Non-atomic measure spaces and Fredholm composition operators

R. K. SINGH and T. VELUCHAMY

1. Introduction. Let $(X, \mathcal{S}, \lambda)$ be a sigma-finite measure space and let T be a measurable nonsingular $(\lambda T^{-1}(E)=0 \text{ whenever } \lambda(E)=0 \text{ for } E\in\mathcal{S})$ transformation from X into itself. Then the composition transformation C_T on $L^2(\lambda)$ is defined as $C_T f=f\circ T$ for every $f\in L^2(\lambda)$. If the range of C_T is in $L^2(\lambda)$ and C_T is bounded, then we call C_T the composition operator induced by T. It has been proved that a nonsingular measurable transformation T induces a composition operator C_T if and only if there exists a constant M>0 such that $\lambda T^{-1}(E) \leq M\lambda(E)$ for every $E\in\mathcal{S}$. Hence the induced measure λT^{-1} is absolutely continuous with respect to the measure λ . Let f_0 denote the Radon—Nikodym derivative of the measure λT^{-1} with respect to λ .

The main purpose of this paper is to study Fredholm, essentially unitary and essentially normal composition operators on $L^2(\lambda)$ when the underlying measure space is non atomic. In case X is the unit interval of the real line and λ is the Lebesgue measure on the Borel subsets X it turns out that the composition operator C_T on $L^2(\lambda)$ is Fredholm if and only if C_T is invertible [2]. We prove here that the above result is true for a general non-atomic measure space. We also prove that the set of essentially unitary composition operators on $L^2(\lambda)$ coincides with the set of unitary composition operators on $L^2(\lambda)$ and the set of essentially isometric composition operators coincide with the set of isometric composition operators on $L^2(\lambda)$. It is also proved that when C_T has dense range, C_T is essentially normal if and only if C_T is normal. Note that a measure space $(X, \mathcal{S}, \lambda)$ is said to be nonatomic if for every nonnull $E \in \mathcal{S}$, there exists a nonnull $F \in \mathcal{S}$ such that $F \subset E$ and $\lambda(F) < \lambda(E)$.

Definitions. Let B(H) denote the Banach algebra of all operators on a Hilbert space H and C(H) denote the ideal of compact operators on H. Let π be the natural homomorphism from B(H) to the Calkin algebra B(H)/C(H). An

Received September 10, 1984.

operator $A \in B(H)$ is said to be Fredholm, essentially unitary, essentially normal, an essential isometry or an essential coisometry according as $\pi(A)$ is invertible, unitary, normal, an isometry or a coisometry, respectively. It has been proved that A is Fredholm if and only if A has closed range, and the kernel of A and the kernel of A^* are finite dimensional. A is called quasiunitary if $A^*A - I$ and $AA^* - I$ are finite rank operators [2].

2. Fredholm composition operators. If $C_T \in B(L^2(\lambda))$, then we know that $C_T^*C_T = M_{f_0}[3]$. So, ker $C_T = \ker C_T^*C_T = \ker M_{f_0} = L^2(X_0)$, where $X_0 = \{x: f_0(x) = 0\}$. The following theorem computes the kernel of C_T^* which is useful in proving the main theorem of this section.

Theorem 2.1. Let $C_T \in B(L^2(\lambda))$. Then ker $C_T^* = \{ f: f \in L^2(\lambda) \text{ and } \int_{T^{-1}(E)} f \, d\lambda = 0 \text{ for all } E \in \mathscr{S} \}.$

Proof. Let $f \in L^2(\lambda)$. Then $f \in \ker C_T^*$ if and only if the inner product $\langle f, g \rangle = 0$ for every $g \in (\ker C_T^*)^\perp = \overline{\operatorname{Ran} C_T}$. Since the span of the characteristic function $\{X_{T^{-1}(E)}: \lambda T^{-1}(E) < \infty \text{ and } E \in \mathscr{S}\}$ is dense in $\overline{\operatorname{Ran} C_T}$, we conclude that $f \in \ker C_T^*$ if and only if $\int_{T^{-1}(E)} f d\lambda = 0$ for every $E \in \mathscr{S}$. Hence the proof is completed.

