that Schmüdgen's method works in fact for Toeplitz operators with arbitrary analytic (or antianalytic) symbols.

Suppose $\varphi \in H^{\infty}$. Let T_{φ} be the multiplication by φ on H^2 . Let $X \stackrel{\text{def}}{=} \operatorname{Re} T_{\varphi}$ and $Y \stackrel{\text{def}}{=} \operatorname{Im} T_{\varphi}$. As usual, S^* is the backward shift, P_+ is the orthogonal projection of L^2 onto H^2 and $P_- = I - P_+$ is the projection onto H^2_- and $\vee \{...\}$ denotes the closed linear span of $\{...\}$.

Lemma 1.
$$\mathcal{R}([X, Y]) = \bigvee \{(S^*)^n \varphi \colon n \ge 1\}.$$

Proof. First note that, for any $h \in H^2$, $[T_{\varphi}^*, T_{\varphi}]h = (P_+ \bar{\varphi}\varphi - \varphi P_+ \bar{\varphi})h = P_+ \varphi P_- \bar{\varphi}h = H_{\bar{\varphi}}^* H_{\bar{\varphi}}h$, where $H_{\bar{\varphi}}$: $H^2 \to H_-^2 (H_{\bar{\varphi}}h = P_- \bar{\varphi}h)$ is the Hankel operator with symbol $\bar{\varphi}$. Hence we have $\overline{\mathcal{R}([X,Y])} = \overline{\mathcal{R}([T_{\varphi}^*, T_{\varphi}])} = \overline{\mathcal{R}(H_{\bar{\varphi}}^* H_{\bar{\varphi}})} = \overline{\mathcal{R}(H_{\bar{\varphi}}^*)} = \overline{\mathcal{R}$

According to Beurling's theorem, the S^* -invariant subspace $\vee \{(S^*)^n \varphi \colon n \ge 1\}$ has the form $H^2 \ominus \Theta H^2$ with a certain inner function Θ or $\Theta = 0$. We introduce the bounded analytic functions φ_+ and φ_- by

$$\varphi_{\pm}(z) = \frac{1}{2} \Theta(z) (\varphi(z) \pm \overline{\varphi(z)}) \text{ for } |z| = 1.$$

 $\Theta \bar{\varphi}$ is indeed analytic, because $(\bar{\varphi}\Theta, \bar{z}^n) = (\Theta, (S^*)^n \varphi) = 0$ for $n \ge 1$.

Theorem 1. $\{(\operatorname{Re} T_{\varphi})^{-1}, (\operatorname{Im} T_{\varphi})^{-1}\}\in \mathfrak{N}_1$ if and only if φ_+ and φ_- are non-zero outer functions.

Proof. Let us note at first that for $\Theta=0$ we have by Lemma 1 $\overline{\mathcal{R}([X,Y])}=H^2$, i.e. condition (2) in Theorem 0 is not fulfilled. Hence we may assume that Θ is a non-zero function. Since the only bounded self-adjoint Toeplitz operator with non-trivial kernel is the zero operator, the conditions $X\neq 0$ and $Y\neq 0$ imply Ker X=K = Ker $Y=\{0\}$, i.e. condition (1) in Theorem 0.

We show that $(H^2 \ominus \Theta H^2) \cap \mathcal{R}(X) = \{0\}$ iff φ_+ is outer. Since $Xf = \frac{1}{2} P_+(\varphi + \overline{\varphi}) f = P_+ \Theta \varphi_+ f$, we have

$$P_{+}\overline{\Theta}Xf = P_{+}\overline{\Theta}P_{+}\Theta\varphi_{+}f = P_{+}\overline{\varphi}_{+}f = T_{\varphi_{+}}^{*}f.$$

Therefore,

$$(H^{2} \ominus OH^{2}) \cap \mathcal{R}(X) = \{Xf \colon Xf \perp OH^{2}\} = \{Xf \colon P_{+}\overline{O}Xf = 0\} =$$

$$= X \operatorname{Ker} T_{\varphi_{+}}^{*} = X(H^{2} \ominus \overline{\mathcal{R}(T_{\varphi_{+}})}) = X(H^{2} \ominus \varphi_{+}^{i}H^{2}),$$

where φ_+^i is the inner part of φ_+ . Since Ker $X = \{0\}$, $(H^2 \ominus \Theta H^2) \cap \mathcal{R}(X) = \{0\}$ if and only if φ_+ is outer. Similarly it follows that $(H^2 \ominus \Theta H^2) \cap \mathcal{R}(Y) = \{0\}$ if and only if φ_- is outer. By Theorem 0, this completes the proof of Theorem 1.

