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Best approximation of a normal operator in the trace norm 

RICHARD BOULDIN 

1. Introduction. A problem that has received considerable attention is the clas-
sification of operators that have a unique best approximation among the nonnega-
tive operators (a unique positive approximant) in one norm or another. For the 
operator norm this was done in [4] and, consequently, it solved a problem posed 
in [8]. Those results were generalized in [5], [9], [2] and other papers. The problem 
of approximation in trace norm was specifically excluded in [2], and it was noted 
how the methods given there failed in the case of the trace norm. This paper gives 
a characterization of those normal operators with a unique positive approximant 
in the trace norm. The result is a striking contrast to the characterizations given 
previously for other norms. 

We are concerned throughout this paper with (bounded linear) operators on 
a separable Hilbert space For any operator T we use the associated operator 
\T\=(T*Tf'2 and the Caratesian decomposition T=B+iC with B=(l/2)(T+T*) 
and C=(l/2i)(T— T*). We refer to B as re T and to C as im T. For a compact 
operator T we let ^(T) , s2(T), ... denote the eigenvalues of 12] in nonincreasing 
order repeated according to multiplicity. If we have 

then we say that T is trace class and the preceding sum is the trace norm, denoted 
lirilx- If T is not trace class then || J l ^ is defined to be infinity. 

For a self-adjoint operator B we define B+ to be ^-(\B\+B) and B~ to be 

^(\B\-B)\ wenotethat B=B + -B~ and \B\=B + +B~. If JE(-) is the spectral 

measure for B then it follows from the usual operational calculus that B + =B1s([0, 
and B~=BE{{— 0]). If T is a given operator and P is a nonnegative operator 
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such that o o l i r - P H i and | | r - i ? | | 1 S | | r - i > | | 1 for every nonnegative operator R 
then we say that P is a trace class positive approximant of T. 

We shall frequently use the following inequality for the trace class operator 
T where {e,} is some orthonormal set: 

grili S 2 \{TeJt e})\. j 

This follows from the Corollary on p. 40 of [10]. 

2. Preliminary results. Of course, not all operators can be approximated by 
a nonnegative operator using the trace norm. The next theorem gives convenient 
conditions for recognizing when a given operator can be approximated. 

Theorem 1. For a given operator T—B+iC, B* = B, C*=C, the following 
conditions are equivalent: 

(i) there exists a nonnegative operator P such that T—P is trace class; 
(ii) the operator C is trace class and the spectrum of B, denoted a(B), not in the 

interval [0, <=o) consists of isolated eigenvalues, say {Xj} repeated according to multi-
plicity, such that 2 I A,-1 < 00 

j 
(iii) the operator (T—B+) is trace class. 

Proof , (i) implies (ii): Let D be the trace class operator T—P and note that 
B=P+ve D, C=imD. According to Weyl's Theorem B and P have the same 
Weyl spectrum. (See [1], for example.) For any normal operator A the Weyl spectrum 
coincides with the points of o (A) that are not isolated eigenvalues with finite multi-
plicity. (See [3, Theorem 3] or [1, Theorem 5.1].) It is elementary that re D and 
im D are trace class operators. 

Let {A;} be an enumeration of the negative eigenvalues of B, repeated 
according to multiplicity, and let {ej) be an orthonormal sequence of eigenvectors 
with ej corresponding to Ay. Note that \\xe DW^WP-BW-^2 \((P-B)ej, ej)\ = 

= 2 «Pej, e j ) - l j ) ^ 2 - l j = 2 j j j 
(ii) implies (iii): Let {Xj} and {ej} have the same meaning as given in the first 

part. If D is defined by D = 2 <• > ej)*jej then 11 / )^=£ |Ay|. Note that B=B ++D, 
j J 

since B~ =BE((—«>, 0]) where E( •) is the spectral measure for B. We note that 
T—B + =D+iC; which proves (iii). 

(iii) implies (i): This is obvious. 
Next we show that if an operator can be approximated in trace norm by a 

nonnegative operator then it has a trace class positive approximant. 