Definition. If $(X, \mathcal{S}, \lambda)$ is a measure space, then the sigma-algebra $T^{-1}(\mathcal{S}) = \{T^{-1}(E): E \in \mathcal{S}\}$ is said to be essentially all of \mathcal{S} if for every $E \in \mathcal{S}$ there exists $T^{-1}(F) \in T^{-1}(\mathcal{S})$ such that $\lambda(E \bigtriangleup T^{-1}(F)) = \lambda\{(E \searrow T^{-1}(F)) \cup (T^{-1}(F) \searrow E)\} = 0$.

It has been proved by WHITLEY [6] and SINGH and KUMAR [4] that C_T has dense range if and only if $T^{-1}(\mathcal{S})$ is essentially all of \mathcal{S} . This we can conclude from the above theorem also.

Corollary 2.1. No characteristic function belongs to ker C_T^* . In fact, no positive function belongs to ker C_T^* .

Corollary 2.3. If $C_T \in B(L^2(\lambda))$, then ker $C_T \subset \ker C_T^*$ implies that C_T is an injection.

Theorem 2.4. Let C_T be a normal composition operator on $L^2(\lambda)$. Then C_T is Fredholm if and only if C_T is invertible.

Proof. Since every normal composition operator on $L^2(\lambda)$ is an injection [4], the result follows.

The above theorem is not true in general as evident from the following example:

Example 2.5. Let l^2 denote the Hilbert space of all square summable sequences

of complex numbers. Define the operator A: $l^2 \rightarrow l^2$ by

$$(Ax)(n) = \begin{cases} 0 & \text{if } n = 1 \\ x_n & \text{if } n > 1 \end{cases}$$

for $x = \{x_n : n \in \mathbb{N}\}$ in l^2 . Then $A = A^*$ and hence A is normal. Also dim ker A = =dim ker $A^* = 1$ and the range of A is closed. Hence A is a normal Fredholm operator. But clearly, A is not invertible.

From now on we assume that the measure space $(X, \mathcal{S}, \lambda)$ is non-atomic. The following theorem shows that the set of Fredholm composition operators and the set of invertible composition operators on $L^2(\lambda)$ coincide.

Theorem 2.6. Let $C_T \in B(L^2(\lambda))$. Then C_T is Fredholm if and only if C_T is invertible.