Corollary 1. If $\varphi \in H^{\infty}$ is S^* -cyclic, then $\{(\operatorname{Re} T_{\varphi})^{-1}, (\operatorname{Im} T_{\varphi})^{-1}\} \notin \mathfrak{N}_1$.

Proof. Note that φ and $S^*\varphi$ are S^* -cyclic simultaneously. In this case $\Theta=0$ and $\varphi_+=\varphi_-=0$.

Lemma 2. If $\bigvee \{ (S^*)^n \varphi \colon n \ge 1 \} = H^2 \ominus \Theta H^2$, then $\Theta \overline{\varphi}$ and Θ have no common inner divisor.

Proof. Let ϑ be a common inner divisor of $\Theta\overline{\varphi}$ and Θ and let $\Theta' \stackrel{\text{def}}{=} \Theta \overline{\vartheta}$. Then $\Theta'\overline{\varphi} \in H^2$ and $((S^*)^n \varphi, \Theta' f) = (\overline{z}^n \overline{f}, \Theta'\overline{\varphi}) = 0$ for $n \ge 1$ and $f \in H^2$. Therefore, $\Theta' H^2 \subseteq \Theta H^2$, i.e., $\overline{\vartheta} = \overline{\Theta} \Theta' \in H^2$ and ϑ is a constant function.

If Θ is a finite Blaschke product, then φ is meromorphic in $\overline{\mathbb{C}}$, the function $\overline{\varphi}$ defined by $\overline{\overline{\varphi}}(z) = \overline{\varphi(1/\overline{z})}$ is meromorphic too, and $\varphi_{\pm}(z) = \frac{1}{2} \Theta(z) \left(\varphi(z) \pm \overline{\overline{\varphi}}(z) \right)$ for $|z| \leq 1$.

Corollary 2. Let Θ be a finite Blaschke product. Then, $\{(\text{Re }T_{\varphi})^{-1}, (\text{Im }T_{\varphi})^{-1}\}\in \mathfrak{N}_1$ if and only if $\varphi^2(z)\neq \overline{\varphi}^2(z)$ for every $z\in \mathbb{C}$, $|z|\neq 1$.

Proof. Suppose that $\varphi^2(z) = \overline{\varphi}^2(z)$ for some $z \in \mathbb{C}$, $|z| \neq 1$. Since $\varphi^2(1/\overline{z}) = \overline{\overline{\varphi}^2(z)} = \overline{\overline{\varphi}^2(z)} = \overline{\overline{\varphi}^2(1/\overline{z})}$, we can assume without loss of generality that |z| < 1. Hence $\varphi_+ \varphi_-$ has a zero inside the unit circle. Therefore it is not outer.

Suppose now that φ_+ (or φ_-) is not outer. Then it has a zero, say z_0 , inside the unit circle (see the remark just before Corollary 2). According to Lemma 2, $\Theta(z_0) \neq 0$ and therefore $\varphi(z_0) + \overline{\varphi}(z_0) = 0$ (or $\varphi(z_0) - \overline{\varphi}(z_0) = 0$, resp.), i.e. $\varphi^2(z_0) = \overline{\varphi}^2(z_0)$.

2. In [2] the study of commuting unbounded self-adjoint operators was continued. The more general classes \mathfrak{N}_{rs} are introduced in [2]. Here we only need the class $\mathfrak{N}_{\infty}^{\infty}$.

Definition 2. Let A, B be self-adjoint operators on a Hilbert space \mathcal{H} . The pair $\{A, B\}$ is in the class $\mathfrak{N}_{\infty}^{\infty}$ if there exists a dense linear manifold \mathcal{D} in \mathcal{H} such that

- (i)' $\mathscr{D} \subseteq \text{Dom}(A^j B^k) \cap \text{Dom}(B^k A^j)$ and $A^j B^k f = B^k A^j f$ for all $f \in \mathscr{D}$ and all j, k = 0, 1, ...;
- (ii)' $A^k | \mathcal{D}$ and $B^k | \mathcal{D}$ are essentially self-adjoint for all $k \ge 1$.

For polynomial symbols it was shown in [2, Theorem 4.1] that all pairs $\{(\operatorname{Re} T_{\varphi})^{-1}, (\operatorname{Im} T_{\varphi})^{-1}\} \in \mathfrak{N}_{1}$ are in fact in the class $\mathfrak{N}_{\infty}^{\infty}$. Using the same method as in [2] we prove this assertion for arbitrary analytic symbols.

