A note on Schmüdgen's classes \mathfrak{N}_{1} and $\mathfrak{N}_{\infty}^{\infty}$ of pairs generated by Toeplitz operators

v. VASYUNIN*)

1. K. Schmüdgen [1] introduced the following class of pairs of (unbounded) self-adjoint operators.

Definition 1. Let A, B be self-adjoint operators on a Hilbert space \mathscr{H}. The pair $\{A, B\}$ belongs to the class \mathfrak{N}_{1} if there exists a dense linear manifold $\mathscr{\mathscr { V }}$ in \mathscr{H} such that
(i) $\mathscr{D} \subseteq \operatorname{Dom}(A B) \cap \operatorname{Dom}(B A)$ and $A B f=B . A f$ for all $f \in \mathscr{D}$,
(ii) $A \mid \mathscr{D}$ and $B \mid \mathscr{D}$ are essentially self-adjoint.

Schmüdgen gives the following criterion for a pair $\{A, B\}$ to be in $\mathfrak{9}_{1}$. (In what follows $\mathscr{R}(\cdot)$ means "range of".)

Theorem 0 (Theorem 1.7 in [1]). Suppose $\{A, B\} \in \mathfrak{M}_{1}, \alpha \in \mathbf{R} \backslash \sigma(A)$ and $\beta \in \mathbf{R} \backslash \sigma(B)$. Then the operators $X \stackrel{\text { def }}{=}(A-\alpha)^{-1}$ and $Y \xlongequal{\text { def }}(B-\beta)^{-1}$ satisfy the following conditions:
$\operatorname{Ker} X=\operatorname{Ker} Y=\{0\}$,

Conversely, if X and Y are bounded self-adjoint operators satisfying (1) and (2), then $\left\{X^{-1}+\alpha, Y^{-1}+\beta\right\} \in \mathfrak{N}_{1}$ for all $\alpha, \beta \in \mathbf{R}$.

The main method in [1] to construct pairs belonging to $\mathfrak{R}_{\mathbf{1}}$ is to consider pairs of the form $\left\{(\operatorname{Re} T)^{-1},(\operatorname{Im} T)^{-1}\right\}$ for certain operators T. Among others Toeplitz operators with analytic symbols have been investigated in [1]. It was shown that Toeplitz operators with symbols which are cyclic for the backward shift do not generate a pair in \mathfrak{N}_{1} ([1], Proposition 3.3). Moreover, the polynomials φ for which $\left\{\left(\operatorname{Re} T_{\varphi}\right)^{-1},\left(\operatorname{Im} T_{\varphi}\right)^{-1}\right\} \in \mathfrak{N}_{1}$ are characterized in [1].

[^0]The aim of this note is to show that Schmüdgen's method works in fact for Toeplitz operators with arbitrary analytic (or antianalytic) symbols.

Suppose $\varphi \in H^{\infty}$. Let T_{φ} be the multiplication by φ on H^{2}. Let $X \stackrel{\text { def }}{=} \operatorname{Re} T_{\varphi}$ and $Y \stackrel{\text { def }}{=} \operatorname{Im} T_{\varphi}$. As usual, S^{*} is the backward shift, P_{+}is the orthogonal projection of L^{2} onto H^{2} and $P_{-}=I-P_{+}$is the projection onto H_{-}^{2} and $\vee\{\ldots\}$ denotes the closed linear span of $\{\ldots\}$.

Lemma 1. $\mathscr{R}([X, Y])=\vee\left\{\left(S^{*}\right)^{n} \varphi: n \geqq 1\right\}$.
Proof. First note that, for any $h \in H^{2},\left[T_{\varphi}^{*}, T_{\varphi}\right] h=\left(P_{+} \bar{\varphi} \varphi-\varphi P_{+} \bar{\varphi}\right) h=$ $=P_{+} \varphi P_{-} \bar{\varphi} h=H_{\bar{\varphi}}^{*} H_{\bar{\varphi}} h$, where $H_{\bar{\varphi}}: H^{2} \rightarrow H_{-}^{2}\left(H_{\bar{\varphi}} h=P_{-} \bar{\varphi} h\right)$ is the Hankel operator with symbol $\bar{\varphi}$. Hence we have $\overline{\mathscr{R}([X, Y])}=\overline{\mathscr{R}\left(\left[T_{\varphi}^{*}, T_{\varphi}\right]\right)}=\overline{\mathscr{R}\left(H_{\bar{\varphi}}^{*} H_{\bar{\varphi}}\right)}=\overline{\mathscr{R}\left(H_{\bar{\varphi}}^{*}\right)}=$ $\cdot \overline{P_{+} \varphi H_{-}^{2}}=\vee\left\{P_{+} \bar{z}^{n} \varphi: n \geqq 1\right\}$. Now the assertion follows.