Proof. Suppose C_T is Fredholm. Then ker C_T and ker C_T^* are finite dimensional and C_T has closed range. But ker $C_T = L^2(X_0)$, where $X_0 = \{x: f_0(x) = 0\}$ and λ is non-atomic implies that ker C_T is {0}. Hence to prove that C_T is invertible it is enough to prove that C_T has dense range. Suppose C_T does not have dense range. Then there exists a measurable set G in \mathscr{S} such that G is not in $T^{-1}(\mathscr{S})$. We can find a measurable set E such that $T^{-1}(E) \supset G$. Let $T^{-1}(E) = G \cup F$. Then F is a nonnull measurable set and F does not belong to $T^{-1}(\mathcal{G})$. If we partition E into countable disjoint measurable sets, then at least one set among those partitions, say E^1 , will be such that $T^{-1}(E^1)$ contains nonnull measurable subsets G^1 of G^2 and F^1 of F where G^1 and F^1 are not in $T^{-1}(\mathcal{G})$ and $\lambda(E^1) < 1$. Again partition E¹. Then we get at least one E^2 such that $\lambda(E^2) < 1/2$ and $T^{-1}(E^2)$ containing. nonnull parts of G and F which are not in $T^{-1}(\mathcal{G})$. Repeat this process. If at each stage of partition, there is exactly one measurable set E^n such that $T^{-1}(E^n)$ contains nonnull parts G^n of G and F^n of F such that G^n and F^n are not in $T^{-1}(E)$, then E^n can be made to approach a null set, since $\lambda(E^n) < 1/n$. This will imply that G and F are in $T^{-1}(\mathcal{S})$ which is a contradiction. Hence we can get a disjoint sequence $\{E_n: n \in \mathbb{N}\}$ of measurable subsets of E such that for every n, $T^{-1}(E_n) = G_n \cup F_n$. where $G_n \subset G$ and $F_n \subset F$ and G_n and F_n are not in $T^{-1}(\mathscr{G})$. Now consider the sequence $\{G_n: n \in \mathbb{N}\}$. This is a disjoint sequence and G_n does not belong to $T^{-1}(\mathscr{S})$. for every $n \in \mathbb{N}$. Also $G_1 \cup G_2 \cup \ldots \cup G_k$ does not belong to $T^{-1}(\mathscr{S})$ for every $k \in \mathbb{N}$. For, if $G_1 \cup G_2 \in T^{-1}(\mathscr{S})$, then there is a measurable set $K \subset E_1 \cup E_2$ such that $T^{-1}(K) = G_1 \cup G_2$. Hence $T^{-1}(K \cap E_1) = G_1$ which implies that $G_1 \in T^{-1}(\mathscr{S})$ which is a contradiction.

Now, since G_1 does not belong to $T^{-1}(\mathscr{S})$, there is a function f_1 in $L^2(\lambda)$ such that $\int_{T^{-1}(\mathcal{E})} f_1 d\lambda = 0$ for every $E \in \mathscr{S}$ and $\int_{G_1} f_1 d\lambda \neq 0$. For, if not, then ker $C_T^* \subset C(X_{G_1})^{\perp}$ and hence $(X_{G_1})^{\perp \perp} \subset \operatorname{Ran} C_T$. This implies that $X_{G_1} \in \operatorname{Ran} C_T$ which is a.

contradiction since G_1 does not belong to $T^{-1}(\mathscr{G})$. Again, there is a function f_2 in $L^2(\lambda)$ such that $\int_{T^{-1}(E)} f_2 d\lambda = 0$ for every $E \in \mathscr{G}$ and $\int_{G_1} f_2 d\lambda = 0$ but $\int_{G_2} f_2 d\lambda \neq 0$. For, if not, then $(\ker C_T^*) \cap (X_{G_1})^{\perp} \subset (X_{G_2})^{\perp}$. Hence $(X_{G_2})^{\perp \perp} \subset \text{span} \{\operatorname{Ran} C_T, X_{G_1}\}$. This implies that $X_{G_2} = f + \alpha x_{G_1}$ for some f in $\operatorname{Ran} C_T$ and $\alpha \in \mathbb{C}$. Hence $f = X_{G_2} - \alpha X_{G_1}$ and this will imply that f is not measurable with respect to the sigma algebra $T^{-1}(\mathscr{G})$ which is a contradiction. Proceeding like this we will get a sequence $\{f_n: n \in \mathbb{N}\} \subset \ker C_T^*$ such that $\int_{G_k} f_n d\lambda$ is not equal to zero for k = n and is zero for k < n. Hence, no two functions in $\{f_n: n \in \mathbb{N}\}$ are linearly dependent and hence dim $\ker C_T^* = \infty$ which is a contradiction. Hence the theorem is proved.

3. Essentially unitary and essentially normal composition operators. First we shall characterise essentially isometric and essentially coisometric composition operators on $L^2(\lambda)$.

Theorem 3.1. Let $C_T \in B(L^2(\lambda))$. Then C_T is an essential isometry if and only if C_T is an isometry.