Theorem 2. For arbitrary $\varphi \in H^{\infty}$ the following are equivalent:

(3)
$$\{(\operatorname{Re} T_{\varphi})^{-1}, (\operatorname{Im} T_{\varphi})^{-1}\} \in \mathfrak{N}_{1},$$

(4)
$$\{\operatorname{Re} T_{\varphi})^{-1}, \ (\operatorname{Im} T_{\varphi})^{-1}\} \in \mathfrak{N}_{\infty}^{\infty}.$$

Lemma 3.
$$Q_{rs} \stackrel{\text{def}}{=} \bigvee \{ \Re(X^j Y^k[X, Y]) : j < r, k < s \} = H^2 \ominus \Theta^{r+s-1} H^2$$
.

Proof. Since the subspace $H^2 \ominus OH^2$ is invariant under the operator T_{φ}^* , it is sufficient to show that

$$\vee \{ \mathscr{R}(T^k_{\sigma}[X,Y]) \colon k < n \} = H^2 \ominus \Theta^n H^2.$$

We prove this assertion by induction. By Lemma 1 this is true in case n=1. Suppose that

$$\forall \{ \mathscr{R}(T_{\varphi}^{k}[X,Y]) \colon k < n \} = H^{2} \ominus \Theta^{n}H^{2} \stackrel{\mathsf{def}}{=} K_{n}.$$

Then

$$\vee \{ \mathscr{R}(T_{\sigma}^{k}[X,Y]) \colon k < n+1 \} = \vee \{ T_{\sigma}K_{n}, K_{n} \}.$$

If $f \perp \bigvee \{T_{\varphi}K_n, K_n\}$, then $f = \Theta^n g$ and $P_+ \overline{\varphi} f = \Theta^n h$, for some $g \in H^2$, $h \in H^2$. Hence $\Theta h = \overline{\Theta}^{n-1} P_+ \overline{\varphi} \Theta^n g = \overline{\Theta}^{n-1} (\Theta \overline{\varphi}) \Theta^{n-1} g = (\Theta \overline{\varphi}) g$. According to Lemma 2, $\Theta \overline{\varphi}$ and Θ have no common inner divisor. Thus $g \in \Theta H^2$ and $f \in \Theta^{n+1} H^2$. Therefore, $K_{n+1} \subseteq \bigvee \{T_{\varphi}K_n, K_n\}$. On the other hand, $(\varphi K_n, \Theta^{n+1} H^2) = (K_n, \Theta^n(\Theta \overline{\varphi}) H^2) = 0$. Hence $\bigvee \{T_{\varphi}K_n, K_n\} = K_{n+1}$ which completes the induction proof.

Proof of Theorem 2. Since $(4)\Rightarrow(3)$ is obvious by definition we only have to prove the implication $(3)\Rightarrow(4)$. Suppose that (3) is fulfilled. Then, by Theorem 1, φ_+ and φ_- are outer. To prove (4), we apply Corollary 1.9 in [2]. By this Corollary, it is sufficient to verify the following two conditions:

$$(x) Xf \in Q_{r+1,s} \Rightarrow f \in Q_{rs} for all r \ge 0, s \ge 0 and all f \in H^2,$$

(y)
$$Yf \in Q_{r,s+1} \Rightarrow f \in Q_{r,s}$$
 for all $r \ge 0$, $s \ge 0$ and all $f \in H^2$.

Let $Xf \in Q_{r+1,s} = H^2 \ominus \Theta^n H^2$, n=r+s, i.e., $Xf = P_+ \Theta \overline{\varphi}_+ f_+ \Phi^n H^2$. Hence $0 = (P_+ \Theta \overline{\varphi}_+ f, \Theta^n H^2) = (f, \varphi_+ \Theta^{n-1} H^2)$. Therefore, since φ_+ is outer, $f \in H^2 \ominus \Theta^{n-1} H^2 = Q_{rs}$. In a similar way we see that (y) is satisfied if φ_- is outer. This completes the proof.

References

- K. SCHMÜDGEN, On commuting unbounded self-adjoint operators. I, Acta Sci. Math., 47 (1984), 131—146.
- [2] K. SCHMÜDGEN, J. FRIEDRICH, On commuting unbounded self-adjoint operators. II, *Integral Equations Operator Theory*, 7 (1984), 815—867.

FONTANKA 27, LOMI 191011, LENINGRAD, USSR.