According to Beurling's theorem, the S^{*}-invariant subspace $\vee\left\{\left(S^{*}\right)^{n} \varphi: n \geqq 1\right\}$ has the form $H^{2} \ominus \Theta H^{2}$ with a certain inner function Θ or $\Theta=0$. We introduce the bounded analytic functions φ_{+}and φ_{-}by

$$
\varphi_{ \pm}(z)=\frac{1}{2} \Theta(z)(\varphi(z) \pm \overline{\varphi(z)}) \text { for }|z|=1
$$

$\Theta \bar{\varphi}$ is indeed analytic, because $\left(\bar{\varphi} \Theta, \bar{z}^{n}\right)=\left(\Theta,\left(S^{*}\right)^{n} \varphi\right)=0$ for $n \geqq 1$.
Theorem 1. $\left\{\left(\operatorname{Re} T_{\varphi}\right)^{-1},\left(\operatorname{Im} T_{\varphi}\right)^{-1}\right\} \in \mathfrak{N}_{1}$ if and only if φ_{+}and φ_{-}are nonzero outer functions.

Proof. Let us note at first that for $\Theta=0$ we have by Lemma $1 \overline{\mathscr{R}([X, Y])}=H^{2}$, i.e. condition (2) in Theorem 0 is not fulfilled. Hence we may assume that Θ is a non-zero function. Since the only bounded self-adjoint Toeplitz operator with nontrivial kernel is the zero operator, the conditions $X \neq 0$ and $Y \neq 0$ imply $\operatorname{Ker} X=$ $=$ Ker $Y=\{0\}$, i.e. condition (1) in Theorem 0 .

We show that $\left(H^{2} \ominus \Theta H^{2}\right) \cap \mathscr{R}(X)=\{0\}$ iff φ_{+}is outer. Since $X f=$ $=\frac{1}{2} P_{+}(\varphi+\bar{\varphi}) f=P_{+} \Theta \varphi_{+} f$, we have

$$
P_{+} \bar{\Theta} X f=P_{+} \bar{\Theta} P_{+} \Theta \varphi_{+} f=P_{+} \bar{\varphi}_{+} f=T_{\varphi_{+}}^{*} f .
$$

Therefore,

$$
\begin{gathered}
\left(H^{2} \ominus \Theta H^{2}\right) \cap \mathscr{R}(X)=\left\{X f: X f \perp \Theta H^{2}\right\}=\left\{X f: P_{+} \bar{\Theta} X f=0\right\}= \\
=X \operatorname{Ker} T_{\varphi_{+}}^{*}=X\left(H^{2} \Theta \overline{\mathscr{R}}\left(T_{\varphi_{+}}\right)\right)=X\left(H^{2} \ominus \varphi_{+}^{i} H^{2}\right),
\end{gathered}
$$

where φ_{+}^{i} is the inner part of φ_{+}. Since $\operatorname{Ker} X=\{0\},\left(H^{2} \ominus \Theta H^{2}\right) \cap \mathscr{R}(X)=\{0\}$ if and only if φ_{+}is outer. Similarly it follows that $\left(H^{2} \ominus \Theta H^{2}\right) \cap \mathscr{R}(Y)=\{0\}$ if and only if φ_{-}is outer. By Theorem 0 , this completes the proof of Theorem 1.

Corollary 1. If $\varphi \in H^{\infty}$ is S^{*}-cyclic, then $\left\{\left(\operatorname{Re}_{\theta} T_{\varphi}\right)^{-1},\left(\operatorname{Im} T_{\varphi}\right)^{-1}\right\} \notin \mathfrak{M}_{1}$.

Proof. Note that φ and $S^{*} \varphi$ are S^{*}-cyclic simultaneously. In this case $\Theta=0$ and $\varphi_{+}=\varphi_{-}=0$.

Lemma 2. If $\vee\left\{\left(S^{*}\right)^{n} \varphi: n \geqq 1\right\}=H^{2} \Theta \Theta H^{2}$, then $\Theta \bar{\varphi}$ and Θ have no common inner divisor.