Proof. Let C_T be an essential isometry. Then $\pi(C_T)^*\pi(C_T)=\pi(I)$ which implies that $C_T^*C_T-I$ is compact. But $C_T^*C_T-I=M_{f_0}-I$ is compact on $L^2(\lambda)$ if and only if $f_0=1$ a.e. [5]. This implies that C_T is an isometry and hence the proof is completed.

Theorem 3.2. Let $C_T \in B(L^2(\lambda))$. Then C_T is an essential coisometry if and only if it is a coisometry.

Proof. Let C_T be an essential coisometry. Now, it is clear that C_T is an essential coisometry if and only if $C_T C_T^* - I$ is compact. But

$$C_T C_T^* - I = \begin{cases} M_{f_0 \circ T - 1} & \text{on} \quad \overline{\operatorname{Ran} C_T} \\ -I & \text{on} \quad \ker C_T^*. \end{cases}$$

Since $\overline{\operatorname{ran} C_T}$ and $\ker C_T^*$ are invariant under $C_T C_T^* - I$, $C_T C_T^* - I$ is compact if and only if $M_{f_0 \circ T-1}$ is compact on $\overline{\operatorname{ran} C_T}$ and -I is compact on $\ker C_T^*$. But -I is compact on $\ker C_T^*$ if and only if $\ker C_T^*$ is finite dimensional which further implies that $\ker C_T^* = \{0\}$. Hence C_T has dense range and $M_{f_0 \circ T-1}$ is compact on $\overline{\operatorname{ran} C_T} = L^2(\lambda)$ if and only if $f_0 \circ T = 1$ a.e. This implies that C_T is a coisometry and hence the theorem is proved.

Theorem 3.3. Let $C_T \in B(L^2(\lambda))$. Then C_T is essentially unitary if and only if C_T is unitary.

Proof. C_T is essentially unitary if and only if C_T is essentially an isometry and essentially a coisometry. Hence the theorem follows from Theorems 3.1 and 3.2. Corollary 3.4. Let $C_T \in B(L^2(\lambda))$. Then C_T is quasiunitary if and only if C_T is unitary.

Theorem 3.5. Let C_T be a composition operator on $L^2(\lambda)$ with dense range. Then C_T is essentially normal if and only if C_T is normal.

Proof. C_T is essentially normal if and only if $C_T^*C_T - C_T C_T^*$ is compact. But when C_T has dense range, $C_T^*C_T - C_T C_T^* = M_{f_0 - f_0 \circ T}$ and hence $M_{f_0 - f_0 \circ T}$ is compact on $L^2(\lambda)$ implies that $f_0 = f_0 \circ T$ a.e. and this further implies that C_T is normal. Thus the theorem is proved.

References

- [1] R. G. DOUGLAS, Banach Algebra Techniques in Operator Theory, Academic Press (New York-London, 1972).
- [2] ASHOK KUMAR, Fredholm composition operators, Proc. Amer. Math. Soc., 79 (1980), 233-236.
- [3] ERIC A. NORDGREN, Composition operators on Hilbert spaces, in: *Hilbert space operators* (Proc. Conf. Calif., Calif. State Univ., Long Beach, Calif., 1977), Lecture Notes in Mathematics, No. 693, Springer-Verlag (Berlin, 1978); pp. 37-63.
- [4] R. K. SINGH and ASHOK KUMAR, Characterization of invertible, unitary and normal composition operators, Bull. Austral. Math. Soc., 19 (1978), 81-95.
- [5] R. K. SINGH and ASHOK KUMAR, Compact composition operators, J. Austral. Math. Soc. Ser. A, 28 (1979), 309-314.
- [6] ROBERT WHITLEY, Normal and quasi-normal composition operators, Proc. Amer. Math. Soc., 70 (1978), 114–118.

(R. K. S.) DEPARTMENT OF MATHEMATICS UNIVERSITY OF JAMMU JAMMU — 180 001, INDIA

DEPARTMENT OF MATHEMATICS GOVT. ARTS COLLEGE OOTACAMUND — 643 002, TAMIL NADU, INDIA.