Theorem 2. If the operator T satisfies one of the conditions in Theorem 1 then 
T has a trace class positive approximant. 
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, Proof . Recall that the conjugate space for the Banach space of compact oper-
ators on the underlying Hilbert space § is the space of trace class operators on 
(See [10, p. 48], for example.) Recall that any closed sphere in the conjugate space 
is compact in the weak star topology. (See [6, p. 424], for example.) Let R be a non-
negative operator such that (T—R) is trace class and let 38 denote the set of operators 

{T-P: P^ 0, ¡ r - P l l i 35 i r - ^ H i } . 

In order to show that 38 is weak star compact it suffices to show that 38 is weak 
star closed. 

Let {T—Ra: x€A} be a net from 38 that converges to T—P in the weak 
star topology; thus, lim tr (T—Rx)X=tr (T— P)X for every compact operator X. 

tit 

It suffices to show that (T—P) belongs to 38. Let positive s and compact operator 
X b e given. Note that 

| t r ( T - P ) Z | = | t r [ ( r - P ) - ( r - 2 ? J + ( r - / ? I ) ] Z | S 

^,+ lT-RUXl 

provided GO/? where p belongs to A and depends on £ and X. It follows from the 
preceding inequalities that 

l i r -PI I , e + | | r - H | | a 

for the arbitrarily chosen e. Hence, (T—P) belongs to 3d and, thus, 38 is weak 
star compact. 

From elementary topology we know that any lower semicontinuous function 
defined on a compact set assumes its infimum. Thus, it suffices to show that 
f(A) = ||.¿iHx is lower semicontinuous on the space of trace class operators. Note that 

||/4||1 = sup {|tr(/4.Y)|: X is a compact contraction}. 

Since the supremum of any collection of lower semicontinuous function is lower 
semicontinuous, we conclude that f(A) is lower semicontinuous on the compact set 38. 
This completes the proof. 

Theorems 1 and 2 might lead the reader to conjecture that B + is always a trace 
class positive approximant for T=B+iC, B*=B, C*=C. Such a conjecture is 
false, as we demonstrate. Define T by 

'-[i-iHi] 
and note that B+ qJ. It is routine to determine that the spectrum of \T—B+\ 

is {((3 + y1")/2)1/2,((3-}/5)/2)1/2} and, consequently, I I T - 5 + H ^ t r ! 
Since ||7'||1=2, we see that the zero operator is closer to T than B+ is. 
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3. Main results. Note that T in the counterexample at the end of the preceding 
.section is not a normal operator. If T is normal then there is a simple trace class 
positive approximant. 

T h e o r e m 3. If A—B+iC, B*—B, C*=C, is a normal operator satisfying 
•one of the conditions in Theorem 1 then B+ is a trace class positive approximant 
for A. 

P r o o f . It is clear that —B~+iC=A—B+ is a normal operator, and by 
Theorem 1 it is trace class. Clearly B~ and C are commuting self-adjoint trace 
•class operators and there is an orthonormal basis, say {ej}, that diagonalizes both 
operators. Let Zj be the eigenvalue of —B~+iC corresponding to the eigenvector 
•e3 for each j. Since B + —BE([0, where E( •) is the spectral measure for 
B, it is routine to see that B+ej=0 for every j. Thus, we have (Aej, ej) = 
.= ((-B-+iC)ej,ej)=ZJ. 

For any nonnegative operator R we note that 

WA-Rh ^ 2 \((A-R)ej, ej)\ = 2 l<-Jte^>+z,l ^ 2 = \A-B+ 
J j 

The preceding inequality proves that B + is a trace class positive approximant of A. 
It follows from the main theorem in [2] that B + is the unique positive approxi-

mant in the Schatten p-norm ||-||p, with p=2, for the normal operator A=B+iC, 
B*=B, C*=C. The next lemma shows that no statement like the preceding is true 
when the norm used is || • ||i. 

L e m m a 4. Let a, jS, y and 5 be positive numbers and define A by 

_ ("a+iy 0 1 
A ~ [ 0 fi-iSJ-

Two trace class positive approximcmts of A are 

( r e ^ ) + = [ o fi] a n d R = [e ft] 

where e is chosen to satisfy y(5se2>0 and a/J^e2. 

Proo f . By Theorem 3 we know that (re A)+ is a trace class positive 
approximant; thus, the || • ||x-distance between A and the nonnegative 2X2 
matrices is 

M - ( r e ^ | | 1 = ||[3; = y+d. 