Proof. Let ϑ be a common inner divisor of $\Theta \bar{\varphi}$ and Θ and let $\Theta^{\prime} \stackrel{\text { def }}{=} \Theta \bar{\vartheta}$. Then $\Theta^{\prime} \bar{\varphi} \in H^{2}$ and $\left(\left(S^{*}\right)^{n} \varphi, \Theta^{\prime} f\right)=\left(\bar{z}^{n} \bar{f}, \Theta^{\prime} \bar{\varphi}\right)=0$ for $n \geqq 1$ and $f \in H^{2}$. Therefore, $\Theta^{\prime} H^{2} \subseteq$ $\sqsubseteq \Theta H^{2}$, i.e., $\bar{\vartheta}=\bar{\Theta} \Theta^{\prime} \in H^{2}$ and ϑ is a constant function.

If Θ is a finite Blaschke product, then φ is meromorphic in $\overline{\mathbf{C}}$, the function $\overline{\bar{\varphi}}$ defined by $\overline{\bar{\varphi}}(z)=\overline{\varphi(1 / \bar{z})}$ is meromorphic too, and $\varphi_{ \pm}(z)=\frac{1}{2} \Theta(z)(\varphi(z) \pm \overline{\bar{\varphi}}(z))$ for $|z| \leqq 1$.

Corollary 2. Let Θ be a finite Blaschke product. Then, $\left\{\left(\operatorname{Re} T_{\varphi}\right)^{-1},\left(\operatorname{Im} T_{\varphi}\right)^{-1}\right\} \in \mathfrak{R}_{1}$ if and only if $\varphi^{2}(z) \neq \overline{\bar{\varphi}}^{2}(z)$ for every $z \in \mathbf{C},|z| \neq 1$.

Proof. Suppose that $\varphi^{2}(z)=\overline{\bar{\varphi}}^{2}(z)$ for some $z \in C,|z| \neq 1$. Since $\varphi^{2}(1 / \bar{z})=$ $=\overline{\overline{\bar{\varphi}^{2}}(z)}=\overline{\varphi^{2}(z)}=\overline{\bar{\varphi}}^{2}(1 / \bar{z})$, we can assume without loss of generality that $|z|<1$. Hence $\varphi_{+} \varphi_{-}$has a zero inside the unit circle. Therefore it is not outer.

Suppose now that φ_{+}(or φ_{-}) is not outer. Then it has a zero, say z_{0}, inside the unit circle (see the remark just before Corollary 2). According to Lemma 2, $\Theta\left(z_{0}\right) \neq 0$ and therefore $\varphi\left(z_{0}\right)+\overline{\bar{\varphi}}\left(z_{0}\right)=0 \quad$ (or $\varphi\left(z_{0}\right)-\overline{\bar{\varphi}}\left(z_{0}\right)=0$, resp.), i.e. $\varphi^{2}\left(z_{0}\right)=\overline{\bar{\varphi}}^{2}\left(z_{0}\right)$.
2. In [2] the study of commuting unbounded self-adjoint operators was continued. The more general classes $\mathfrak{M}_{r s}$ are introduced in [2]. Here we only need the class $\mathfrak{N}_{\infty}^{\infty}$.

Definition 2. Let A, B be self-adjoint operators on a Hilbert space \mathscr{H}. The pair $\{A, B\}$ is in the class $\mathfrak{N}_{\infty}^{\infty}$ if there exists a dense linear manifold \mathscr{D} in \mathscr{H} such that
(i) $\mathscr{D} \subseteq \operatorname{Dom}\left(A^{j} B^{k}\right) \cap \operatorname{Dom}\left(B^{k} A^{j}\right)$ and $A^{j} B^{k} f=B^{k} A^{j} f$ for all $f \in \mathscr{D}$ and all $j, k=0,1, \ldots$;
(ii) $A^{k} \mid \mathscr{D}$ and $B^{k} \mid \mathscr{D}$ are essentially self-adjoint for all $k \geqq 1$.

For polynomial symbols it was shown in [2, Theorem 4.1] that all pairs $\left\{\left(\operatorname{Re} T_{\varphi}\right)^{-1},\left(\operatorname{Im} T_{\varphi}\right)^{-1}\right\} \in \mathfrak{R}_{1}$ are in fact in the class $\mathfrak{N}_{\infty}^{\infty}$. Using the same method as in [2] we prove this assertion for arbitrary analytic symbols.