Thus, it suffices to show that \\A—JiHiSy+i. Straightforward computations show 
that the spectrum of M - ^ ^ K ^ - i ? ) * ^ - ^ ) ] 1 ' 2 is 

{2 - 1 / 2 (52+y2+2e2 ± ((¿2+y2+2f2)2—4 [(y2+e2) (¿2+e2)—e2 (y -I- ¿)2])1/2)1/2}. 
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It follows that' 

M - J ? [ i = (tr|i4-Jl|)« = <52+y2+2fi2+^4[(y2+e2)(52+e2)-e2(y+<5)2] = 

= <52+y2+2y<5 = (<5+y)2. 
This proves the lemma. 

Theorem 5. Let A be a normal operator satisfying one of the conditions in 
Theorem 1. If the eigenvalues of A include z=tx+iy and w=fi—i5 with a, y, /?, 
then A does not have a unique trace class positive approximant. 

Proof . Write A as an orthogonal direct sum A0@At such that the spectrum 
of A0 is the set {z, vv}. Clearly the direct sum of. trace class positive approximants 
of A0 and Ax, respectively, is a trace class positive approximant for A. It follows 
from Lemma 4 that we can construct multiple approximants for A0 and, hence, 
for A. 

Before we are done we shall prove the converse of the preceding theorem. 
First, we must accumulate some appropriate basic results. The next lemma gives 
another circumstance in which (re T)+ is a trace class positive approximant of T. 

Lemma 6. Let T=B+iC, B*=B, C*—C, be an operator satisfying one of 
the conditions in Theorem 1. If B^O then B is a trace class positive approximant 
for T. 

Proof . Let {ej} be an orthonormal basis of eigenvectors for C and let Xj be 
the eigenvalue corresponding to ej for each j. If R is any nonnegative operator 
then we have 

ll^lli S 2 \((T-R)ej, ej)| = 2 l(((B-R)ej, e,»^]1'2 S j j 

£ 2 = 1CIK = «r-511,. ] 

This proves the lemma. 
By strengthening the hypothesis of the preceding lemma we get a uniqueness 

result. 

Theorem 7. Let T=B+iC, B*=B, C*=C, be an operator satisfying one of 
the conditions of Theorem 1. If B^O and Cs0 then B is the unique trace class 
positive approximant for T. 

Proof . Choose {ej} and l j as in the proof of Lemma 6, and note that B is a 
trace class positive approximant of T according to that lemma. For R any trace 
class positive approximant of T we have 

\\T-R\h §= 2 I(i.T-R)ej, ej)\ S |2 ((T-R)ej, ej)\ = 
j J 

= | 2 ({B-R)ej, ej)+i 2 ^ 2 h = HCfli = \\T-R\W. 
j i J 

12 
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Since equality must hold throughout the preceding inequalities, we have 

Hr-J?Dx = 12" ((T-R)ej, ej)| = | t r ( r - J ? ) | . j 

By the last part of Theorem 8.6 of [7, pp. 104—105], we conclude that e~w(T-R) 
is a nonnegative operator for 0=arg tr (T—R). The equality of the third and fourth 
lines in the earlier inequalities shows that tr (T—R)=iZ^j- Thus, we know that 

j 
— i(T—R)=—i(B—R)+C is a nonnegative operator. This implies that B—R—0, 
which is the desired conclusion. 
i The next theorem gives another situation where (re T)+ is the unique trace 
class positive approximant for T. 

Theorem 8. Let A=B+iC, B*—B, C*=C, be a normal operator satisfying 
one of the conditions in Theorem 1. If 0 then the zero operator 0 is the unique 
trace class positive approximant of A. 

Proof . Let {ej} be an orthonormal basis consisting of eigenvectors of A and 
let Zj be the eigenvalue corresponding to es for each j. Note that re zjS 0 for each j. 
If R is any nonnegative operator then we have 

№-.R| | s Z m-R)ej, e j ) | = £ I { z j - W J , <>j)I = j j 

= Z ej)-re Zjf+(im ztfY'* s j 

£ Z Kre Zj)2+(im ZjW = Z Ujl = 1MIU-
i 1 

This proves that 0 is a trace class positive approximant of A. 
Furthermore, if R is any trace class positive approximant of A then equality 

holds in each of the preceding inequalities. It follows that (Re}, e^)=Q for each j 
and hence, R must be 0. The uniqueness is proved. 

Before we can exploit Theorems 7 and 8 we need an elementary observation 
about matrices of operators. 

Lemma 9. If is a nonnegative operator on § 0 © § i Men B^O 

and D=0. 

Proof . Assume that there exists some / in such that Df^O, and define 
e by e={—y/\\Df\\2)Df where y is an arbitrary positive number. Note that 

This contradicts the nonnegativity of R and, thus, it shows that D—0. 
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Since 

for any / i n § l s it is clear that 5 ^ 0 . 
Using the results of 7, 8 and 9 we can prove a partial converse for Theorem 5. 

Theorem 10. Let A=B+iC, B*=B, C*=C, be a normal operator satisfying 
one of the conditions in Theorem 1. If the spectrum of A, denoted a (A), is contained 
in {z: either im z^O or re zs.0} then B + is the unique trace class positive approxi-
mant for A. 

Proof . Let E(-) be the spectral measure for A and define E0, Ex, A0 and At 

by E0=E({z: re zs=0}), Ey=E({z: rez^O, imzsO}), A0=AE0, A1=AE1. The 
hypothesis concerning a (A) shows that A=A0® Ax. According to Theorem 8, 
0 is the unique trace class positive approximant of A0; according to Theorem 7, 
the unique trace class positive approximant of Ax is (re Ax). It suffices to show 
that Z? + =0©re Ax is the unique trace class positive approximant for A. 

We use Theorem 8.7 of [7, pp. 105—106] in the first inequality below. If JR is a 
nonnegative operator then we have 

\\A-RW, S \\E0(A-R)E^1 + \\El(A-R)E1\\i = 

= \\A0-E0 HEy| ^ 

^\\A0\\1+\\A1-reA1\\1 = \\A-B+\\1. 

The preceding computation shows that B+ is a trace class positive approximant 
for A. Furthermore, if R is any trace class positive approximant for A then E0RE0=0, 
E1RE1= re A1 by the uniqueness of the approximants of A0 and Ax. It now follows 
from Lemma 9 that R=0©re A1=B+, which proves the theorem. 

Using Theorems 5 and 10 we characterize the normal operators that have a 
unique trace class positive approximant. 

Theorem 11. Let A=B+iC, B*=B, C*=C, be a normal operator that sat-
isfies one of the conditions in Theorem 1. There is a unique trace class positive approxi-
mant for A if and only if a (A) is contained in one or the other of the two sets 
{z: either i m z s O or rez^O}, {z: either imz^O or rez^O}. 

Proof . If o(A) is contained in the first set then it is immediate from Theo-
rem 10 that B+ is the unique trace class positive approximant of A. If a (A) is con-
tained in the second set then <r(A*) is contained in the first set and B + is the unique 
trace class positive approximant of A*. For any nonnegative operator R we have 
H ^ - ^ l l ^ l l ^ - ^ l l ! (by Lemma 8 of [10, p. 39], for example). It follows that B+ is 
the unique trace class positive approximant for A. 

12* 
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If A has a unique trace class positive approximant then Theorem 5 shows that 
A does not have eigenvalues in each of the sets {z: im z<0} and {z: imz>0}. 
Thus, the eigenvalues of A are contained in one or the other of the two sets 
{z: either i m z s O or rezsO}, {z: either i m z s O or rezsO}. According to Theo-
rem 1, A—B+ is trace class and so A is a compact perturbation of B+, that is 
A=B ++(A—B+). By Weyl's theorem A and B+ have the same Weyl spectrum. 
For each of these normal operators the Weyl spectrum consists of the points that 
are not isolated eigenvalues with finite multiplicity. Clearly the Weyl spectrum of 
B + (and, hence, the Weyl spectrum of A) is contained in the interval [0, Since 
both the Weyl spectrum of A and the eigenvalues of A are contained in one of the 
desired sets, we conclude that <r(A) is contained in one or the other of the sets indicated 
in the statement of the theorem. 
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