Theorem 2. For arbitrary $\varphi \in H^{\infty}$ the following are equivalent:

$$
\begin{align*}
& \left\{\left(\operatorname{Re} T_{\varphi}\right)^{-1},\left(\operatorname{Im} T_{\varphi}\right)^{-1}\right\} \in \mathfrak{N}_{1} \tag{3}\\
& \left.\left\{\operatorname{Re} T_{\varphi}\right)^{-1},\left(\operatorname{Im} T_{\varphi}\right)^{-1}\right\} \in \mathfrak{N}_{\infty}^{\infty} \tag{4}
\end{align*}
$$

Lemma.3. $Q_{r s} \stackrel{\text { def }}{=} \vee\left\{\mathscr{R}\left(X^{j} Y^{k}[X, Y]\right): j<r, k<s\right\}=H^{2} \ominus \Theta^{r+s-1} H^{2}$.
Proof. Since the subspace $H^{2} \Theta \Theta H^{2}$ is invariant under the operator T_{φ}^{*}, it is sufficient to show that

$$
\vee\left\{\mathscr{R}\left(T_{\varphi}^{k}[X, Y]\right): k<n\right\}=H^{2} \ominus \Theta^{n} H^{2}
$$

We prove this assertion by induction. By Lemma 1 this is true in case $n=1$. Suppose that

$$
V^{\prime}\left\{\mathscr{R}\left(T_{\varphi}^{k}[X, Y]\right): k<n\right\}=H^{2} \Theta \Theta^{n} H^{2} \stackrel{\text { def }}{=} K_{n} .
$$

Then

$$
\vee\left\{\mathscr{R}\left(T_{\varphi}^{k}[X, Y]\right): k<n+1\right\}=\vee\left\{T_{\varphi} K_{n}, K_{n}\right\}
$$

If $f \perp \vee\left\{T_{\varphi} K_{n}, K_{n}\right\}$, then $f=\Theta^{n} g$ and $P_{+} \bar{\varphi} f=\Theta^{n} h$, for some $g \in H^{2}, h \in H^{2}$. Hence $\Theta h=\bar{\Theta}^{n-1} P_{+} \bar{\varphi} \Theta^{n} g=\bar{\Theta}^{n-1}(\Theta \bar{\varphi}) \Theta^{n-1} g=(\Theta \bar{\varphi}) g$. According to Lemma 2, $\Theta \bar{\varphi}$ and Θ have no common inner divisor. Thus $g \in \Theta H^{2}$ and $f \in \Theta^{n+1} H^{2}$. Therefore, $K_{n+1} \subseteq \vee\left\{T_{\varphi} K_{n}, K_{n}\right\}$. On the other hand, $\left(\varphi K_{n}, \Theta^{n+1} H^{2}\right)=\left(K_{n}, \Theta^{n}(\Theta \bar{\varphi}) H^{2}\right)=0$. Hence $\vee\left\{T_{\varphi} K_{n}, K_{n}\right\}=K_{n+1}$ which completes the induction proof.

Proof of Theorem 2. Since $(4) \Rightarrow(3)$ is obvious by definition we only have to prove the implication (3) \Rightarrow (4). Suppose that (3) is fulfilled. Then, by Theorem 1, φ_{+}and φ_{-}are outer. To prove (4), we apply Corollary 1.9 in [2]. By this Corollary, it is sufficient to verify the following two conditions:

$$
\begin{equation*}
X f \in Q_{r+1, s} \Rightarrow f \in Q_{r s} \text { for all } r \geqq 0, \quad s \geqq 0 \text { and all } f \in H^{2}, \tag{x}
\end{equation*}
$$

$$
\begin{equation*}
Y f \in Q_{r, s+1} \Rightarrow f \in Q_{r, s} \text { for all } r \geqq 0, \quad s \geqq 0 \text { and all } f \in H^{2} \tag{y}
\end{equation*}
$$

Let $X f \in Q_{r+1, s}=H^{2} \ominus \Theta^{n} H^{2}, \quad n=r+s, \quad$ i.e., $X f=P_{+} \Theta \bar{\varphi}_{+} f \perp \Theta^{n} H^{2}$. Hence $0=\left(P_{+} \Theta \bar{\varphi}_{+} f, \Theta^{n} H^{2}\right)=\left(f, \varphi_{+} \Theta^{n-1} H^{2}\right)$. Therefore, since φ_{+}is outer, $f \in H^{2} \Theta$ $\Theta \Theta^{n-1} H^{2}=Q_{r s}$. In a similar way we see that (y) is satisfied if φ_{\ldots} is outer. This completes the proof.

References

[1] K. Schmüdgen, On commuting unbounded self-adjoint operators. I, Acta Sci. Math., 47 (1984), 131-146.
[2] K. Schmüdgen, J. Friedrich, On commuting unbounded self-adjoint operators. II, Integral Equations Operator Theory, 7 (1984), 815-867.

[^0]: *) Research supported by Naturwissenschaftlich-Theoretisches Zentrum (Karl-Marx-Universität, Leipzig).

 Received October 16, 1984.

